Classification:
Alternative Techniques

The previous chapter described a simple, yet quite effective, classification tech-
nique known as decision tree induction. Issues such as model overfitting and
classifier evaluation were also discussed in great detail. This chapter presents
alternative techniques for building classification models—from simple tech-
niques such as rule-based and nearest-neighbor classifiers to more advanced
techniques such as support vector machines and ensemble methods. Other
key issues such as the class imbalance and multiclass problems are also dis-
cussed at the end of the chapter.

5.1 Rule-Based Classifier

A rule-based classifier is a technique for classifying records using a collection
of “if .. .then...” rules. Table 5.1 shows an example of a model generated by a
rule-based classifier for the vertebrate classification problem. The rules for the
model are represented in a disjunctive normal form, R = (r;VraV... ), where
R is known as the rule set and r;’s are the classification rules or disjuncts.

Table 5.1. Example of a rule set for the vertebrate classification problem.

r1: (Gives Birth = no) A (Aerial Creature = yes) — Birds

ro:  (Gives Birth = no) A (Aquatic Creature = yes) — Fishes

r3:  (Gives Birth = yes) A (Body Temperature = warm-blooded) — Mammals
r4:  (Gives Birth = no) A (Aerial Creature = no) — Reptiles

75:  (Aquatic Creature = semi) — Amphibians




208 Chapter 5 Classification: Alternative Techniques

Each classification rule can be expressed in the following way:
ri . (Condition;) — y;. (5.1)

The left-hand side of the rule is called the rule antecedent or precondition.
It contains a conjunction of attribute tests:

Condition; = (A1 op v1) A (A2 op v2) A ... (A op k), (5.2)

where (A;,v;) is an attribute-value pair and op is a logical operator chosen
from the set {=,#,<,>,<,>}. Each attribute test (A; op v;) is known as
a conjunct. The right-hand side of the rule is called the rule consequent,
which contains the predicted class y;.

A rule r covers a record x if the precondition of r matches the attributes
of z. r is also said to be fired or triggered whenever it covers a given record.
For an illustration, consider the rule r; given in Table 5.1 and the following
attributes for two vertebrates: hawk and grizzly bear.

Name Body Skin Gives | Aquatic Aerial Has | Hiber-
Temperature Cover | Birth | Creature | Creature | Legs | nates

hawk warm-blooded | feather no no yes yes no

grizzly bear | warm-blooded fur yes no no yes ves |

r1 covers the first vertebrate because its precondition is satisfied by the hawk’s
attributes. The rule does not cover the second vertebrate because grizzly bears
give birth to their young and cannot fly, thus violating the precondition of r1.

The quality of a classification rule can be evaluated using measures such as
coverage and accuracy. Given a data set D and a classificationruler : A — vy,
the coverage of the rule is defined as the fraction of records in D that trigger
the rule . On the other hand, its accuracy or confidence factor is defined as
the fraction of records triggered by r whose class labels are equal to y. The
formal definitions of these measures are

Coverage(r) = %
Accuracy(r) = |A’;I|y|, (5.3)

where |A| is the number of records that satisfy the rule antecedent, |A Nyl is
the number of records that satisfy both the antecedent and consequent, and
|D| is the total number of records.




5.1 Rule-Based Classifier 209
Table 5.2. The vertebrate data set.
Name Body Skin Gives | Aquatic Aerial Has | Hiber- | Class Label
Temperature Cover Birth | Creature | Creature | Legs | nates
human warm-blooded hair yes no no yes no Mammals
python cold-blooded scales no no no no yes Reptiles
salmon cold-blooded scales no yes no no no Fishes
whale warm-blooded hair yes yes no no no Mammals
frog cold-blooded none no semi no yes yes Amphibians
komodo cold-blooded scales no no no yes no Reptiles
dragon
bat warm-blooded hair yes no yes yes yes Mamimals
pigeon warm-blooded | feathers no no yes yes no Birds
cat warm-blooded fur yes no no yes no Mammals
guppy cold-blooded scales yes yes no no no Fishes
alligator cold-blooded scales no semi no yes no Reptiles
penguin warm-blooded | feathers no semi no yes no Birds
porcupine warm-blooded quills yes no no yes yes Mammals
eel cold-blooded scales no yes no no no Fishes
salamander | cold-blooded none no semi no yes yes Amphibians

Example 5.1. Consider the data set shown in Table 5.2. The rule

(Gives Birth = yes) A (Body Temperature = warm-blooded) — Mammals

has a coverage of 33% since five of the fifteen records support the rule an-
tecedent. The rule accuracy is 100% because all five vertebrates covered by
the rule are mammals.

5.1.1 How a Rule-Based Classifier Works

A rule-based classifier classifies a test record based on the rule triggered by
the record. To illustrate how a rule-based classifier works, consider the rule
set shown in Table 5.1 and the following vertebrates:

Name Body Skin | Gives | Aquatic Aerial Has | Hiber-
Temperature | Cover | Birth | Creature | Creature | Legs | nates
lemur warm-blooded fur yes no no yes yes
turtle cold-blooded | scales no semi no yes no
dogfish shark | cold-blooded | scales yes yes no no no

e The first vertebrate, which is a lemur, is warm-blooded and gives birth
to its young. It triggers the rule rs, and thus, is classified as a mammal.




210 Chapter 5 Classification: Alternative Techniques

e The second vertebrate, which is a turtle, triggers the rules r4 and rs.
Since the classes predicted by the rules are contradictory (reptiles versus
amphibians), their conflicting classes must be resolved.

e None of the rules are applicable to a dogfish shark. In this case, we
need to ensure that the classifier can still make a reliable prediction even
though a test record is not covered by any rule.

The previous example illustrates two important properties of the rule set gen-
erated by a rule-based classifier.

Mutually Exclusive Rules The rules in a rule set R are mutually exclusive
if no two rules in R are triggered by the same record. This property ensures
that every record is covered by at most one rule in R. An example of a
mutually exclusive rule set is shown in Table 5.3.

Exhaustive Rules A rule set R has exhaustive coverage if there is a rule
for each combination of attribute values. This property ensures that every
record is covered by at least one rule in R. Assuming that Body Temperature
and Gives Birth are binary variables, the rule set shown in Table 5.3 has
exhaustive coverage.

Table 5.3. Example of a mutually exclusive and exhaustive rule set.

r1: (Body Temperature = cold-blooded) — Non-mammals
re: (Body Temperature = warm-blooded) A (Gives Birth = yes) — Mammals
r3: (Body Temperature = warm-blooded) A (Gives Birth = no) — Non-mammals

Together, these properties ensure that every record is covered by exactly
one rule. Unfortunately, many rule-based classifiers, including the one shown
in Table 5.1, do not have such properties. If the rule set is not exhaustive,
then a default rule, r4 : () — yq4, must be added to cover the remaining
cases. A default rule has an empty antecedent and is triggered when all other
rules have failed. y4 is known as the default class and is typically assigned to
the majority class of training records not covered by the existing rules.

If the rule set is not mutually exclusive, then a record can be covered by
several rules, some of which may predict conflicting classes. There are two
ways to overcome this problem.




5.1 Rule-Based Classifier 211

Ordered Rules In this approach, the rules in a rule set are ordered in
decreasing order of their priority, which can be defined in many ways (e.g.,
based on accuracy, coverage, total description length, or the order in which
the rules are generated). An ordered rule set is also known as a decision
list. When a test record is presented, it is classified by the highest-ranked rule
that covers the record. This avoids the problem of having conflicting classes
predicted by multiple classification rules.

Unordered Rules This approach allows a test record to trigger multiple
classification rules and considers the consequent of each rule as a vote for
a particular class. The votes are then tallied to determine the class label
of the test record. The record is usually assigned to the class that receives
the highest number of votes. In some cases, the vote may be weighted by
the rule’s accuracy. Using unordered rules to build a rule-based classifier has
both advantages and disadvantages. Unordered rules are less susceptible to
errors caused by the wrong rule being selected to classify a test record (unlike
classifiers based on ordered rules, which are sensitive to the choice of rule-
ordering criteria). Model building is also less expensive because the rules do
not have to be kept in sorted order. Nevertheless, classifying a test record can
be quite an expensive task because the attributes of the test record must be
compared against the precondition of every rule in the rule set.

In the remainder of this section, we will focus on rule-based classifiers that
use ordered rules.

5.1.2 Rule-Ordering Schemes

Rule ordering can be implemented on a rule-by-rule basis or on a class-by-class
basis. The difference between these schemes is illustrated in Figure 5.1.

Rule-Based Ordering Scheme This approach orders the individual rules
by some rule quality measure. This ordering scheme ensures that every test
record is classified by the “best” rule covering it. A potential drawback of this
scheme is that lower-ranked rules are much harder to interpret because they
assume the negation of the rules preceding them. For example, the fourth rule
shown in Figure 5.1 for rule-based ordering,

Aquatic Creature = semi — Amphibians,

has the following interpretation: If the vertebrate does not have any feathers
or cannot fly, and is cold-blooded and semi-aquatic, then it is an amphibian.




212 Chapter 5 Classification: Alternative Techniques

Rule-Based Ordering

(Skin Cover=feathers, Aerial Creature=yes)
==> Birds

(Body temperature=warm-blooded,
Gives Birth=yes) ==> Mammals

(Body temperature=warm-blooded,
Gives Birth=no) ==> Birds

(Aquatic Creature=semi)) ==> Amphibians

(Skin Cover=scales, Aquatic Creature=no)

Class-Based Ordering

(Skin Cover=feathers, Aerial Creature=yes)
==> Birds

(Body temperature=warm-blooded,
Gives Birth=no) ==> Birds

(Body temperature=warm-blooded,
Gives Birth=yes) ==> Mammals

(Aquatic Creature=semi)) ==> Amphibians

(Skin Cover=none) ==> Amphibians

==> Reptiles
(Skin Cover=scales, Aquatic Creature=no)
(Skin Cover=scales, Aquatic Creature=yes) ==> Reptiles
==> Fishes
(Skin Cover=scales, Aquatic Creature=yes)

(Skin Cover=none) ==> Amphibians ==> Fishes

Figure 5.1. Comparison between rule-based and class-based ordering schemes.

The additional conditions (that the vertebrate does not have any feathers or
cannot fly, and is cold-blooded) are due to the fact that the vertebrate does
not satisfy the first three rules. If the number of rules is large, interpreting the
meaning of the rules residing near the bottom of the list can be a cumbersome
task.

Class-Based Ordering Scheme In this approach, rules that belong to the
same class appear together in the rule set R. The rules are then collectively
sorted on the basis of their class information. The relative ordering among the
rules from the same class is not important; as long as one of the rules fires,
the clags will be assigned to the test record. This makes rule interpretation
slightly easier. However, it is possible for a high-quality rule to be overlooked
in favor of an inferior rule that happens to predict the higher-ranked class.

Since most of the well-known rule-based classifiers (such as C4.5rules and
RIPPER) employ the class-based ordering scheme, the discussion in the re-
mainder of this section focuses mainly on this type of ordering scheme.

5.1.3 How to Build a Rule-Based Classifier

To build a rule-based classifier, we need to extract a set of rules that identifies
key relationships between the attributes of a data set and the class label.




5.1 Rule-Based Classifier 213

There are two broad classes of methods for extracting classification rules: (1)
direct methods, which extract classification rules directly from data, and (2)
indirect methods, which extract classification rules from other classification
models, such as decision trees and neural networks.

Direct methods partition the attribute space into smaller subspaces so that
all the records that belong to a subspace can be classified using a single classi-
fication rule. Indirect methods use the classification rules to provide a succinct
description of more complex classification models. Detailed discussions of these
methods are presented in Sections 5.1.4 and 5.1.5, respectively.

5.1.4 Direct Methods for Rule Extraction

The sequential covering algorithm is often used to extract rules directly
from data. Rules are grown in a greedy fashion based on a certain evaluation
measure. The algorithm extracts the rules one class at a time for data sets
that contain more than two classes. For the vertebrate classification problem,
the sequential covering algorithm may generate rules for classifying birds first,
followed by rules for classifying mammals, amphibians, reptiles, and finally,
fishes (see Figure 5.1). The criterion for deciding which class should be gen-
erated first depends on a number of factors, such as the class prevalence (i.e.,
fraction of training records that belong to a particular class) or the cost of
misclassifying records from a given class.

A summary of the sequential covering algorithm is given in Algorithm
5.1. The algorithm starts with an empty decision list, R. The Learn-One-
Rule function is then used to extract the best rule for class y that covers the
current set of training records. During rule extraction, all training records
for class y are considered to be positive examples, while those that belong to

Algorithm 5.1 Sequential covering algorithm.

: Let E be the training records and A be the set of attribute-value pairs, {(A4;,v;)}.
: Let Y, be an ordered set of classes {y1,¥2,..., ¥k}
: Let R = { } be the initial rule list.
: for each class y € Y, — {yx} do
while stopping condition is not met do
r «— Learn-One-Rule (E, A4, y).
Remove training records from F that are covered by 7.
Add r to the bottom of the rule list: R — RV r.
end while
end for
11: Insert the default rule, {} — yg, to the bottom of the rule list R.

WD O L

,_.
e




214 Chapter 5 Classification: Alternative Techniques

other classes are considered to be negative examples. A rule is desirable if it
covers most of the positive examples and none (or very few) of the negative
examples. Once such a rule is found, the training records covered by the rule
are eliminated. The new rule is added to the bottom of the decision list R.
This procedure is repeated until the stopping criterion is met. The algorithm
then proceeds to generate rules for the next class.

Figure 5.2 demonstrates how the sequential covering algorithm works for
a data set that contains a collection of positive and negative examples. The
rule R1, whose coverage is shown in Figure 5.2(b), is extracted first because
it covers the largest fraction of positive examples. All the training records
covered by R1 are subsequently removed and the algorithm proceeds to look
for the next best rule, which is R2.

_ ++_ B e, B B
4 = R1 —
S _ _
— LT -+ - 1 T =+
+ — + + — +
Tt o+ LR
(a) Original Data (b) Step 1
R1 — R1 —
- _ _ T _ B B
+ - P4 -+ —
i R2
+ ++_ . _|_ + i + ++_ _
(c) Step 2 (d) Step 3

Figure 5.2. An example of the sequential covering algorithm.




5.1 Rule-Based Classifier 215

Learn-One-Rule Function

The objective of the Learn-One-Rule function is to extract a classification
rule that covers many of the positive examples and none (or very few) of the
negative examples in the training set. However, finding an optimal rule is
computationally expensive given the exponential size of the search space. The
Learn-One-Rule function addresses the exponential search problem by growing
the rules in a greedy fashion. It generates an initial rule r and keeps refining
the rule until a certain stopping criterion is met. The rule is then pruned to
improve its generalization error.

Rule-Growing Strategy There are two common strategies for growing a
classification rule: general-to-specific or specific-to-general. Under the general-
to-specific strategy, an initial rule r : {} — y is created, where the left-hand
side is an empty set and the right-hand side contains the target class. The rule
has poor quality because it covers all the examples in the training set. New

Skin Cover = hair
=> Mammals

Body Temperature = warm-blooded
=> Mammals

Has Legs = No
== Mammals

Body Temperature = warm-blooded,
Has Legs = yes => Mammals

Body Temperature = warm-blooded,
Gives Birth = yes => Mammals

(a) General-to-specific

Body Temperature=warm-blooded, Skin Cover=hair,
Gives Birth=yes, Aquatic creature=no, Aerial Creature=no
Has Legs=yes, Hibernates=no => Mammals

Body Temperature=warm-blooded,
Skin Cover=hair, Gives Birth=yes,
Aquatic creature=no, Aerial Creature=no
Has Legs=yes => Mammals

Skin Cover=hair, Gives Birth=yes
Aquatic Creature=no, Aerial Creature=no,
Has Legs=yes, Hibernates=no
=> Mammals

(b) Specific-to-general

Figure 5.3. General-to-specific and specific-to-general rule-growing strategies.




216 Chapter 5 Classification: Alternative Techniques

conjuncts are subsequently added to improve the rule’s quality. Figure 5.3(a)
shows the general-to-specific rule-growing strategy for the vertebrate classifi-
cation problem. The conjunct Body Temperature=warm-blooded is initially
chosen to form the rule antecedent. The algorithm then explores all the possi-
ble candidates and greedily chooses the next conjunct, Gives Birth=yes, to
be added into the rule antecedent. This process continues until the stopping
criterion is met (e.g., when the added conjunct does not improve the quality
of the rule).

For the specific-to-general strategy, one of the positive examples is ran-
domly chosen as the initial seed for the rule-growing process. During the
refinement step, the rule is generalized by removing one of its conjuncts so
that it can cover more positive examples. Figure 5.3(b) shows the specific-to-
general approach for the vertebrate classification problem. Suppose a positive
example for mammals is chosen as the initial seed. The initial rule contains
the same conjuncts as the attribute values of the seed. To improve its cov-
erage, the rule is generalized by removing the conjunct Hibernate=no. The
refinement step is repeated until the stopping criterion is met, e.g., when the
rule starts covering negative examples.

The previous approaches may produce suboptimal rules because the rules
are grown in a greedy fashion. To avoid this problem, a beam search may be
used, where k of the best candidate rules are maintained by the algorithm.
Each candidate rule is then grown separately by adding (or removing) a con-
junct from its antecedent. The quality of the candidates are evaluated and the
k best candidates are chosen for the next iteration.

Rule Evaluation An evaluation metric is needed to determine which con-
junct should be added (or removed) during the rule-growing process. Accu-
racy is an obvious choice because it explicitly measures the fraction of training
examples classified correctly by the rule. However, a potential limitation of ac-
curacy is that it does not take into account the rule’s coverage. For example,
consider a training set that contains 60 positive examples and 100 negative
examples. Suppose we are given the following two candidate rules:

Rule 7r1: covers 50 positive examples and 5 negative examples,
Rule 73: covers 2 positive examples and no negative examples.

The accuracies for r; and re are 90.9% and 100%, respectively. However,
r1 is the better rule despite its lower accuracy. The high accuracy for r is
potentially spurious because the coverage of the rule is too low.




5.1 Rule-Based Classifier 217

The following approaches can be used to handle this problem.

1. A statistical test can be used to prune rules that have poor coverage.
For example, we may compute the following likelihood ratio statistic:

k
R=2" filog(fi/es),

i=1

where k is the number of classes, f; is the observed frequency of class ¢
examples that are covered by the rule, and e; is the expected frequency
of a rule that makes random predictions. Note that R has a chi-square
distribution with k — 1 degrees of freedom. A large R value suggests
that the number of correct predictions made by the rule is significantly
larger than that expected by random guessing. For example, since
covers 55 examples, the expected frequency for the positive class is ey =
55x60/160 = 20.625, while the expected frequency for the negative class
is e_ = 55 x 100/160 = 34.375. Thus, the likelihood ratio for 71 is

R(r1) = 2 x [50 x log,(50/20.625) + 5 x log,(5/34.375)] = 99.9.

Similarly, the expected frequencies for ry are e; = 2 x 60/160 = 0.75
and e_ =2 x 100/160 = 1.25. The likelihood ratio statistic for rs is

R(ro) =2 x [2 x logy(2/0.75) + 0 x logy(0/1.25)] = 5.66.

This statistic therefore suggests that r; is a better rule than ry.

2. An evaluation metric that takes into account the rule coverage can be
used. Consider the following evaluation metrics:

S +1
1 e 5.4
Laplace ik (5.4)
k
m-estimate = f+—+-ﬁ, (5.5)
n+k

where n is the number of examples covered by the rule, f. is the number
of positive examples covered by the rule, k is the total number of classes,
and p4 is the prior probability for the positive class. Note that the m-
estimate is equivalent to the Laplace measure by choosing py = 1/k.
Depending on the rule coverage, these measures capture the trade-off




218 Chapter 5 Classification: Alternative Techniques

between rule accuracy and the prior probability of the positive class. If
the rule does not cover any training example, then the Laplace mea-
sure reduces to 1/k, which is the prior probability of the positive class
assuming a uniform class distribution. The m-estimate also reduces to
the prior probability (p4) when n = 0. However, if the rule coverage
is large, then both measures asymptotically approach the rule accuracy,
f+/n. Going back to the previous example, the Laplace measure for
ry is 51/57 = 89.47%, which is quite close to its accuracy. Conversely,
the Laplace measure for r2 (75%) is significantly lower than its accuracy
because 72 has a much lower coverage.

3. An evaluation metric that takes into account the support count of the
rule can be used. One such metric is the FOIL’s information gain.
The support count of a rule corresponds to the number of positive exam-
ples covered by the rule. Suppose the rule 7 : A — + covers pg positive
examples and ng negative examples. After adding a new conjunct B, the
extended rule ' : AA B — + covers p; positive examples and n; neg-
ative examples. Given this information, the FOIL’s information gain of
the extended rule is defined as follows:

. . . Y4 bo
FOIL’s information gain = p; x | lo -lo . (5.6
g 2\ ( B2y 1082 +no) (5.6)

Since the measure is proportional to p; and py/(p1 +n1), it prefers rules
that have high support count and accuracy. The FOIL’s information
gains for rules r; and ro given in the preceding example are 43.12 and 2,
respectively. Therefore, ry is a better rule than ro.

Rule Pruning The rules generated by the Learn-One-Rule function can be
pruned to improve their generalization errors. To determine whether pruning
is necessary, we may apply the methods described in Section 4.4 on page
172 to estimate the generalization error of a rule. For example, if the error
on validation set decreases after pruning, we should keep the simplified rule.
Another approach is to compare the pessimistic error of the rule before and
after pruning (see Section 4.4.4 on page 179). The simplified rule is retained
in place of the original rule if the pessimistic error improves after pruning.




5.1 Rule-Based Classifier 219

Rationale for Sequential Covering

After a rule is extracted, the sequential covering algorithm must eliminate
all the positive and negative examples covered by the rule. The rationale for
doing this is given in the next example.

R3 R2
_____________ =
| | |

5 1 S N e+
+ ++ | + | l !
+ o+ |+ o+ !
class =+ + .+ I I
+ + + I  + I
Ty g I 1 :
+ H + | ot i
~ I | 1 - |
i - | e I |
| a I -
f | e
class=- | - - -

Figure 5.4. Elimination of training records by the sequential covering algorithm. R1, R2, and R3
represent regions covered by three different rules.

Figure 5.4 shows three possible rules, R1, R2, and R3, extracted from a
data set that contains 29 positive examples and 21 negative examples. The
accuracies of R1, R2, and R3 are 12/15 (80%), 7/10 (70%), and 8/12 (66.7%),
respectively. R1 is generated first because it has the highest accuracy. After
generating R1, it is clear that the positive examples covered by the rule must be
removed so that the next rule generated by the algorithm is different than R1.
Next, suppose the algorithm is given the choice of generating either R2 or R3.
Even though R2 has higher accuracy than R3, R1 and R3 together cover 18
positive examples and 5 negative examples (resulting in an overall accuracy of
78.3%), whereas R1 and R2 together cover 19 positive examples and 6 negative
examples (resulting in an overall accuracy of 76%). The incremental impact of
R2 or R3 on accuracy is more evident when the positive and negative examples
covered by R1 are removed before computing their accuracies. In particular, if
positive examples covered by R1 are not removed, then we may overestimate
the effective accuracy of R3, and if negative examples are not removed, then
we may underestimate the accuracy of R3. In the latter case, we might end up
preferring R2 over R3 even though half of the false positive errors committed
by R3 have already been accounted for by the preceding rule, R1.




220 Chapter 5 Classification: Alternative Techniques

RIPPER Algorithm

To illustrate the direct method, we consider a widely used rule induction algo-
rithm called RIPPER. This algorithm scales almost linearly with the number
of training examples and is particularly suited for building models from data
sets with imbalanced class distributions. RIPPER also works well with noisy
data sets because it uses a validation set to prevent model overfitting.

For two-class problems, RIPPER chooses the majority class as its default
class and learns the rules for detecting the minority class. For multiclass prob-
lems, the classes are ordered according to their frequencies. Let (y1,92,. .-, Yc)
be the ordered classes, where y; is the least frequent class and y, is the most
frequent class. During the first iteration, instances that belong to y; are la-
beled as positive examples, while those that belong to other classes are labeled
as negative examples. The sequential covering method is used to generate rules
that discriminate between the positive and negative examples. Next, RIPPER
extracts rules that distinguish y2 from other remaining classes. This process
is repeated until we are left with y., which is designated as the default class.

Rule Growing RIPPER employs a general-to-specific strategy to grow a
rule and the FOIL’s information gain measure to choose the best conjunct
to be added into the rule antecedent. It stops adding conjuncts when the
rule starts covering negative examples. The new rule is then pruned based
on its performance on the validation set. The following metric is computed to
determine whether pruning is needed: (p—n)/(p+n), where p (n) is the number
of positive (negative) examples in the validation set covered by the rule. This
metric is monotonically related to the rule’s accuracy on the validation set. If
the metric improves after pruning, then the conjunct is removed. Pruning is
done starting from the last conjunct added to the rule. For example, given a
rule ABCD — y, RIPPER checks whether D should be pruned first, followed
by CD, BCD, etc. While the original rule covers only positive examples, the
pruned rule may cover some of the negative examples in the training set.

Building the Rule Set After generating a rule, all the positive and negative
examples covered by the rule are eliminated. The rule is then added into the
rule set as long as it does not violate the stopping condition, which is based
on the minimum description length principle. If the new rule increases the
total description length of the rule set by at least d bits, then RIPPER stops
adding rules into its rule set (by default, d is chosen to be 64 bits). Another
stopping condition used by RIPPER is that the error rate of the rule on the
validation set must not exceed 50%.




5.1 Rule-Based Classifier 221

RIPPER also performs additional optimization steps to determine whether
some of the existing rules in the rule set can be replaced by better alternative
rules. Readers who are interested in the details of the optimization method
may refer to the reference cited at the end of this chapter.

5.1.5 Indirect Methods for Rule Extraction

This section presents a method for generating a rule set from a decision tree.
In principle, every path from the root node to the leaf node of a decision tree
can be expressed as a classification rule. The test conditions encountered along
the path form the conjuncts of the rule antecedent, while the class label at the
leaf node is assigned to the rule consequent. Figure 5.5 shows an example of a
rule set generated from a decision tree. Notice that the rule set is exhaustive
and contains mutually exclusive rules. However, some of the rules can be
simplified as shown in the next example.

Rule Set

r1: (P=No,Q=No) ==> -

r2: (P=No,Q=Yes) ==> +

r3: (P=Yes,Q=No) ==> +

r4: (P=Yes,R=Yes,Q=No) ==> -
r5: (P=Yes,R=Yes,Q=Yes) ==> +

Figure 5.5. Converting a decision tree into classification rules.

Example 5.2. Consider the following three rules from Figure 5.5:

r2: (P =No) A (Q = Yes) — +

r3: (P = Yes) A (R = No) — +

r5: (P = Yes) A (R = Yes) A (Q = Yes) — +
Observe that the rule set always predicts a positive class when the value of @
is Yes. Therefore, we may simplify the rules as follows:

r2": (Q = Yes) — +
r3: (P = Yes) A (R = No) — +.




222 Chapter 5 Classification: Alternative Techniques

Rule-Based Classifier:

(Gives Birth=No, Aerial Creature=Yes) => Birds
(Gives Birth=No, Aquatic Creature=Yes) => Fishes
(Gives Birth=Yes) => Mammals

Yes
(Gives Birth=No, Aerial Creature=No, Aquatic Creature=No)

=> Reptiles
() => Amphibians

Aerial
Creature
S N

Reptiles

No

Amphibians

Ye

Le]

Figure 5.6. Classification rules extracted from a decision tree for the vertebrate classification problem.

r3 is retained to cover the remaining instances of the positive class. Although
the rules obtained after simplification are no longer mutually exclusive, they
are less complex and are easier to interpret. [

In the following, we describe an approach used by the C4.5rules algorithm
to generate a rule set from a decision tree. Figure 5.6 shows the decision tree
and resulting classification rules obtained for the data set given in Table 5.2.

Rule Generation Classification rules are extracted for every path from the
root to one of the leaf nodes in the decision tree. Given a classification rule
r: A — y, we consider a simplified rule, ' : A’ — y, where A’ is obtained
by removing one of the conjuncts in A. The simplified rule with the lowest
pessimistic error rate is retained provided its error rate is less than that of the
original rule. The rule-pruning step is repeated until the pessimistic error of
the rule cannot be improved further. Because some of the rules may become
identical after pruning, the duplicate rules must be discarded.

Rule Ordering After generating the rule set, C4.5rules uses the class-based
ordering scheme to order the extracted rules. Rules that predict the same class
are grouped together into the same subset. The total description length for
each subset is computed, and the classes are arranged in increasing order of
their total description length. The class that has the smallest description




5.2 Nearest-Neighbor classifiers 223

length is given the highest priority because it is expected to contain the best
set of rules. The total description length for a class is given by Lexception + g X
Linodel, Where Lexception 18 the number of bits needed to encode the misclassified
examples, Lyodet is the number of bits needed to encode the model, and g is a
tuning parameter whose default value is 0.5. The tuning parameter depends
on the number of redundant attributes present in the model. The value of the
tuning parameter is small if the model contains many redundant attributes.

5.1.6 Characteristics of Rule-Based Classifiers
A rule-based classifier has the following characteristics:

e The expressiveness of a rule set is almost equivalent to that of a decision
tree because a decision tree can be represented by a set of mutually ex-
clusive and exhaustive rules. Both rule-based and decision tree classifiers
create rectilinear partitions of the attribute space and assign a class to
each partition. Nevertheless, if the rule-based classifier allows multiple
rules to be triggered for a given record, then a more complex decision
boundary can be constructed.

o Rule-based classifiers are generally used to produce descriptive models
that are easier to interpret, but gives comparable performance to the
decision tree classifier.

e The class-based ordering approach adopted by many rule-based classi-
fiers (such as RIPPER) is well suited for handling data sets with imbal-
anced class distributions.

5.2 Nearest-Neighbor classifiers

The classification framework shown in Figure 4.3 involves a two-step process:
(1) an inductive step for constructing a classification model from data, and
(2) a deductive step for applying the model to test examples. Decision tree
and rule-based classifiers are examples of eager learners because they are
designed to learn a model that maps the input attributes to the class label as
soon as the training data becomes available. An opposite strategy would be to
delay the process of modeling the training data until it is needed to classify the
test examples. Techniques that employ this strategy are known as lazy learn-
ers. An example of a lazy learner is the Rote classifier, which memorizes the
entire training data and performs classification only if the attributes of a test
instance match one of the training examples exactly. An obvious drawback of




