
FUZZY CLUSTERING
Lecture 05.04



What is a Clustering?

• In general a grouping of objects such that the objects in a 

group (cluster) are similar (or related) to one another and 

different from (or unrelated to) the objects in other groups

Inter-cluster 
distances are 
maximized

Intra-cluster 
distances are 

minimized



Clustering Algorithms

• K-means and its variants

• Hierarchical clustering

• DBSCAN

• All these algorithms assign each data point to a single cluster: crisp

clustering



Fuzzy clustering

• Uses concepts from the field of fuzzy logic and 

fuzzy set theory.

• Objects are allowed to belong to more than one

cluster.

• Each object belongs to every cluster with some

weight.



Why fuzzy clustering

• When clusters are well separated, a crisp classification of  

objects into clusters makes sense.

• But in many cases, clusters are not well separated.

• In a crisp formulation, a borderline object ends up being  

assigned to a cluster in an arbitrary manner.



Based on the theory of fuzzy sets

• Introduced by Lotfi Zadeh in 1965 as a way of 

dealing with  imprecision and uncertainty.

• Fuzzy set theory allows an object to belong to a 

set with a  degree of membership between 0 and 

1.

• Traditional set theory can be seen as a special 

case that  restrict membership values to be either 

0 or 1.



Fuzzy clusters: definition

• Assume a set of n objects X = {x1, x2, . . . , xn}, 

where xi is a d -dimensional point.

• A fuzzy clustering is a collection of k clusters, C1,

C2, . . . , Ck ,  and a partition matrix W = wi,j ∈[0, 1], 

for i = 1 . . . n and j = 1 . . . k, where each element 

wi,j is a weight that  represents the degree of 

membership of object i in cluster Cj .



To have a fuzzy pseudo-partition:

• All weights for a given point, xi , must add up to 1.

෍

𝑗=1

𝑘

𝑤𝑖,𝑗 = 1

• Each cluster Cj contains, with non-zero weight, at 

least one  point, but does not contain, with a weight 

of one, all the  points.
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Fuzzy c-means (FCM) 

is a fuzzy version of k-means
Fuzzy c-means algorithm

1. Select an initial fuzzy pseudo-partition, i.e., assign random 

values to all wi,j

2. Repeat:

• compute the centroid of each cluster using the fuzzy partition

• update the fuzzy partition, i.e, the wi,j – based on the distance 

from centroid

Until the centroids don't change

There's alternative stopping criteria: “change in the error is below 

a specified threshold", or “absolute change in any wi,j is below a 

given threshold".



FCM as an optimization problem

• As with k-means, FCM also attempts to minimize the sum of  the 
squared error (SSE).

• In k-means:

𝑆𝑆𝐸 = ෍

𝑗=1

𝑘

෍

𝑥 ∈𝐶𝑖

𝑑𝑖𝑠𝑡(𝑐𝑗 , 𝑥)
2

• In FCM
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• M is a “fuzziness” parameter that prevents points to completely belong to 
one cluster



Computing centroids

• For a cluster Cj , the corresponding centroid cj is defined as:

𝑐𝑗 =
σ𝑖=1
𝑛 𝑤𝑖𝑗

𝑀𝑥𝑖

σ𝑖=1
𝑛 𝑤𝑖𝑗

𝑀

• This is just an extension of the definition of centroid that we  

have for k-means.

𝑐𝑗 =
σ𝑖=1
𝑛
𝑗 𝑥𝑖𝑗

𝑛𝑗
• The difference is that all n points are considered and the  

contribution of each point to the centroid is weighted by its  

membership degree.



Formula for updating weights

• Formula can be obtained by minimizing the SSE subject 

to  the constraint that the weights sum to 1:

𝑤𝑖𝑗 =
(1/𝑑𝑖𝑠𝑡(𝑥𝑖 , 𝑐𝑗)
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• Intuition: wij should be high if xi is close to the centroid cj ,  

i.e., if dist(xi , cj ) is low.

• Denominator (sum of all weights for a given point) is needed 

to normalize  weights for a point – so they sum up to 1.



• A given data point is classified into the 
cluster for which it has the highest 
membership value. 

• A maximum membership value of 0.5 
indicates that the point belongs to both 
clusters equally.

• The data points marked with a black x 
have maximum membership values 
below 0.6. These points have a greater 
degree of uncertainty in their cluster 
membership.

• The average maximum membership 
value, averageMax, provides a 
quantitative description of the overlap. 

• An averageMax value of 1 indicates 
crisp clusters, with smaller values 
indicating more overlap.

Fuzziness: 

average maximum membership



Fuzziness parameter M

𝑤𝑖𝑗 =
(1/𝑑𝑖𝑠𝑡(𝑥𝑖 , 𝑐𝑗)
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• If M→1, the exponent 
increases the membership 
weights of  points to which 
the cluster is close. As 
M→1, membership→1 for 
the closest cluster and 
membership→0 for all the  
other clusters (this 
corresponds to k-means).



Fuzziness parameter M

𝑤𝑖𝑗 =
(1/𝑑𝑖𝑠𝑡(𝑥𝑖 , 𝑐𝑗)
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• As M → ∞, the exponent 

→ 0. This implies that 

the  weights → 1/k –

each point belongs to 

each cluster with equal 

weight

As M grows, more and more uncertain 

memberships



Fuzzy C-means clustering algorithm

• The fuzzy c-means algorithm is very similar to the 

k-means algorithm:

Choose a number of clusters c

To each data point i:

assign random weights w1…wc for being in the clusters 1…c

Repeat until the algorithm has converged* :

Compute the centroid for each cluster

Recompute weights for each point 

based on distance from c centroids

*that is, the coefficients' change between two iterations is no more than ε, the given sensitivity threshold



Sample application: clustering whole 

genomes of domesticated rice

Wild ancestors of domesticated rice Oryza Sativa: O. Indica, O. Japonica, and O. Rufipogon

As you see - most cultivated plants belongs to more than 1 ancestral cluster

https://www.nature.com/articles/nature11532#s1

https://www.nature.com/articles/nature11532#s1


The same applies to human populations



MIXTURE MODELS AND 

THE EM ALGORITHM
Statistical approach to fuzzy clustering



Model-based clustering

• In order to understand our data, we will assume that there 

is a generative process (a model) that creates/describes 

the data, and we will try to find the model that best fits the 

data.

• Models of different complexity can be defined, but we will assume 

that our model is a distribution from which data points are sampled

• Example: the data is the height of all people in Greece: height 

follows Gaussian distribution



Gaussian Distribution

• Example: the data is the height of all people in 

Greece

• Experience has shown that this data follows a Gaussian

(Normal) distribution

• Reminder: Normal distribution:

• 𝜇 = mean, 𝜎 = standard deviation

𝑃 𝑥 =
1

2𝜋𝜎
𝑒
−
𝑥−𝜇 2

2𝜎2



Gaussian Model

• What is a model?

• A Gaussian distribution is fully defined by the mean 

𝜇 and the standard deviation 𝜎

• We define our model as the pair of parameters 𝜃 =
(𝜇, 𝜎)

• This is a general principle: a model is defined as 

a vector of parameters 𝜃



Fitting the model

• We want to find the normal distribution that best 

fits our data

• Find the best values for 𝜇 and 𝜎

• But what does best fit mean?



Maximum Likelihood Estimation (MLE)

• Suppose that we have a vector 𝑋 = (𝑥1, … , 𝑥𝑛) of 
values and we want to fit a Gaussian 𝑁(𝜇, 𝜎) model to 
the data

• Probability of observing point 𝑥𝑖:

• Probability of observing all points (assume 
independence)

• We want to find the parameters 𝜃 = (𝜇, 𝜎) that 
maximize the probability 𝑃(𝑋|𝜃)
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1
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Maximum Likelihood Estimation (MLE)

• The probability 𝑃(𝑋|𝜃) as a function of 𝜃 is called the 
Likelihood function

• It is usually easier to work with the Log-Likelihood
function

• Maximum Likelihood Estimation
• Find parameters 𝜇, 𝜎 that maximize 𝐿𝐿(𝜃)

𝐿(𝜃) =ෑ
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MLE

• Note: these are also the most likely parameters 

given the data

𝑃 𝜃 𝑋 =
𝑃 𝑋 𝜃 𝑃(𝜃)

𝑃(𝑋)

• If we have no prior information about 𝜃, or X, then 

maximizing 𝑃 𝑋 𝜃 is the same as maximizing 

𝑃 𝜃 𝑋



Mixture of Gaussians

• Suppose that you have the heights data and the 

distribution looks like the figure below (dramatization)

If you look at the mixture, you cannot see the normal 

distribution at all



Mixture model

• You suspect that the data is the height of all people in 

Greece and China

• We define two latent (hidden) classes (variables): with 

probability πG the point is drawn from the Greek 

distribution, with probability πC = 1 – πG from Chinese 

distribution

• Different distributions correspond to different clusters in 

the data.

The world's tallest countries
1.Netherlands - 1.838m
2.Montenegro - 1.832m
3.Denmark - 1.826m
4.Norway - 1.824m
5.Serbia - 1.82m

The world's shortest countries
1.Indonesia - 1.58m
2.Bolivia - 1.6m
3.Philippines - 1.619m
4.Vietnam - 1.621m
5.Cambodia - 1.625m



Mixture of Gaussians

• In this case the data is the result of the mixture of two 

Gaussians 

• One for Greek people, and one for Chinese people

• Identifying for each value which Gaussian is most likely to have 

generated it will give us the same as the weights in fuzzy  

clustering.



Generative process

• A value 𝑥𝑖 is generated according to the following 

process:

• First select the nationality

• With probability 𝜋𝐺 select Greece, with probability 𝜋𝐶 select 

China (𝜋𝐺 + 𝜋𝐶 = 1)

• Given the nationality, generate the point from the 

corresponding Gaussian

• 𝑃 𝑥𝑖 𝜃𝐺 ~ 𝑁 𝜇𝐺 , 𝜎𝐺 if Greece

• 𝑃 𝑥𝑖 𝜃𝐶 ~ 𝑁 𝜇𝐶 , 𝜎𝐶 if China

We can also think of this as a Hidden Variable Z 

that takes two values: Greece and China

𝜃𝐺: parameters of the Greek distribution

𝜃𝐶: parameters of the China distribution



• Our model has the following parameters

Θ = (𝜋𝐺 , 𝜋𝐶 , 𝜇𝐺 , 𝜎𝐺 , 𝜇𝐶 , 𝜎𝐶)

Mixture Model

Mixture probabilities

𝜃𝐶: parameters of the China distribution

𝜃𝐺: parameters of the Greek distribution

All the parameters are unknown – all we have is data 

points and the suspicion that there are 2 clusters here



• Our model has the following parameters

Θ = (𝜋𝐺 , 𝜋𝐶 , 𝜇𝐺 , 𝜎𝐺 , 𝜇𝐶 , 𝜎𝐶)

• For value 𝑥𝑖, we have:

𝑃 𝑥𝑖|Θ = 𝜋𝐺𝑃 𝑥𝑖 𝜃𝐺 + 𝜋𝐶𝑃(𝑥𝑖|𝜃𝐶)

• For all values 𝑋 = 𝑥1, … , 𝑥𝑛

𝑃 𝑋|Θ = ෑ

𝑖=1

𝑛

𝑃(𝑥𝑖|Θ)

• We want to estimate the parameters that maximize
the Likelihood of all the data

Mixture Model

Mixture probabilities Distribution Parameters



Mixture Models

• Once we have the parameters Θ =
(𝜋𝐺 , 𝜋𝐶 , 𝜇𝐺 , 𝜇𝐶 , 𝜎𝐺 , 𝜎𝐶) we can estimate the 

membership probabilities 𝑃 𝐺 𝑥𝑖 and 𝑃 𝐶 𝑥𝑖 for 

each point 𝑥𝑖: 

• This is the probability that point 𝑥𝑖 belongs to the Greek 

or the Chinese population (cluster)

𝑃 𝐺 𝑥𝑖 =
𝑃 𝑥𝑖 𝐺 𝑃(𝐺)

𝑃 𝑥𝑖 𝐺 𝑃 𝐺 + 𝑃 𝑥𝑖 𝐶 𝑃(𝐶)

=
𝑃 𝑥𝑖 𝜃𝐺 𝜋𝐺

𝑃 𝑥𝑖 𝜃𝐺 𝜋𝐺 + 𝑃 𝑥𝑖 𝜃𝐶 𝜋𝐶

Given from the Gaussian 

distribution 𝑁(𝜇𝐺 , 𝜎𝐺) for Greek



EM (Expectation Maximization) Algorithm

• Initialize the values of the parameters in Θ to some 
random values

• Repeat until convergence
• E-Step: Given the parameters Θ estimate the membership 

probabilities 𝑃 𝐺 𝑥𝑖 and 𝑃 𝐶 𝑥𝑖
• M-Step: Compute new parameter values that (in expectation) 

maximize the data likelihood
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MLE Estimates

if 𝜋’s were fixed

Fraction of 

population in G,C



Relationship to FCM

• E-Step: Assignment of points to clusters with 

weights - probabilities

• EM: soft assignment

• M-Step: Computation of centroids

• Changes the mean and variance for different 

distributions (clusters)

• If the variance is fixed then both minimize the same 

error function







TOPIC MODELING
Latent Dirichlet Allocation

“All models are wrong but some are useful”

George Box



Clustering documents

• We can apply the same idea to documents and words

• Each document can refer to several topics

• We want to identify main topics and side topics for each 

document

• We want to learn the topics automatically from a large 

collection of texts



Generative probabilistic model

• We assume that there is a probability of each word 

belonging to a specific topic

• The document is generated by first choosing the 

probabilities of topics and then by choosing the words 

from these topics according to the probabilities of each 

word

• This is also a bag of words assumption (the order of 

words is not important). This may be a valid assumption, 

because, if I take a document, jumble the words and give 

it to you, you still can guess what sort of topics are 

discussed in the document



Topic modeling

• Topic modelling refers to the task of identifying topics that 

best describe a set of documents.

• These topics are not known in advance, and will only 

emerge during the topic modelling process (therefore 

called latent). 

• One popular topic modelling technique is known as Latent 

Dirichlet Allocation (LDA) – assumes Dirichlet 

Distributions of both topics and words inside each topic



Applications

• Historians can use LDA to identify important events in 

history by analyzing text based on year.

• Web-based libraries can use LDA to recommend books 

based on the topics that you were interested in in the 

past. 

• News providers can use topic modelling to understand 

articles quickly or cluster similar articles. 

• Another interesting application is unsupervised clustering 

of images, where each image is treated similar to a 

document.



Modeling documents just with words

• Some documents are connected to same set of words

• You can see that we can’t really infer any useful information due 

to the large amount of connections



Introducing a topic layer

• We can solve this problem, by introducing a latent (i.e. 

hidden) layer. 

• Say we know that there are 3 topics/themes overall - but 

these topics are not observed (latent, hidden), we only 

observe words and documents.

• We want to utilize this information to cut down on the 

number of threads. 

• Then we can connect the words to the topics depending 

on how well that word fall in that topic and then connect 

the topics to the documents based on what topics each 

document touches upon.



Example with topic layer

Each topic can be represented as a distribution of words like 

(0.3*Cats,0.4*Dogs,0.2*Loyal, 0.1*Evil) for  the topic “Animals”



Latent Dirichlet Allocation

• Assumes that the following generative process is behind 

any document you see:

• The topic is selected with some probability from the 

Dirichlet distribution

• The word is selected with the probability assigned to 

each word to belong to the selected topic



Generating a new document: model

First α (alpha) 
organizes the 
ground θ (theta) 
and then you go 
and pick a ball 
from θ. 

Based on what you pick, 
you’re sent to ground β 
(beta). β is organized by η 
(Eta).

Now you pick a 
word from β 
and put it into 
the document. 
You iterate this 
process 5 times 
to get 5 
words out.



Definitions and notations

• k — Number of topics a document belongs to (a fixed number)

• V — Size of the vocabulary

• M — Number of documents

• N — Number of words in each document

• w— A word in a document. This is represented as a one hot encoded 

vector of size V (i.e. V— vocabulary size)

• w (bold w): represents a document (i.e. vector of “w”s) of N words

• D — Corpus, a collection of M documents

• z — A topic from a set of k topics. A topic is a distribution of words. For 

example Animal = (0.3 Cats, 0.4 Dogs, 0 AI, 0.2 Loyal, 0.1 Evil)



Graphical model of LDA

Remember that θ, z, and β are distributions, not deterministic values



Generating a new document

• We have a single α value (i.e. organizer of ground θ) which defines θ 

- the topic distribution for documents 

• We have M documents and got a separate θ distribution for each 

such document

• Any single document has N words and each word is generated by a 

topic. You generate N topics to be filled in with words. These N words 

are still placeholders.

• Now the top plate kicks in. Based on η, β has some distribution (i.e. a 

Dirichlet distribution to be precise) and according to that distribution, β 

generates k individual words for each topic. 

• Now you fill in a word to each placeholder (in the set of N 

placeholders), conditioned on the topic it represents.

• Voila, you got a document with N words now!



Both θ and β are modeled as 

a Dirichlet distribution

• The balls are nicely laid out in the 

corners - it means that the words 

we produce are more likely to 

belong to a single topic as it is 

normally with real-world 

documents. 



Dirichlet distribution

• Multivariate generalization of the binary Beta distribution.

Large α values push the distribution to the middle of the triangle, where smaller α 

values push the distribution to the corners.

https://en.wikipedia.org/wiki/Dirichlet_distribution


How do we find model parameters?

• We need to compute the latent (hidden) variables from a 

given set of documents:

• α — Distribution-related parameter that governs what the 

distribution of topics is for all the documents in the corpus 

looks like

• θ — Random matrix where θ(i,j) represents the probability 

of the i-th document to containing the j-th topic

• η — Distribution-related parameter that governs what the 

distribution of words in each topic looks like

• β — A random matrix where β(i,j) represents the probability 

of i-th topic containing the j-th word.



Learn the following model

• Find the joint posterior probability of:
• θ — A distribution of topics, one for each document,

• z — N Topics for each document,

• β — A distribution of words, one for each topic,

• Given:
• D — All the data we have (i.e. the corpus),

• and using parameters:
• α — A parameter vector for each document (document — Topic 

distribution)

• η — A parameter vector for each topic (topic — word distribution)

• But we do not know any of the parameters! 

• So the problem seems entirely intractable



Variational inference

• The probability we discussed above is a very messy 

intractable posterior (meaning we cannot calculate that on 

paper and have nice equations) 

• The only thing we can do is to approximate that with some 

known probability distribution that closely matches the 

true posterior

• That’s the idea behind variational inference.

• The way to do this is to minimize the KL divergence

between the approximation and true posterior using 

optimization techniques.

https://towardsdatascience.com/light-on-math-machine-learning-intuitive-guide-to-understanding-kl-divergence-2b382ca2b2a8


Optimization problem

• γ , ϕ and λ represent the free variational parameters with 
which we approximate θ, z and β. 

• Here D(q||p) represents the KL divergence between q and p. 
And by changing γ, ϕ and λ, we get different q distributions 
having different distances from the true posterior p. 

• Our goal is to find the γ* , ϕ* and λ* that minimize the KL 
divergence between the approximation q and the true 
posterior p.

• Now it’s just a matter of iteratively solving the above 
optimization problem until the solution converges. 

• Once you have γ* , ϕ* and λ* you have everything you need 
in the final LDA model.


