
Assignment 2. Structs, 2D arrays, and linked lists
In this assignment your goal is to create a simulation of a Boggle-like game. While Boggle is a

traditionally multi-player game, this version will be a single-player only. We will add more features in

future assignments.

Boggle is a board word game. The game is played using a plastic grid of lettered dice, in which

players attempt to find words in sequences of adjacent letters.

The game begins by shaking a covered tray of 16 cubic dice, each with a different letter printed on

each of its sides. The dice settle into a 4×4 tray so that only the top letter of each cube is visible.

After the dice settled into the grid, all players simultaneously begin the main phase of play.

The words can be constructed from the letters of sequentially adjacent cells, where "adjacent" are

those horizontally, vertically, and diagonally neighboring. Words must be at least three letters long,

may include singular and plural (or other derived forms) separately, but may not use the same

letter cell more than once per word. There is a time limit at the end of which scores are tallied.

From: https://en.wikipedia.org/wiki/Boggle

See table 1 for dice configuration and table 2 for scoring rules.

Table 1. Letter-dice configuration

Die 0 R I F O B X
Die 1 I F E H E Y
Die 2 D E N O W S
Die 3 U T O K N D
Die 4 H M S R A O
Die 5 L U P E T S
Die 6 A C I T O A
Die 7 Y L G K U E
Die 8 Q* B M J O A
Die 9 E H I S P N
Die 10 V E T I G N
Die 11 B A L I Y T
Die 12 E Z A V N D
Die 13 R A L E S C
Die 14 U W I L R G
Die 15 P A C E M D

* Q stands for a diphthong Qu

https://en.wikipedia.org/wiki/Boggle

Table 2. Scoring rules

Word

length

Points

3, 4 1

5 2

6 3

7 5

8+ 11

Program components
Your program must include the following components:

1. Board generator
Every time a new game starts, the program must generate a new board with accordance to the game

rules (see above), i.e. you need to roll and shuffle virtual dice and “place” them in random cells on the

grid.

2. Board
The program must display a visualization of the board on the screen throughout the duration of game

play. The visualization must resemble grid. The loop for displaying the board can be implemented inside

main. The board should be visible to the player during the entire game session. One simple way to

ensure this is to clear screen and redraw the board after each new word is entered by the user. One

possible approach to solving this problem - using system("clear") - is presented in file bloop.c.

3. User input
The program allows the player to input strings and submit them by pressing the return key, at which

point the word checker is invoked.

4. Word checker
The word checker must determine if a given user input conforms to the following rules:

 The submitted word exists in the provided dictionary.

 The word has not been submitted before

 It exists on the board as a path of letters that conforms to the rules of the game. Remember that

the same cell cannot be used twice in a single submission.

When the submitted word fails the check, the checker should inform a player of the failure and gives

him a possibility to submit another word. If the word passes the check, increment the player’s score

(refer to Table 2), and inform the player of the value of the submitted word and his new updated score.

5. Session end
Each session lasts as long as needed. When players cannot find any more words, they type ‘n’ (next) and

press a return key. After that the player is presented with his current score, asked for his user name, at

which point his name and the current score is submitted to the score board component. And the next

session of the game begins.

6. Game end
If player types ‘q’ and presses a return key, game terminates. The score board is displayed along with a

“game end” message.

7. Score board
The score board is displayed when the game launches and when a game session ends (after the player

presses either ‘n’ or ‘q’). In addition to displaying the scores, it should prompt the player to press a

button to start a new game session, or to quit.

The score board keeps a list of all players who ever played the game. Each player has an associated best

score, number of games played and the total for all games.

Figure 1. Linked list of users

Implementation requirements
1. Each game component should be modularized into a separate set of functions, and should be stored

in a separate file. The common information about the current game can be stored in globally-

accessible (external) variables.

2. All the code should be compiled using a single Makefile, which will compile all your code into a

single executable called boggle.

3. The user list should be implemented as a linked list.

4. The word checker should use a hash table to check the words in a provided dictionary and use
another hash table to check that the same word is not submitted twice in a single game session. The
implementation of the dynamic hash table is provided in 3 files in folder hash_table_code. Do not
forget that your program should be case-insensitive to the user input and to the words in the
dictionary.

Important note: because you are allocating your memory for linked lists and for the hash table
dynamically, you have to clean it up after each game session. An example of such a cleanup can be
found in function free_dictionary in file dictionary.c.

5. The program should use stdin, stdout, and stderr for input and output, so that it can be tested with
redirecting input and output from/to a file.

6. An optional command-line parameter will specify the input file for the test mode.

So if you run your program:

 ./boggle

that would mean running in a normal game mode with random board generation and multiple sessions.

If you want to test the correctness, you run:

./boggle test1.txt

That should read the board definition and the list of words provided in test1.txt, and output the result of
a test into file result.txt. You should run the tests for verifying that your program correctly identifies
valid and invalid words and assigns the proper total score.

Tests
Test files are provided in archive tests.tar.

Each input test file has two lines.

First line is a 16-character string. Every 4 characters represent a single row of the board.

So FEWOSTALJHIVACRM is same as

F E W O

S T A L

J H I V

A C R M

Second line are comma separated words that the test player constructed using the board. strtok
function might be useful to you to extract each separate word from this line.

Test files explained:

Input:
test1.txt - All words are valid.

test2.txt - Some words are on the board but not from the dictionary. (words STHC,RIVM,ACRM are
invalid)

test3.txt - Some words repeat. (words FEW,WAT, MITE, MITE, MITE are invalid)

test4.txt - Some words are in the dictrionary but not on the board. (words SNOW, TABLE, STAIRS are
invalid)

test5.txt - Using same letter cell more than once. (words WATT, STALL are invalid)

test6.txt - None of the words are valid. Score should be zero.

Output:
You should output test results into file result.txt, inspect its content and compare with the test results
below.

The result file will have two lines:

 First line are all words (comma separated and no spaces) that are invalid in the order they
appear in the test file. If all words are valid then line should be empty.

 Second line is a total score.

So for example for test1.txt the result.txt should be (first line is empty).

12

For test2.txt the result.txt should be

STHC,RIVM,ACRM

5

For test3.txt the result.txt should be

FEW,WAT,MITE,MITE,MITE

8

Marking scheme
1. Board generator: 15%

2. Board: 10%

3. User input: 15%

4. Word checker: 30%

5. Score board: 20%

6. The code compiles with make, multiple game sessions, memory cleanup after each session: 10%

For a total of 8 points of the course grade.

