
[199]

So far, we have had the luxury that every training data instance could easily be

are represented by vectors containing values for length and width of certain aspects

word representations and manually craft our own features that captured certain
aspects of the texts.

It will be different in this chapter, when we try to classify songs by their genre. Or,

text and creating something like a "bag of sound bites" would certainly be way too
complex. Somehow, we will, nevertheless, have to convert a song into a series of

Sketching our roadmap
that is outside our comfort zone. For one, we will have to use sound-based features,
which are much more complex than the text-based ones we have used before.
And then we will learn how to deal with multiple classes, whereas we have only

to sort them according to the music genre into different folders such as jazz, classical,
country, pop, rock, and metal.

www.it-ebooks.info

[200]

Fetching the music data
We will use the GTZAN dataset, which is frequently used to benchmark music genre

for the sake of simplicity: Classical, Jazz, Country, Pop, Rock, and Metal. The dataset

from http://opihi.cs.uvic.ca/sound/genres.tar.gz.

The tracks are recorded at 22,050 Hz (22,050 readings
per second) mono in the WAV format.

Converting into a WAV format
Sure enough, if we would
collection, we would not be able to extract much meaning. This is because MP3 is
a lossy music compression format that cuts out parts that the human ear cannot

scipy.io.wavfile

In case you don't have a conversion tool nearby, you might want
to check out SoX at http://sox.sourceforge.net. It claims
to be the Swiss Army Knife of sound processing, and we agree
with this bold claim.

readable by the SciPy toolkit:

>>> sample_rate, X = scipy.io.wavfile.read(wave_filename)

www.it-ebooks.info

Chapter 9

[201]

X now contains the samples and sample_rate is the rate at which they were taken.

what the data looks like.

Looking at music
A very convenient way to get a quick impression of what the songs of the diverse
genres "look" like is to draw a spectrogram for a set of songs of a genre. A
spectrogram is a visual representation of the frequencies that occur in a song. It
shows the intensity for the frequencies at the y
the x axis. That is, the darker the color, the stronger the frequency is in the particular
time window of the song.

Matplotlib provides the convenient function specgram() that performs most of the
under-the-hood calculation and plotting for us:

>>> import scipy

>>> from matplotlib.pyplot import specgram

>>> sample_rate, X = scipy.io.wavfile.read(wave_filename)

>>> print sample_rate, X.shape

22050, (661794,)

>>> specgram(X, Fs=sample_rate, xextent=(0,30))

contains 661,794 samples.

www.it-ebooks.info

[202]

can see that there are commonalities between songs of the same genre, as shown in
the following image:

Just glancing at the image, we immediately see the difference in the spectrum
between, for example, metal and classical songs. While metal songs have high
intensity over most of the frequency spectrum all the time (they're energetic!),
classical songs show a more diverse pattern over time.

www.it-ebooks.info

Chapter 9

[203]

Classical songs with high enough accuracy. Other genre pairs like Country and Rock
could pose a bigger challenge, though. This looks like a real challenge to us, since we
need to discriminate not only between two classes, but between six. We need to be
able to discriminate between all of them reasonably well.

Decomposing music into sine wave
components
Our plan is to extract individual frequency intensities from the raw sample
readings (stored in X
intensities can be extracted by applying the so-called fast Fourier transform (FFT).
As the theory behind FFT is outside the scope of this chapter, let us just look at an
example to get an intuition of what it accomplishes. Later on, we will treat it as a
black box feature extractor.

sine_a.wav and sine_b.wav,
that contain the sound of 400 Hz and 3,000 Hz sine waves respectively. The
aforementioned "Swiss Army Knife", SoX, is one way to achieve this:

$ sox --null -r 22050 sine_a.wav synth 0.2 sine 400

$ sox --null -r 22050 sine_b.wav synth 0.2 sine 3000

the FFT of the sine waves. Not surprisingly, we see a spike at 400 Hz and 3,000 Hz
below the corresponding sine waves.

Now, let us mix them both, giving the 400 Hz sound half the volume of the
3,000 Hz one:

$ sox --combine mix --volume 1 sine_b.wav --volume 0.5 sine_a.wav
sine_mix.wav

www.it-ebooks.info

[204]

We see two spikes in the FFT plot of the combined sound, of which the 3,000 Hz
spike is almost double the size of the 400 Hz.

www.it-ebooks.info

Chapter 9

[205]

For real music, we quickly see that the FFT doesn't look as beautiful as in the
preceding toy example:

Nevertheless, we can now
FFT. If we do that for a couple of songs and manually assign their corresponding

Increasing experimentation agility
experimentation agility. Although we have the word "fast" in FFT, it is much slower
than the creation of the features in our text-based chapters. And because we are still
in an experimentation phase, we might want to think about how we could speed up
the whole feature creation process.

www.it-ebooks.info

[206]

create_fft() function,
which, in turn, uses scipy.fft() to create the FFT. For the sake of simplicity (and

With our current knowledge, we do not know whether these are the most important

intensities in the preceding FFT example. If we would later want to use more or
fewer FFT components, we would of course have to recreate the FFT representations

import os

import scipy

def create_fft(fn):

 sample_rate, X = scipy.io.wavfile.read(fn)

 fft_features = abs(scipy.fft(X)[:1000])

 base_fn, ext = os.path.splitext(fn)

 data_fn = base_fn + ".fft"

 scipy.save(data_fn, fft_features)

We save the data using NumPy's save() function, which always appends .npy

training or predicting.

The corresponding FFT reading function is read_fft():

import glob

def read_fft(genre_list, base_dir=GENRE_DIR):

 X = []

 y = []

 for label, genre in enumerate(genre_list):

 genre_dir = os.path.join(base_dir, genre, "*.fft.npy")

 file_list = glob.glob(genre_dir)

 for fn in file_list:

www.it-ebooks.info

Chapter 9

[]

 fft_features = scipy.load(fn)

 X.append(fft_features[:1000])

 y.append(label)

 return np.array(X), np.array(y)

In our scrambled music directory, we expect the following music genres:

genre_list = ["classical", "jazz", "country", "pop", "rock", "metal"]

Let us use
Chapter 6,

discriminate only between two classes.

Just to mention one aspect that is surprising is the evaluation of accuracy rates

problems, we have learned that an accuracy of 50 percent is the worst case, as it could
have been achieved by mere random guessing. In multiclass settings, 50 percent can
already be very good. With our six genres, for instance, random guessing would result
in only 16.7 percent (equal class sizes assumed).

Using a confusion matrix to measure
accuracy in multiclass problems
With multiclass problems, we should not only be interested in how well we manage
to correctly classify the genres. In addition, we should also look into which genres
we actually confuse with each other. This can be done with the so-called confusion
matrix, as shown in the following:

>>> from sklearn.metrics import confusion_matrix

>>> cm = confusion_matrix(y_test, y_pred)

>>> print(cm)

[[26 1 2 0 0 2]

 [4 7 5 0 5 3]

 [1 2 14 2 8 3]

 [5 4 7 3 7 5]

 [0 0 10 2 10 12]

 [1 0 4 0 13 12]]

www.it-ebooks.info

[208]

1 to be a Jazz song, 2 to belong to the Country genre, and 2 to be Metal songs.

Of course, we follow the train/test split setup from the previous chapters, so that we
actually have to record the confusion matrices per cross-validation fold. We have to
average and normalize later on, so that we have a range between 0 (total failure) and

A graphical visualization is often much easier to read than NumPy arrays. The
matshow() function of matplotlib is our friend:

from matplotlib import pylab

def plot_confusion_matrix(cm, genre_list, name, title):

 pylab.clf()

 pylab.matshow(cm, fignum=False, cmap='Blues',

 vmin=0, vmax=1.0)

 ax = pylab.axes() ax.set_xticks(range(len(genre_list)))

 ax.set_xticklabels(genre_list)

 ax.xaxis.set_ticks_position("bottom")

 ax.set_yticks(range(len(genre_list)))

 ax.set_yticklabels(genre_list)

 pylab.title(title)

 pylab.colorbar()

 pylab.grid(False)

 pylab.xlabel('Predicted class')

 pylab.ylabel('True class')

 pylab.grid(False)

 pylab.show()

www.it-ebooks.info

Chapter 9

[209]

When you create a confusion matrix, be sure to choose a color map (the
cmap parameter of matshow()) with an appropriate color ordering
so that it is immediately visible what a lighter or darker color means.
Especially discouraged for these kinds of graphs are rainbow color
maps, such as matplotlib's default jet or even the Paired color map.

left-upper corner to the right lower one, and light colors for the remaining area. In

from being perfect. It only predicts Classical songs correctly (dark square). For Rock,
for instance, it preferred the label Metal most of the time.

Obviously, using FFT points in the right direction (the Classical genre was not

Before we do that, however, we will learn another method of measuring

www.it-ebooks.info

[210]

performance using receiver-operator
characteristics
We already learned that measuring accuracy is not enough to truly evaluate

 precision-recall (P/R) curves to get a deeper
 perform.

There is a sister of P/R curves, called receiver-operator-characteristics (ROC), which

suitable for tasks where the positive class is much more interesting than the negative
one, or where the number of positive examples is much less than the number of
negative ones. Information retrieval and fraud detection are typical application areas.

behaves in general.

To better understand the differences, let us consider the performance of the

in the following graph:

www.it-ebooks.info

Chapter 9

[211]

going from the top left directly to the top right and then to the bottom right, resulting
in an area under curve (AUC) of 1.0.

The right graph depicts the corresponding ROC curve. It plots the True Positive Rate

a straight line from the lower left to the upper right, as shown by the dashed line,
having an AUC of 0.5. Therefore, we cannot compare an AUC of a P/R curve with
that of an ROC curve.

dataset, we are always safe to assume that a higher AUC of a P/R curve for one
AUC of the corresponding ROC curve and vice versa.

Thus, we never bother to generate both. More on this can be found in the very
insightful paper by Davis
and Goadrich (ICML, 2006).

The following table summarizes the differences between P/R and ROC curves:

x axis y axis
P/R

ROC

x and y axis, we see that the True Positive
Rate in the ROC curve's y axis is the same as Recall of the P/R graph's x axis.

The False Positive Rate measures the fraction of true negative examples that were
 positive ones, giving a 0 in a perfect case (no false positives)

and 1 otherwise. Contrast this to the precision, where we track exactly the opposite,

www.it-ebooks.info

[212]

get a better feeling for it. The only challenge for our multiclass problem is that both

from sklearn.metrics import roc_curve

y_pred = clf.predict(X_test)

for label in labels:

 y_label_test = scipy.asarray(y_test==label, dtype=int)

 proba = clf.predict_proba(X_test)

 proba_label = proba[:,label]

 # calculate false and true positive rates as well as the

 # ROC thresholds

 fpr, tpr, roc_thres = roc_curve(y_label_test, proba_label)

 # plot tpr over fpr ...

The outcomes are the following six ROC plots. As we have already found out, our

individual ROC curves, however, tells us that we are really underperforming for
most of the other genres. Only Jazz and Country provide some hope. The remaining
genres are clearly not usable.

www.it-ebooks.info

Chapter 9

[213]

www.it-ebooks.info

[214]

We already learned that FFT is pointing in the right direction, but in itself it will

our scrambled directory of songs of diverse music genres into individual genre
directories. We need a somewhat more advanced version of it.

At this point, it is always wise to acknowledge that we have to do more research.
Other people might have had similar challenges in the past and already have found
out new ways that might also help us. And, indeed, there is even a yearly conference

 International Society
for Music Information Retrieval (ISMIR). Apparently, Automatic Music Genre

 (AMGC Information Retrieval.
Glancing over some of the AMGC papers, we see that there is a bunch of work

One technique that seems to be successfully applied in many of those works is
Mel Frequency Cepstrum (MFC)

encodes the power spectrum of a sound, which is the power of each frequency the
sound contains. It is calculated as the Fourier transform of the logarithm of the
signal's spectrum. If that sounds too complicated, simply remember that the name

has been successfully used in speech and speaker recognition. Let's see whether it
also works in our case.

We are in a lucky situation in that someone else already needed exactly this and
published an implementation of it as the Talkbox SciKit. We can install it from
https://pypi.python.org/pypi/scikits.talkbox. Afterward, we can call
the mfcc()

>>> from scikits.talkbox.features import mfcc

>>> sample_rate, X = scipy.io.wavfile.read(fn)

>>> ceps, mspec, spec = mfcc(X)

>>> print(ceps.shape)

(4135, 13)

www.it-ebooks.info

Chapter 9

[215]

ceps, which contains
nceps parameter of mfcc()) for each of the 4,135
fn. Taking all of the data would overwhelm

all the frames. Assuming that the start and end of each song are possibly less genre

x = np.mean(ceps[int(num_ceps*0.1):int(num_ceps*0.9)], axis=0)

30 seconds of each song, so that we would not need to cut off the last 10 percent.
We do it, nevertheless, so that our code works on other datasets as well, which
are most likely not truncated.

Similar to our work with FFT, we certainly would also want to cache the once
generated MFCC features and read them instead of recreating them each time

This leads to the following code:

def write_ceps(ceps, fn):

 base_fn, ext = os.path.splitext(fn)

 data_fn = base_fn + ".ceps"

 np.save(data_fn, ceps)

 print("Written to %s" % data_fn)

def create_ceps(fn):

 sample_rate, X = scipy.io.wavfile.read(fn)

 ceps, mspec, spec = mfcc(X)

 write_ceps(ceps, fn)

def read_ceps(genre_list, base_dir=GENRE_DIR):

 X, y = [], []

 for label, genre in enumerate(genre_list):

 for fn in glob.glob(os.path.join(

 base_dir, genre, "*.ceps.npy")):

 ceps = np.load(fn)

 num_ceps = len(ceps)

 X.append(np.mean(

 ceps[int(num_ceps*0.1):int(num_ceps*0.9)], axis=0))

 y.append(label)

 return np.array(X), np.array(y)

www.it-ebooks.info

[216]

We get the
per song:

www.it-ebooks.info

Chapter 9

[]

The
even at almost 1.0 AUC. And indeed, also the confusion matrix in the following plot

quite usable to solve our initial task.

If we would want to improve on this, this confusion matrix tells us quickly what to
focus on: the non-white spots on the non-diagonal places. For instance, we have a
darker spot where we mislabel Rock songs as being Jazz with considerable probability.

glancing over the ISMIR papers—we also have read about the so-called Auditory
 (AFTE) features, which seem to outperform MFCC

The nice thing is that, only equipped with ROC curves and confusion matrices, we
are free to pull in other experts' knowledge in terms of feature extractors without
requiring ourselves to fully understand their inner workings. Our measurement
tools will always tell us, when the direction is right and when to change it. Of course,
being a machine learner who is eager to learn, we will always have the dim feeling
that there is an exciting algorithm buried somewhere in a black box of our feature
extractors, which is just waiting for us to be understood.

www.it-ebooks.info

[218]

Summary
In this chapter, we totally stepped out of our comfort zone when we built a music

using MFC features.

In both the cases, we used features that we understood only enough to know how

The difference between them is that in the second case we relied on features that

And that is totally OK. If we are mainly interested in the result, we sometimes
simply have to take shortcuts—we just have to make sure to take these shortcuts

In the next chapter, we will look at how to apply techniques you have learned

mahotas computer vision package to preprocess images using traditional image
processing functions.

www.it-ebooks.info

