
FUZZY CLUSTERING
Lecture 05.04

What is a Clustering?

• In general a grouping of objects such that the objects in a

group (cluster) are similar (or related) to one another and

different from (or unrelated to) the objects in other groups

Inter-cluster
distances are
maximized

Intra-cluster
distances are

minimized

Clustering Algorithms

• K-means and its variants

• Hierarchical clustering

• DBSCAN

• All these algorithms assign each data point to a single cluster: crisp

clustering

Fuzzy clustering

• Uses concepts from the field of fuzzy logic and

fuzzy set theory.

• Objects are allowed to belong to more than one

cluster.

• Each object belongs to every cluster with some

weight.

Why fuzzy clustering

• When clusters are well separated, a crisp classification of

objects into clusters makes sense.

• But in many cases, clusters are not well separated.

• In a crisp formulation, a borderline object ends up being

assigned to a cluster in an arbitrary manner.

Based on the theory of fuzzy sets

• Introduced by Lotfi Zadeh in 1965 as a way of

dealing with imprecision and uncertainty.

• Fuzzy set theory allows an object to belong to a

set with a degree of membership between 0 and

1.

• Traditional set theory can be seen as a special

case that restrict membership values to be either

0 or 1.

Fuzzy clusters: definition

• Assume a set of n objects X = {x1, x2, . . . , xn},

where xi is a d -dimensional point.

• A fuzzy clustering is a collection of k clusters, C1,

C2, . . . , Ck , and a partition matrix W = wi,j ∈[0, 1],

for i = 1 . . . n and j = 1 . . . k, where each element

wi,j is a weight that represents the degree of

membership of object i in cluster Cj .

To have a fuzzy pseudo-partition:

• All weights for a given point, xi , must add up to 1.

෍

𝑗=1

𝑘

𝑤𝑖,𝑗 = 1

• Each cluster Cj contains, with non-zero weight, at

least one point, but does not contain, with a weight

of one, all the points.

0 < ෍

𝑖=1

𝑛

𝑤𝑖,𝑗 < 𝑛

Fuzzy c-means (FCM)

is a fuzzy version of k-means
Fuzzy c-means algorithm

1. Select an initial fuzzy pseudo-partition, i.e., assign random

values to all wi,j

2. Repeat:

• compute the centroid of each cluster using the fuzzy partition

• update the fuzzy partition, i.e, the wi,j – based on the distance

from centroid

Until the centroids don't change

There's alternative stopping criteria: “change in the error is below

a specified threshold", or “absolute change in any wi,j is below a

given threshold".

FCM as an optimization problem

• As with k-means, FCM also attempts to minimize the sum of the
squared error (SSE).

• In k-means:

𝑆𝑆𝐸 = ෍

𝑗=1

𝑘

෍

𝑥 ∈𝐶𝑖

𝑑𝑖𝑠𝑡(𝑐𝑗 , 𝑥)
2

• In FCM

𝑆𝑆𝐸 = ෍

𝑗=1

𝑘

෍

𝑖=1

𝑛

𝑤𝑖,𝑗
𝑀𝑑𝑖𝑠𝑡(𝑥𝑖 , 𝑐𝑗)

2

• M is a “fuzziness” parameter that prevents points to completely belong to
one cluster

Computing centroids

• For a cluster Cj , the corresponding centroid cj is defined as:

𝑐𝑗 =
σ𝑖=1
𝑛 𝑤𝑖𝑗

𝑀𝑥𝑖

σ𝑖=1
𝑛 𝑤𝑖𝑗

𝑀

• This is just an extension of the definition of centroid that we

have for k-means.

𝑐𝑗 =
σ𝑖=1
𝑛
𝑗 𝑥𝑖𝑗

𝑛𝑗
• The difference is that all n points are considered and the

contribution of each point to the centroid is weighted by its

membership degree.

Formula for updating weights

• Formula can be obtained by minimizing the SSE subject

to the constraint that the weights sum to 1:

𝑤𝑖𝑗 =
(1/𝑑𝑖𝑠𝑡(𝑥𝑖 , 𝑐𝑗)

2)
1

𝑀−1

σ𝑞=1
𝑘 (1/𝑑𝑖𝑠𝑡(𝑥𝑖 , 𝑐𝑞)

2)
1

𝑀−1

• Intuition: wij should be high if xi is close to the centroid cj ,

i.e., if dist(xi , cj) is low.

• Denominator (sum of all weights for a given point) is needed

to normalize weights for a point – so they sum up to 1.

• A given data point is classified into the
cluster for which it has the highest
membership value.

• A maximum membership value of 0.5
indicates that the point belongs to both
clusters equally.

• The data points marked with a black x
have maximum membership values
below 0.6. These points have a greater
degree of uncertainty in their cluster
membership.

• The average maximum membership
value, averageMax, provides a
quantitative description of the overlap.

• An averageMax value of 1 indicates
crisp clusters, with smaller values
indicating more overlap.

Fuzziness:

average maximum membership

Fuzziness parameter M

𝑤𝑖𝑗 =
(1/𝑑𝑖𝑠𝑡(𝑥𝑖 , 𝑐𝑗)

2)
1

𝑀−1

σ𝑞=1
𝑘 (1/𝑑𝑖𝑠𝑡(𝑥𝑖 , 𝑐𝑞)

2)
1

𝑀−1

• If M→1, the exponent
increases the membership
weights of points to which
the cluster is close. As
M→1, membership→1 for
the closest cluster and
membership→0 for all the
other clusters (this
corresponds to k-means).

Fuzziness parameter M

𝑤𝑖𝑗 =
(1/𝑑𝑖𝑠𝑡(𝑥𝑖 , 𝑐𝑗)

2)
1

𝑀−1

σ𝑞=1
𝑘 (1/𝑑𝑖𝑠𝑡(𝑥𝑖 , 𝑐𝑞)

2)
1

𝑀−1

• As M → ∞, the exponent

→ 0. This implies that

the weights → 1/k –

each point belongs to

each cluster with equal

weight

As M grows, more and more uncertain

memberships

Fuzzy C-means clustering algorithm

• The fuzzy c-means algorithm is very similar to the

k-means algorithm:

Choose a number of clusters c

To each data point i:

assign random weights w1…wc for being in the clusters 1…c

Repeat until the algorithm has converged* :

Compute the centroid for each cluster

Recompute weights for each point

based on distance from c centroids

*that is, the coefficients' change between two iterations is no more than ε, the given sensitivity threshold

Sample application: clustering whole

genomes of domesticated rice

Wild ancestors of domesticated rice Oryza Sativa: O. Indica, O. Japonica, and O. Rufipogon

As you see - most cultivated plants belongs to more than 1 ancestral cluster

https://www.nature.com/articles/nature11532#s1

https://www.nature.com/articles/nature11532#s1

The same applies to human populations

MIXTURE MODELS AND

THE EM ALGORITHM
Statistical approach to fuzzy clustering

Model-based clustering

• In order to understand our data, we will assume that there

is a generative process (a model) that creates/describes

the data, and we will try to find the model that best fits the

data.

• Models of different complexity can be defined, but we will assume

that our model is a distribution from which data points are sampled

• Example: the data is the height of all people in Greece: height

follows Gaussian distribution

Gaussian Distribution

• Example: the data is the height of all people in

Greece

• Experience has shown that this data follows a Gaussian

(Normal) distribution

• Reminder: Normal distribution:

• 𝜇 = mean, 𝜎 = standard deviation

𝑃 𝑥 =
1

2𝜋𝜎
𝑒
−
𝑥−𝜇 2

2𝜎2

Gaussian Model

• What is a model?

• A Gaussian distribution is fully defined by the mean

𝜇 and the standard deviation 𝜎

• We define our model as the pair of parameters 𝜃 =
(𝜇, 𝜎)

• This is a general principle: a model is defined as

a vector of parameters 𝜃

Fitting the model

• We want to find the normal distribution that best

fits our data

• Find the best values for 𝜇 and 𝜎

• But what does best fit mean?

Maximum Likelihood Estimation (MLE)

• Suppose that we have a vector 𝑋 = (𝑥1, … , 𝑥𝑛) of
values and we want to fit a Gaussian 𝑁(𝜇, 𝜎) model to
the data

• Probability of observing point 𝑥𝑖:

• Probability of observing all points (assume
independence)

• We want to find the parameters 𝜃 = (𝜇, 𝜎) that
maximize the probability 𝑃(𝑋|𝜃)

𝑃 𝑥𝑖 =
1

2𝜋𝜎
𝑒
−
𝑥𝑖−𝜇

2

2𝜎2

𝑃 𝑋 = ෑ

𝑖=1

𝑛

𝑃 𝑥𝑖 =ෑ

𝑖=1

𝑛
1

2𝜋𝜎
𝑒
−
𝑥𝑖−𝜇

2

2𝜎2

Maximum Likelihood Estimation (MLE)

• The probability 𝑃(𝑋|𝜃) as a function of 𝜃 is called the
Likelihood function

• It is usually easier to work with the Log-Likelihood
function

• Maximum Likelihood Estimation
• Find parameters 𝜇, 𝜎 that maximize 𝐿𝐿(𝜃)

𝐿(𝜃) =ෑ

𝑖=1

𝑛
1

2𝜋𝜎
𝑒
−
𝑥𝑖−𝜇

2

2𝜎2

𝐿𝐿 𝜃 = −෍

𝑖=1

𝑛
𝑥𝑖 − 𝜇 2

2𝜎2
−
1

2
𝑛 log 2𝜋 − 𝑛 log 𝜎

𝜇 =
1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖 = 𝜇𝑋 𝜎2 =
1

𝑛
෍

𝑖=1

𝑛

(𝑥𝑖−𝜇)
2 = 𝜎𝑋

2

Sample Mean Sample Variance

MLE

• Note: these are also the most likely parameters

given the data

𝑃 𝜃 𝑋 =
𝑃 𝑋 𝜃 𝑃(𝜃)

𝑃(𝑋)

• If we have no prior information about 𝜃, or X, then

maximizing 𝑃 𝑋 𝜃 is the same as maximizing

𝑃 𝜃 𝑋

Mixture of Gaussians

• Suppose that you have the heights data and the

distribution looks like the figure below (dramatization)

If you look at the mixture, you cannot see the normal

distribution at all

Mixture model

• You suspect that the data is the height of all people in

Greece and China

• We define two latent (hidden) classes (variables): with

probability πG the point is drawn from the Greek

distribution, with probability πC = 1 – πG from Chinese

distribution

• Different distributions correspond to different clusters in

the data.

The world's tallest countries
1.Netherlands - 1.838m
2.Montenegro - 1.832m
3.Denmark - 1.826m
4.Norway - 1.824m
5.Serbia - 1.82m

The world's shortest countries
1.Indonesia - 1.58m
2.Bolivia - 1.6m
3.Philippines - 1.619m
4.Vietnam - 1.621m
5.Cambodia - 1.625m

Mixture of Gaussians

• In this case the data is the result of the mixture of two

Gaussians

• One for Greek people, and one for Chinese people

• Identifying for each value which Gaussian is most likely to have

generated it will give us the same as the weights in fuzzy

clustering.

Generative process

• A value 𝑥𝑖 is generated according to the following

process:

• First select the nationality

• With probability 𝜋𝐺 select Greece, with probability 𝜋𝐶 select

China (𝜋𝐺 + 𝜋𝐶 = 1)

• Given the nationality, generate the point from the

corresponding Gaussian

• 𝑃 𝑥𝑖 𝜃𝐺 ~ 𝑁 𝜇𝐺 , 𝜎𝐺 if Greece

• 𝑃 𝑥𝑖 𝜃𝐶 ~ 𝑁 𝜇𝐶 , 𝜎𝐶 if China

We can also think of this as a Hidden Variable Z

that takes two values: Greece and China

𝜃𝐺: parameters of the Greek distribution

𝜃𝐶: parameters of the China distribution

• Our model has the following parameters

Θ = (𝜋𝐺 , 𝜋𝐶 , 𝜇𝐺 , 𝜎𝐺 , 𝜇𝐶 , 𝜎𝐶)

Mixture Model

Mixture probabilities

𝜃𝐶: parameters of the China distribution

𝜃𝐺: parameters of the Greek distribution

All the parameters are unknown – all we have is data

points and the suspicion that there are 2 clusters here

• Our model has the following parameters

Θ = (𝜋𝐺 , 𝜋𝐶 , 𝜇𝐺 , 𝜎𝐺 , 𝜇𝐶 , 𝜎𝐶)

• For value 𝑥𝑖, we have:

𝑃 𝑥𝑖|Θ = 𝜋𝐺𝑃 𝑥𝑖 𝜃𝐺 + 𝜋𝐶𝑃(𝑥𝑖|𝜃𝐶)

• For all values 𝑋 = 𝑥1, … , 𝑥𝑛

𝑃 𝑋|Θ = ෑ

𝑖=1

𝑛

𝑃(𝑥𝑖|Θ)

• We want to estimate the parameters that maximize
the Likelihood of all the data

Mixture Model

Mixture probabilities Distribution Parameters

Mixture Models

• Once we have the parameters Θ =
(𝜋𝐺 , 𝜋𝐶 , 𝜇𝐺 , 𝜇𝐶 , 𝜎𝐺 , 𝜎𝐶) we can estimate the

membership probabilities 𝑃 𝐺 𝑥𝑖 and 𝑃 𝐶 𝑥𝑖 for

each point 𝑥𝑖:

• This is the probability that point 𝑥𝑖 belongs to the Greek

or the Chinese population (cluster)

𝑃 𝐺 𝑥𝑖 =
𝑃 𝑥𝑖 𝐺 𝑃(𝐺)

𝑃 𝑥𝑖 𝐺 𝑃 𝐺 + 𝑃 𝑥𝑖 𝐶 𝑃(𝐶)

=
𝑃 𝑥𝑖 𝜃𝐺 𝜋𝐺

𝑃 𝑥𝑖 𝜃𝐺 𝜋𝐺 + 𝑃 𝑥𝑖 𝜃𝐶 𝜋𝐶

Given from the Gaussian

distribution 𝑁(𝜇𝐺 , 𝜎𝐺) for Greek

EM (Expectation Maximization) Algorithm

• Initialize the values of the parameters in Θ to some
random values

• Repeat until convergence
• E-Step: Given the parameters Θ estimate the membership

probabilities 𝑃 𝐺 𝑥𝑖 and 𝑃 𝐶 𝑥𝑖
• M-Step: Compute new parameter values that (in expectation)

maximize the data likelihood

𝜇𝐶 = ෍

𝑖=1

𝑛
𝑃 𝐶 𝑥𝑖
𝑛 ∗ 𝜋𝐶

𝑥𝑖

𝜋𝐶 =
1

𝑛
෍

𝑖=1

𝑛

𝑃(𝐶|𝑥𝑖) 𝜋𝐺 =
1

𝑛
෍

𝑖=1

𝑛

𝑃(𝐺|𝑥𝑖)

𝜇𝐺 = ෍

𝑖=1

𝑛
𝑃 𝐺 𝑥𝑖
𝑛 ∗ 𝜋𝐺

𝑥𝑖

𝜎𝐶
2 = ෍

𝑖=1

𝑛
𝑃 𝐶 𝑥𝑖
𝑛 ∗ 𝜋𝐶

𝑥𝑖 − 𝜇𝐶
2 𝜎𝐺

2 = ෍

𝑖=1

𝑛
𝑃 𝐺 𝑥𝑖
𝑛 ∗ 𝜋𝐺

𝑥𝑖 − 𝜇𝐺
2

MLE Estimates

if 𝜋’s were fixed

Fraction of

population in G,C

Relationship to FCM

• E-Step: Assignment of points to clusters with

weights - probabilities

• EM: soft assignment

• M-Step: Computation of centroids

• Changes the mean and variance for different

distributions (clusters)

• If the variance is fixed then both minimize the same

error function

TOPIC MODELING
Latent Dirichlet Allocation

“All models are wrong but some are useful”

George Box

Clustering documents

• We can apply the same idea to documents and words

• Each document can refer to several topics

• We want to identify main topics and side topics for each

document

• We want to learn the topics automatically from a large

collection of texts

Generative probabilistic model

• We assume that there is a probability of each word

belonging to a specific topic

• The document is generated by first choosing the

probabilities of topics and then by choosing the words

from these topics according to the probabilities of each

word

• This is also a bag of words assumption (the order of

words is not important). This may be a valid assumption,

because, if I take a document, jumble the words and give

it to you, you still can guess what sort of topics are

discussed in the document

Topic modeling

• Topic modelling refers to the task of identifying topics that

best describe a set of documents.

• These topics are not known in advance, and will only

emerge during the topic modelling process (therefore

called latent).

• One popular topic modelling technique is known as Latent

Dirichlet Allocation (LDA) – assumes Dirichlet

Distributions of both topics and words inside each topic

Applications

• Historians can use LDA to identify important events in

history by analyzing text based on year.

• Web-based libraries can use LDA to recommend books

based on the topics that you were interested in in the

past.

• News providers can use topic modelling to understand

articles quickly or cluster similar articles.

• Another interesting application is unsupervised clustering

of images, where each image is treated similar to a

document.

Modeling documents just with words

• Some documents are connected to same set of words

• You can see that we can’t really infer any useful information due

to the large amount of connections

Introducing a topic layer

• We can solve this problem, by introducing a latent (i.e.

hidden) layer.

• Say we know that there are 3 topics/themes overall - but

these topics are not observed (latent, hidden), we only

observe words and documents.

• We want to utilize this information to cut down on the

number of threads.

• Then we can connect the words to the topics depending

on how well that word fall in that topic and then connect

the topics to the documents based on what topics each

document touches upon.

Example with topic layer

Each topic can be represented as a distribution of words like

(0.3*Cats,0.4*Dogs,0.2*Loyal, 0.1*Evil) for the topic “Animals”

Latent Dirichlet Allocation

• Assumes that the following generative process is behind

any document you see:

• The topic is selected with some probability from the

Dirichlet distribution

• The word is selected with the probability assigned to

each word to belong to the selected topic

Generating a new document: model

First α (alpha)
organizes the
ground θ (theta)
and then you go
and pick a ball
from θ.

Based on what you pick,
you’re sent to ground β
(beta). β is organized by η
(Eta).

Now you pick a
word from β
and put it into
the document.
You iterate this
process 5 times
to get 5
words out.

Definitions and notations

• k — Number of topics a document belongs to (a fixed number)

• V — Size of the vocabulary

• M — Number of documents

• N — Number of words in each document

• w— A word in a document. This is represented as a one hot encoded

vector of size V (i.e. V— vocabulary size)

• w (bold w): represents a document (i.e. vector of “w”s) of N words

• D — Corpus, a collection of M documents

• z — A topic from a set of k topics. A topic is a distribution of words. For

example Animal = (0.3 Cats, 0.4 Dogs, 0 AI, 0.2 Loyal, 0.1 Evil)

Graphical model of LDA

Remember that θ, z, and β are distributions, not deterministic values

Generating a new document

• We have a single α value (i.e. organizer of ground θ) which defines θ

- the topic distribution for documents

• We have M documents and got a separate θ distribution for each

such document

• Any single document has N words and each word is generated by a

topic. You generate N topics to be filled in with words. These N words

are still placeholders.

• Now the top plate kicks in. Based on η, β has some distribution (i.e. a

Dirichlet distribution to be precise) and according to that distribution, β

generates k individual words for each topic.

• Now you fill in a word to each placeholder (in the set of N

placeholders), conditioned on the topic it represents.

• Voila, you got a document with N words now!

Both θ and β are modeled as

a Dirichlet distribution

• The balls are nicely laid out in the

corners - it means that the words

we produce are more likely to

belong to a single topic as it is

normally with real-world

documents.

Dirichlet distribution

• Multivariate generalization of the binary Beta distribution.

Large α values push the distribution to the middle of the triangle, where smaller α

values push the distribution to the corners.

https://en.wikipedia.org/wiki/Dirichlet_distribution

How do we find model parameters?

• We need to compute the latent (hidden) variables from a

given set of documents:

• α — Distribution-related parameter that governs what the

distribution of topics is for all the documents in the corpus

looks like

• θ — Random matrix where θ(i,j) represents the probability

of the i-th document to containing the j-th topic

• η — Distribution-related parameter that governs what the

distribution of words in each topic looks like

• β — A random matrix where β(i,j) represents the probability

of i-th topic containing the j-th word.

Learn the following model

• Find the joint posterior probability of:
• θ — A distribution of topics, one for each document,

• z — N Topics for each document,

• β — A distribution of words, one for each topic,

• Given:
• D — All the data we have (i.e. the corpus),

• and using parameters:
• α — A parameter vector for each document (document — Topic

distribution)

• η — A parameter vector for each topic (topic — word distribution)

• But we do not know any of the parameters!

• So the problem seems entirely intractable

Variational inference

• The probability we discussed above is a very messy

intractable posterior (meaning we cannot calculate that on

paper and have nice equations)

• The only thing we can do is to approximate that with some

known probability distribution that closely matches the

true posterior

• That’s the idea behind variational inference.

• The way to do this is to minimize the KL divergence

between the approximation and true posterior using

optimization techniques.

https://towardsdatascience.com/light-on-math-machine-learning-intuitive-guide-to-understanding-kl-divergence-2b382ca2b2a8

Optimization problem

• γ , ϕ and λ represent the free variational parameters with
which we approximate θ, z and β.

• Here D(q||p) represents the KL divergence between q and p.
And by changing γ, ϕ and λ, we get different q distributions
having different distances from the true posterior p.

• Our goal is to find the γ* , ϕ* and λ* that minimize the KL
divergence between the approximation q and the true
posterior p.

• Now it’s just a matter of iteratively solving the above
optimization problem until the solution converges.

• Once you have γ* , ϕ* and λ* you have everything you need
in the final LDA model.

