
Naïve Bayes: refinements

Lecture 02.02



Classifier based on Bayes rule

• Given data – evidence - we can build a classifier which will 
classify a new record as class C (yes or no) by comparing 
probabilities

• In this case all the attributes except C are evidences E

• The machine learning task is to evaluate P(E|C) from historical 
data and based on P(E|C) and prior probabilities P(C=Yes) and 
P(C=No) compare P(C=Yes|E) and P(C=No|E) using Bayes rule.



Bayes’ rule – two evidences

Given that evidence1 is independent of evidence2
(Naïve Bayes)

The same – let’s call it 1/α



Bayes’ rule – multiple evidences
Generalized for N evidences

• Two assumptions: 

Attributes (evidences) are:

– equally important

– conditionally independent (given the class value)

• This means that knowledge about the value of a particular 
attribute doesn’t tell us anything about the value of another 
attribute given the class value 



Naïve Bayes classifier
To predict class value for a set of attribute values (evidences) -

for each class value Ai compute and compare: 

• Naïve – assumes independence of variables

• Although based on assumptions that are almost never correct, 
this scheme works well in practice!



The weather data example



Multi-evidence classifier

Play

TempOutlook Humidity Windy

Event to predict (hidden)

Set of evidences (demonstrate themselves)



The weather data example: probabilities

Play Sunny Cool High 
humidity

Windy=
true

Yes: 9 2/9 3/9 3/9 3/9

No: 5 3/5 1/5 4/5 3/5

Total 5 4 7 6



The weather data example: yes

P( yes | E) = 

P(Sunny | yes) *

P(Cool | yes) *

P(Humidity=High | yes) *

P(Windy=True | yes) *

P(yes) / P(E) = 

= (2/9) * 

(3/9) * 

(3/9) * 

(3/9) *

(9/14) / P(E) = 0.0053 / P(E) 

Don’t worry about the 1/P(E):

It’s alpha - the normalization constant.

Play Sunny Cool High 
humidity

Windy=
true

Yes: 9 2/9 3/9 3/9 3/9

No: 5 3/5 1/5 4/5 3/5

Total 5 4 7 6



The weather data example: no

P( no | E) = 

P(Sunny | no) *

P(Cool | no) *

P(Humidity=High | no) *

P(Windy=True | no) *

P(no) / P(E) = 

= (3/5) * 

(1/5) * 

(4/5) * 

(3/5) *

(5/14) / P(E) = 0.0206 / P(E)

Play Sunny Cool High 
humidity

Windy=
true

Yes: 9 2/9 3/9 3/9 3/9

No: 5 3/5 1/5 4/5 3/5

Total 5 4 7 6



The weather data example: decision

P( yes | E) = 0.0053 / P(E)

P( no | E) = 0.0206 / P(E)

More probable: no.

It would be nice to give the actual 
probability estimates



Normalization constant 1/P(E)

P(play=yes | E) + P(play=no | E) = 1 i.e.

0.0053 / P(E) + 0.0206 / P(E) = 1 i.e.

P(E) = 0.0053 + 0.0206

So, 

P(play=yes | E) = 0.0053 / (0.0053 + 0.0206) = 20.5%

P(play=no | E) = 0.0206 / (0.0053 + 0.0206) = 79.5%

E

play=yes play=no

20.5%
79.5%



In other words:

P(play=yes | E) + P(play=no | E) = 1

P(play=yes |E) / P (play=no | E) = 0.0053 : 0.0206 = 0.26

0.26 * P (play=no | E)  + P (play=no | E)  = 1

P (play=no | E) = 1/1.26 = 79%

The remaining goes to yes:  P(play=yes |E) = 21%

E

play=yes play=no

20.5%
79.5%



PRIOR PROBABILITIES
Issue 1



Diagnostics with Naïve Bayes

Cause 

Symptom  2Symptom 1 Symptom 3 Symptom 4

Disease to predict (hidden)

Set of effects (demonstrate themselves)



Diagnosing meningitis

• A doctor knows that 50% of patients with a stiff neck were 
diagnosed with meningitis.

• The doctor also knows some unconditional facts (prior 
probabilities): 

the prior probability that any patient has meningitis is 
1/50,000

the probability that he does not have a meningitis is 
49,999/50,000



Diagnostic problem
P(StiffNeck=true | Meningitis=true) = 0.5

P(StiffNeck=true | Meningitis=false) = 0.5

P(Meningitis=true) = 1/50000

P(Meningitis=false) = 49999/50000

P(Meningitis=true | StiffNeck=true) 

= P(StiffNeck=true | Meningitis=true) P(Meningitis=true) / 

P(StiffNeck=true) 

= (0.5) x (1/50000) / P(StiffNeck=true) =0.5 * 0.00002 / P(StiffNeck=true) =
0.00010 / P(StiffNeck=true)

P(Meningitis=false | StiffNeck=true) 

= P(StiffNeck=true | Meningitis=false) P(Meningitis=false) / 

P(StiffNeck=true)

= (0.5)*(49999/50000)/ P(StiffNeck=true)  = 0.49999 / P(StiffNeck=true) 

1/5000 chance that the patient with a stiff neck has meningitis (due to the very low 
prior probability)



Bayes’ rule critics: 
prior probabilities

• The doctor has the above quantitative information in the 
diagnostic direction from symptoms (evidences, effects) to causes.

• The problem is that prior probabilities are hard to estimate and 
they may fluctuate. Imagine, there is sudden epidemic of 
meningitis. The prior probability, P(Meningitis=true), will go up.

• Clearly, P(StiffNeck=true|Meningitis=true) is unaffected by the 
epidemic. It simply reflects the way meningitis works.

• The estimation of P(Meningitis=true|StiffNeck=true) will be 
incorrect until new data about P(Meningitis=true) are collected



ZERO FREQUENCY
Issue 2



The “zero-frequency problem”

• What if an attribute value doesn’t occur with every class value 
(e.g. “Humidity = High” for class “Play=Yes”)?

– Probability P(Humidity=High|play=yes) will be zero.

• P(Play=“Yes”|E) will also be zero! 

– No matter how likely the other values are!

• Remedy – Laplace correction: 

– Add 1 to the count for every attribute value-class 
combination (Laplace estimator);

– Add k (# of possible attribute values) to the denominator. 



Laplace correction (smoothing)
Outlook Play Count

Sunny No 0

Sunny Yes 6

Overcast No 2 

Overcast Yes 2

Rainy No 3

Rainy Yes 1

Outlook Play Count

Sunny No 1

Sunny Yes 7

Overcast No 3

Overcast Yes 3

Rainy No 4

Rainy Yes 2

+1 

It was:  out of total 5 ‘No’

0 – Sunny, 2 – Overcast, 3 – Rainy

The probabilities were:

P(Sunny | no)= 0/5;  P(Overcast|no) = 2/5;  P(Rainy|no)= 3/5

After correction:

1 – Sunny, 3 – Overcast, 4 – Rainy: Total ‘No’: 5+3=8 

(hence add the cardinality of the attribute to the denominator)



Laplace correction (smoothing)
Outlook Play Count

Sunny No 0

Sunny Yes 6

Overcast No 2 

Overcast Yes 2

Rainy No 3

Rainy Yes 1

Outlook Play Count

Sunny No 1

Sunny Yes 7

Overcast No 3

Overcast Yes 3

Rainy No 4

Rainy Yes 2

+1 

After correction the probabilities:

P(Sunny | no)= 1/(5+3);  

P(Overcast|no) = 3/(5+3);  

P(Rainy|no)= 4/(5+3)

Needs to sum up to 1.0

You add this correction to all counts, for both classes

The proportion of classes themselves remains unchanged



Why P(Yes) and P(No) remain unchanged

X Y Class

A A Y

B B Y

A C N

A B N

B C N

Class Count

X=A No 2/3

X=A Yes 1/2

X=B No 1/3

X=B Yes 1/2

Y=A No 0/3

Y=A Yes 1/2

Y=B No 1/3

Y=B Yes 1/2

Y=C No 2/3

Y=C Yes 0/2

Data Original counts With correction

Class Count

X=A No 3/5

X=A Yes 2/4

X=B No 2/5

X=B Yes 2/4

Y=A No 1/6

Y=A Yes 2/5

Y=B No 2/6

Y=B Yes 2/5

Y=C No 3/6

Y=C Yes 1/5

The cardinality of 2 attributes is different – and the updated totals for Y and N are 

different. 

Which one to choose? Leave them unchanged



Laplace correction example
P( yes | E) = 

P( Outlook=Sunny | yes) *

P( Temp=Cool | yes) *

P( Humidity=High | yes) *

P( Windy=True | yes) *

P( yes ) / P(E) = 

= (2/9) * (3/9) * (3/9) * (3/9) *(9/14) / P(E) = 0.0053 / P(E)

With Laplace correction:

= ((2+1)/(9+3)) * ((3+1)/(9+3)) * ((3+1)/(9+2)) * ((3+1)/(9+2)) *(9/14) / P(E) 
= 0.0071 / P(E)

Number of possible 

values for ‘Outlook’

Number of possible 

values for ‘Windy’



MISSING VALUES
Issue 3



Missing values: in the training set

• Missing values - not a problem for Naïve Bayes

• Suppose that one value for outlook in the training set is missing. 
We count only existing values. For a large dataset, the 
probability P(outlook=sunny|yes) and P(outlook=sunny|no) will 
not change much. This is because we use ratios rather than 
absolute counts.



Missing values: in the evidence set
• The same calculation without one fraction

P(yes | E) = 

P(Temp=Cool | yes) *

P(Humidity=High | yes) *

P(Windy=True | yes) *

P(yes) / P(E) = 

= (3/9) * (3/9) * (3/9) *(9/14) / P(E) = 
0.0238 / P(E)

P(no | E) = 

P(Temp=Cool | no) *

P(Humidity=High | no) *

P(Windy=True | no) *

P(play=no) / P(E) = 

= (1/5) * (4/5) * (3/5) *(5/14) / P(E) = 
0.0343 / P(E)



Missing values: in the evidence set
• With missing value:

P(yes | E) = 0.0238 / P(E) P(no | E) = 0.0343 / P(E)

• Without missing value:

P( yes | E) = 0.0053 / P(E) P( no | E) = 0.0206 / P(E)

The numbers are much higher for the case of missing values. But we care only 

about the ratio of yes and no. 



Missing values: in the evidence set
• With missing value:

P(yes | E) = 0.0238 / P(E) P(no | E) = 0.0343 / P(E)

After normalization: P(yes | E) = 41%,     P(no | E) = 59%

• Without missing value:

P( yes | E) = 0.0053 / P(E) P( no | E) = 0.0206 / P(E)

After normalization: P(yes | E) = 21%,     P(no | E) = 79%

Of course, this is a very small dataset where each count matters, but the 

prediction is still the same: most probably – no play



NUMERICAL ATTRIBUTES
Issue 4



Normal distribution
• Usual assumption: numerical values have a normal or 

Gaussian probability distribution.

counts

numeric values



Two classes have different distributions
• Class A is normally distributed around its mean with its standard 

deviation. 

• Class B is normally distributed around the different mean and with a 
different std

Class A

Class B

numeric values

counts

Given a numeric observation, what is the probability that it belongs 

to class A vs. class B?

Especially if the observation falls at the intersection of 2 curves: E

E



Probability density function
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• Probability density function (PDF) for the normal distribution:

For a given x – estimates the probability according to

the distribution of probabilities in a given class



Probability and density
• Relationship between probability and density:

• But: to compare posteriori probabilities it is enough to 

calculate PDF, because ε cancels out

• Exact relationship uses integral:

Approximation of the 

probability that numeric value 

is between [c-ε/2, c+ ε/2]

f(c) is the probability 

density function (PDF)



To estimate probability P(X=V|class)
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• Gives ≈ probability of X=V of belonging to class A:

• We approximate  by the sample mean:

• We approximate  2 by the sample variance:



Alligators Crocodiles
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1

Example: Crocodile or Alligator?
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• Suppose we had a lot of data. 
• We could use that data to build a histogram. 
• Below is one  built for the body length feature:

Crocodiles  
Alligators



• We can summarize these  histograms as two normal  
distributions.

• Crocodile: μ ≈ 5,  σ ≈ 2
• Alligator: μ ≈ 4,  σ ≈ 2

4 5

Let say standard deviation is 2 for both distributions



4

• Suppose we wish to classify a new animal that we just met. Its 
body  length is 3 meters. How can we classify it?

• One way to do this is, given the distributions of that feature, we can
analyze which class is more probable: Crocodile or Alligator.

• We can compute PDF for both distributions and compare

3 5

𝑃 𝑋 𝑐𝑟𝑜𝑐𝑜𝑑𝑖𝑙𝑒 =
1

2∗ 2𝜋
∗ exp[−

1

2
∗ (

𝑋−5

2
)2]

𝑃 𝑋 𝑎𝑙𝑙𝑖𝑔𝑎𝑡𝑜𝑟 =
1

2∗ 2𝜋
∗ exp[−

1

2
∗ (

𝑋−4

2
)2]

Compute for X=3



4

• Or we can derive in advance the decision boundary:

3 5

𝑃 𝑋 𝑐𝑟𝑜𝑐𝑜𝑑𝑖𝑙𝑒 =
1

2∗ 2𝜋
∗ exp[−

1

2
∗ (

𝑋−5

2
)2]

𝑃 𝑋 𝑎𝑙𝑙𝑖𝑔𝑎𝑡𝑜𝑟 =
1

2∗ 2𝜋
∗ exp[−

1

2
∗ (

𝑋−4

2
)2]

𝑃 𝑋 = ො𝑥 𝑎𝑙𝑙𝑖𝑔𝑎𝑡𝑜𝑟 = 𝑃 𝑋 = ො𝑥 𝑐𝑟𝑜𝑐𝑜𝑑𝑖𝑙𝑒

(ො𝑥 − 5)2= (ො𝑥 − 4)2

ො𝑥 = 4.5

When the 2 estimated probabilities are equal?

Now every animal greater than 4.5 
meters is more likely a crocodile, 
less than 4.5 – alligator!



Numeric weather data example
outlook temperature humidity windy play

sunny 85 85 FALSE no

sunny 80 90 TRUE no

overcast 83 86 FALSE yes

rainy 70 96 FALSE yes

rainy 68 80 FALSE yes

rainy 65 70 TRUE no

overcast 64 65 TRUE yes

sunny 72 95 FALSE no

sunny 69 70 FALSE yes

rainy 75 80 FALSE yes

sunny 75 70 TRUE yes

overcast 72 90 TRUE yes

overcast 81 75 FALSE yes

rainy 71 91 TRUE no

~µ (mean) = 
(83+70+68+64+69+75+75+72+81)/ 9 = 73

~σ2 (variance) = ( (83-73)^2 + (70-73)^2 + 
(68-73)^2 + (64-73)^2 + (69-73)^2 + (75-
73)^2 + (75-73)^2 + (72-73)^2 + (81-
73)^2 )/ (9-1) = 38

Compute the probability of 
temp=66 for class Yes:
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Substitute x=66:
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P(temp=66|yes)=0.034
Density function for temp in class Yes



Numeric weather data example
outlook temperature humidity windy play

sunny 85 85 FALSE no

sunny 80 90 TRUE no

overcast 83 86 FALSE yes

rainy 70 96 FALSE yes

rainy 68 80 FALSE yes

rainy 65 70 TRUE no

overcast 64 65 TRUE yes

sunny 72 95 FALSE no

sunny 69 70 FALSE yes

rainy 75 80 FALSE yes

sunny 75 70 TRUE yes

overcast 72 90 TRUE yes

overcast 81 75 FALSE yes

rainy 71 91 TRUE no

~µ (mean) = 
(86+96+80+65+70+80+70+90+75)/ 9 = 79 

~σ2 (variance) = ( (86-79)^2 + (96-79)^2 + 
(80-79)^2 + (65-79)^2 + (70-79)^2 + (80-
79)^2 + (70-79)^2 + (90-79)^2 + (75-
79)^2 )/ (9-1) = 104

Compute the probability of 
Humidity=90 for class Yes:

7.2 104*2
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Substitute x=90:

022.0
55.25
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P(humidity=90|yes)=0.022
Density function for humidity in class Yes



Classifying a new day
• A new day E:

P(play=yes | E) = 

P(Outlook=Sunny | play=yes) *

P(Temp=66 | play=yes) *

P(Humidity=90 | play=yes) *

P(Windy=True | play=yes) *

P(play=yes) / P(E) = 

= (2/9) * (0.034) * (0.022) * (3/9) 

*(9/14) / P(E) = 0.000036 / 

P(E)

P(play=no | E) = 

P(Outlook=Sunny | play=no) *

P(Temp=66 | play=no) *

P(Humidity=90 | play=no) *

P(Windy=True | play=no) *

P(play=no) / P(E) = 

= (3/5) * (0.0291) * (0.038) * (3/5) 

*(5/14) / P(E) = 0.000136 / 

P(E)

After normalization: P(play=yes | E) = 20.9%,     P(play=no | E) = 79.1%



Exercise: Tax Data – Naive Bayes
Classify: (_, No, Married, 95K, ?)

(Apply also the Laplace normalization)
Tid Refund Marital 

Status 
Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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Tax Data – Naive Bayes
Classify: (_, No, Married, 95K, ?)

P(Yes) = 3/10 = 0.3

P(Refund=No|Yes) = (3+1)/(3+2) = 0.8

P(Status=Married|Yes) = (0+1)/(3+3) = 0.17 

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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Approximate  with: (95+85+90)/3 =90

Approximate 2 with: 

( (95-90)^2+(85-90) ^2+(90-90) ^2 )/   
(3-1) = 25

f(income=95|Yes) = 

e(- ( (95-90)^2 / (2*25)) ) / 
sqrt(2*3.14*25) = .048

P(Yes | E) = *.8*.17*.048*.3= 
*.0019584



Tax Data
Classify: (_, No, Married, 95K, ?)

P(No) = 7/10 = .7

P(Refund=No|No) = (4+1)/(7+2) = .556

P(Status=Married|No) = (4+1)/(7+3) = .5  
Tid Refund Marital 

Status 
Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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Approximate  with: 

(125+100+70+120+60+220+75)/7 =110

Approximate 2 with: 

((125-110)^2 + (100-110)^2 + (70-
110)^2 + (120-110)^2 + (60-110)^2 + 
(220-110)^2 + (75-110)^2 )/(7-1) = 
2975

f(income=95|No) = 

e( -((95-110)^2 / (2*2975)) ) 
/sqrt(2*3.14* 2975) = .00704

P(No | E) = *.556*.5* .00704*0.7= 
*.00137



Tax Data
Classify: (_, No, Married, 95K, ?)

P(Yes | E) = *.0019584

P(No | E) = *.00137

 = 1/(.0019584 + .00137)=300.44

P(Yes|E) = 300.44 *.0019584 = 0.59

P(No|E) = 300.44 *.00137 = 0.41

We predict “Yes.”

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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Summary 
• Naïve Bayes works surprisingly well (even if independence 

assumption is clearly violated)

• Because classification doesn’t require accurate probability 
estimates as long as maximum probability is assigned to correct 
class



Applications of Naïve Bayes

The best classifier for:

• Document classification (filtering)

• Diagnostics

• Clinical trials

• Assessing risks



Application: Text Categorization

• Text categorization is the task of assigning a given document to 
one of a fixed set of categories, on the basis of the words it 
contains. 

• The class is the document category, and the evidence variables 
are the presence or absence of each word in the document.



Text Categorization
• The model consists of the prior probability P(Category) and the 

conditional probabilities P(Wordi | Category).

• For each category c, P(Category=c) is estimated as the fraction of 
all the “training” documents that are of that category.

• Similarly, P(Wordi = true | Category = c) is estimated as the 
fraction of documents of category that contain this word.

• Also, P(Wordi = true | Category = c) is estimated as the fraction 
of documents not of category that contain this word.



Text Categorization (cont’d)
• Now we can use naïve Bayes for classifying a new document 

with n words:

P(Category = c | Word1 = true, …, Wordn = true) = 

*P(Category = c)n
i=1 P(Wordi = true | Category = c)

P(Category = c | Word1 = true, …, Wordn = true) = 

*P(Category = c)n
i=1 P(Wordi = true | Category = c)

Word1, …, Wordn are the words occurring in the new document

 is the normalization constant. 

• Observe that similarly with the “missing values” the new 
document doesn’t contain every word for which we computed 
the probabilities.



Lab 2. Classifying tweet sentiments 
with Bayesian classifier

Tweet Class
awesome Positive tweet
awesome Positive tweet
awesome crazy Positive tweet
crazy Positive tweet
crazy Negative tweet
crazy Negative tweet

Training set

P(w|+) P(w|-)

awesome (3+1)/6 (0+1)/4

crazy (1+1)/6 (2+1)/4

Pre-compute probabilities: 

with Laplace correction

Total P(+) P(-)

6/10 4/10



Lab 2. Classify new tweets

P(+|”awesome”) 

= α*P(“awesome”|+)*P(+) =

α*4/6*6/10 = α*4/10

P(-|”awesome”)= 

α*P(“awesome”|-)*P(-) =

α*1/4*4/10 = α*1/10

P(w|+) P(w|-)

awesome (3+1)/6 (0+1)/4

crazy (1+1)/6 (2+1)/4

Pre-compute probabilities: 

with Laplace correction

Total P(+) P(-)

6/10 4/10

New tweet: “awesome!”

Classified as “positive”

Try the same for “crazy”
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Valid range from 0° to (+/–)180°

Longitude

Mapping positivity score

[-120, -50]

Working with a subset of points


