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So far, we have had the luxury that every training data instance could easily be 

are represented by vectors containing values for length and width of certain aspects 

word representations and manually craft our own features that captured certain 
aspects of the texts.

It will be different in this chapter, when we try to classify songs by their genre. Or, 

text and creating something like a "bag of sound bites" would certainly be way too 
complex. Somehow, we will, nevertheless, have to convert a song into a series of 

Sketching our roadmap
that is outside our comfort zone. For one, we will have to use sound-based features, 
which are much more complex than the text-based ones we have used before. 
And then we will learn how to deal with multiple classes, whereas we have only 

to sort them according to the music genre into different folders such as jazz, classical, 
country, pop, rock, and metal.
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Fetching the music data
We will use the GTZAN dataset, which is frequently used to benchmark music genre 

for the sake of simplicity: Classical, Jazz, Country, Pop, Rock, and Metal. The dataset 

from http://opihi.cs.uvic.ca/sound/genres.tar.gz.

The tracks are recorded at 22,050 Hz (22,050 readings 
per second) mono in the WAV format.

Converting into a WAV format
Sure enough, if we would 
collection, we would not be able to extract much meaning. This is because MP3 is 
a lossy music compression format that cuts out parts that the human ear cannot 

scipy.io.wavfile

In case you don't have a conversion tool nearby, you might want 
to check out SoX at http://sox.sourceforge.net. It claims 
to be the Swiss Army Knife of sound processing, and we agree 
with this bold claim.

readable by the SciPy toolkit:

>>> sample_rate, X = scipy.io.wavfile.read(wave_filename)
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X now contains the samples and sample_rate is the rate at which they were taken. 

what the data looks like.

Looking at music
A very convenient way to get a quick impression of what the songs of the diverse 
genres "look" like is to draw a spectrogram for a set of songs of a genre. A 
spectrogram is a visual representation of the frequencies that occur in a song. It 
shows the intensity for the frequencies at the y
the x axis. That is, the darker the color, the stronger the frequency is in the particular 
time window of the song.

Matplotlib provides the convenient function specgram() that performs most of the 
under-the-hood calculation and plotting for us:

>>> import scipy

>>> from matplotlib.pyplot import specgram

>>> sample_rate, X = scipy.io.wavfile.read(wave_filename)

>>> print sample_rate, X.shape

22050, (661794,)

>>> specgram(X, Fs=sample_rate, xextent=(0,30))

 
contains 661,794 samples.
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can see that there are commonalities between songs of the same genre, as shown in 
the following image:

Just glancing at the image, we immediately see the difference in the spectrum 
between, for example, metal and classical songs. While metal songs have high 
intensity over most of the frequency spectrum all the time (they're energetic!), 
classical songs show a more diverse pattern over time.
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Classical songs with high enough accuracy. Other genre pairs like Country and Rock 
could pose a bigger challenge, though. This looks like a real challenge to us, since we 
need to discriminate not only between two classes, but between six. We need to be 
able to discriminate between all of them reasonably well.

Decomposing music into sine wave 
components
Our plan is to extract individual frequency intensities from the raw sample  
readings (stored in X
intensities can be extracted by applying the so-called fast Fourier transform (FFT). 
As the theory behind FFT is outside the scope of this chapter, let us just look at an 
example to get an intuition of what it accomplishes. Later on, we will treat it as a 
black box feature extractor.

sine_a.wav and sine_b.wav, 
that contain the sound of 400 Hz and 3,000 Hz sine waves respectively. The 
aforementioned "Swiss Army Knife", SoX, is one way to achieve this:

$ sox --null -r 22050 sine_a.wav synth 0.2 sine 400

$ sox --null -r 22050 sine_b.wav synth 0.2 sine 3000

the FFT of the sine waves. Not surprisingly, we see a spike at 400 Hz and 3,000 Hz 
below the corresponding sine waves.

Now, let us mix them both, giving the 400 Hz sound half the volume of the  
3,000 Hz one:

$ sox --combine mix --volume 1 sine_b.wav --volume 0.5 sine_a.wav  
sine_mix.wav
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We see two spikes in the FFT plot of the combined sound, of which the 3,000 Hz 
spike is almost double the size of the 400 Hz.
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For real music, we quickly see that the FFT doesn't look as beautiful as in the 
preceding toy example:

Nevertheless, we can now
FFT. If we do that for a couple of songs and manually assign their corresponding 

Increasing experimentation agility
experimentation agility. Although we have the word "fast" in FFT, it is much slower 
than the creation of the features in our text-based chapters. And because we are still 
in an experimentation phase, we might want to think about how we could speed up 
the whole feature creation process.
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create_fft() function, 
which, in turn, uses scipy.fft() to create the FFT. For the sake of simplicity (and 

With our current knowledge, we do not know whether these are the most important 

intensities in the preceding FFT example. If we would later want to use more or 
fewer FFT components, we would of course have to recreate the FFT representations 

import os

import scipy

def create_fft(fn):

    sample_rate, X = scipy.io.wavfile.read(fn)

    fft_features = abs(scipy.fft(X)[:1000])

    base_fn, ext = os.path.splitext(fn)

    data_fn = base_fn + ".fft"

    scipy.save(data_fn, fft_features)

We save the data using NumPy's save() function, which always appends .npy  
 

training or predicting.

The corresponding FFT reading function is read_fft():

import glob

def read_fft(genre_list, base_dir=GENRE_DIR):

    X = []

    y = []

    for label, genre in enumerate(genre_list):

        genre_dir = os.path.join(base_dir, genre, "*.fft.npy")

        file_list = glob.glob(genre_dir)

        for fn in file_list:
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            fft_features = scipy.load(fn)

            X.append(fft_features[:1000])

            y.append(label)

    return np.array(X), np.array(y)

In our scrambled music directory, we expect the following music genres:

genre_list = ["classical", "jazz", "country", "pop", "rock", "metal"]

Let us use
Chapter 6, 

discriminate only between two classes.

Just to mention one aspect that is surprising is the evaluation of accuracy rates 

problems, we have learned that an accuracy of 50 percent is the worst case, as it could 
have been achieved by mere random guessing. In multiclass settings, 50 percent can 
already be very good. With our six genres, for instance, random guessing would result 
in only 16.7 percent (equal class sizes assumed).

Using a confusion matrix to measure 
accuracy in multiclass problems
With multiclass problems, we should not only be interested in how well we manage 
to correctly classify the genres. In addition, we should also look into which genres 
we actually confuse with each other. This can be done with the so-called confusion 
matrix, as shown in the following:

>>> from sklearn.metrics import confusion_matrix

>>> cm = confusion_matrix(y_test, y_pred)

>>> print(cm)

[[26  1  2  0  0  2]

 [ 4  7  5  0  5  3]

 [ 1  2 14  2  8  3]

 [ 5  4  7  3  7  5]

 [ 0  0 10  2 10 12]

 [ 1  0  4  0 13 12]]
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1 to be a Jazz song, 2 to belong to the Country genre, and 2 to be Metal songs. 

Of course, we follow the train/test split setup from the previous chapters, so that we 
actually have to record the confusion matrices per cross-validation fold. We have to 
average and normalize later on, so that we have a range between 0 (total failure) and 

A graphical visualization is often much easier to read than NumPy arrays. The 
matshow() function of matplotlib is our friend:

from matplotlib import pylab

def plot_confusion_matrix(cm, genre_list, name, title):

    pylab.clf()

    pylab.matshow(cm, fignum=False, cmap='Blues', 

                  vmin=0, vmax=1.0)

    ax = pylab.axes()    ax.set_xticks(range(len(genre_list)))

    ax.set_xticklabels(genre_list)

    ax.xaxis.set_ticks_position("bottom")

    ax.set_yticks(range(len(genre_list)))

    ax.set_yticklabels(genre_list)

    pylab.title(title)

    pylab.colorbar()

    pylab.grid(False)

    pylab.xlabel('Predicted class')

    pylab.ylabel('True class')

    pylab.grid(False)

    pylab.show()
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When you create a confusion matrix, be sure to choose a color map (the 
cmap parameter of matshow()) with an appropriate color ordering 
so that it is immediately visible what a lighter or darker color means. 
Especially discouraged for these kinds of graphs are rainbow color 
maps, such as matplotlib's default jet or even the Paired color map.

left-upper corner to the right lower one, and light colors for the remaining area. In 

from being perfect. It only predicts Classical songs correctly (dark square). For Rock, 
for instance, it preferred the label Metal most of the time.

Obviously, using FFT points in the right direction (the Classical genre was not 

Before we do that, however, we will learn another method of measuring 
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performance using receiver-operator 
characteristics
We already learned that measuring accuracy is not enough to truly evaluate 

 precision-recall (P/R) curves to get a deeper 
 perform.

There is a sister of P/R curves, called receiver-operator-characteristics (ROC), which 

suitable for tasks where the positive class is much more interesting than the negative 
one, or where the number of positive examples is much less than the number of 
negative ones. Information retrieval and fraud detection are typical application areas. 

behaves in general.

To better understand the differences, let us consider the performance of the 
 

in the following graph:
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going from the top left directly to the top right and then to the bottom right, resulting 
in an area under curve (AUC) of 1.0.

The right graph depicts the corresponding ROC curve. It plots the True Positive Rate 

a straight line from the lower left to the upper right, as shown by the dashed line, 
having an AUC of 0.5. Therefore, we cannot compare an AUC of a P/R curve with 
that of an ROC curve.

dataset, we are always safe to assume that a higher AUC of a P/R curve for one 
AUC of the corresponding ROC curve and vice versa. 

Thus, we never bother to generate both. More on this can be found in the very 
insightful paper  by Davis 
and Goadrich (ICML, 2006).

The following table summarizes the differences between P/R and ROC curves:

x axis y axis
P/R

ROC

x and y axis, we see that the True Positive 
Rate in the ROC curve's y axis is the same as Recall of the P/R graph's x axis.

The False Positive Rate measures the fraction of true negative examples that were 
 positive ones, giving a 0 in a perfect case (no false positives) 

and 1 otherwise. Contrast this to the precision, where we track exactly the opposite, 
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get a better feeling for it. The only challenge for our multiclass problem is that both 

from sklearn.metrics import roc_curve

y_pred = clf.predict(X_test)

for label in labels:

    y_label_test = scipy.asarray(y_test==label, dtype=int)

    proba = clf.predict_proba(X_test)

    proba_label = proba[:,label] 

    # calculate false and true positive rates as well as the

    # ROC thresholds

    fpr, tpr, roc_thres = roc_curve(y_label_test, proba_label)

    # plot tpr over fpr ...

The outcomes are the following six ROC plots. As we have already found out, our 

individual ROC curves, however, tells us that we are really underperforming for 
most of the other genres. Only Jazz and Country provide some hope. The remaining 
genres are clearly not usable.
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We already learned that FFT is pointing in the right direction, but in itself it will 

our scrambled directory of songs of diverse music genres into individual genre 
directories. We need a somewhat more advanced version of it.

At this point, it is always wise to acknowledge that we have to do more research. 
Other people might have had similar challenges in the past and already have found 
out new ways that might also help us. And, indeed, there is even a yearly conference 

 International Society 
for Music Information Retrieval (ISMIR). Apparently, Automatic Music Genre 

 (AMGC  Information Retrieval. 
Glancing over some of the AMGC papers, we see that there is a bunch of work 

One technique that seems to be successfully applied in many of those works is 
Mel Frequency Cepstrum (MFC) 

encodes the power spectrum of a sound, which is the power of each frequency the 
sound contains. It is calculated as the Fourier transform of the logarithm of the 
signal's spectrum. If that sounds too complicated, simply remember that the name 

has been successfully used in speech and speaker recognition. Let's see whether it 
also works in our case.

We are in a lucky situation in that someone else already needed exactly this and 
published an implementation of it as the Talkbox SciKit. We can install it from 
https://pypi.python.org/pypi/scikits.talkbox. Afterward, we can call  
the mfcc()

>>> from scikits.talkbox.features import mfcc

>>> sample_rate, X = scipy.io.wavfile.read(fn)

>>> ceps, mspec, spec = mfcc(X)

>>> print(ceps.shape)

(4135, 13)
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ceps, which contains 
nceps parameter of mfcc()) for each of the 4,135 
fn. Taking all of the data would overwhelm 

all the frames. Assuming that the start and end of each song are possibly less genre 

x = np.mean(ceps[int(num_ceps*0.1):int(num_ceps*0.9)], axis=0)

 
30 seconds of each song, so that we would not need to cut off the last 10 percent.  
We do it, nevertheless, so that our code works on other datasets as well, which  
are most likely not truncated.

Similar to our work with FFT, we certainly would also want to cache the once 
generated MFCC features and read them instead of recreating them each time  

This leads to the following code:

def write_ceps(ceps, fn):

    base_fn, ext = os.path.splitext(fn)

    data_fn = base_fn + ".ceps"

    np.save(data_fn, ceps)

    print("Written to %s" % data_fn)

def create_ceps(fn):

    sample_rate, X = scipy.io.wavfile.read(fn)

    ceps, mspec, spec = mfcc(X)

    write_ceps(ceps, fn)

def read_ceps(genre_list, base_dir=GENRE_DIR):

    X, y = [], []

    for label, genre in enumerate(genre_list):

        for fn in glob.glob(os.path.join(

                            base_dir, genre, "*.ceps.npy")):

            ceps = np.load(fn)

            num_ceps = len(ceps)

            X.append(np.mean(

                     ceps[int(num_ceps*0.1):int(num_ceps*0.9)], axis=0))

            y.append(label)

    return np.array(X), np.array(y)
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We get the  
per song:
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The 
even at almost 1.0 AUC. And indeed, also the confusion matrix in the following plot 

quite usable to solve our initial task.

If we would want to improve on this, this confusion matrix tells us quickly what to 
focus on: the non-white spots on the non-diagonal places. For instance, we have a 
darker spot where we mislabel Rock songs as being Jazz with considerable probability. 

glancing over the ISMIR papers—we also have read about the so-called Auditory 
 (AFTE) features, which seem to outperform MFCC 

The nice thing is that, only equipped with ROC curves and confusion matrices, we 
are free to pull in other experts' knowledge in terms of feature extractors without 
requiring ourselves to fully understand their inner workings. Our measurement 
tools will always tell us, when the direction is right and when to change it. Of course, 
being a machine learner who is eager to learn, we will always have the dim feeling 
that there is an exciting algorithm buried somewhere in a black box of our feature 
extractors, which is just waiting for us to be understood.
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Summary
In this chapter, we totally stepped out of our comfort zone when we built a music 

using MFC features.

In both the cases, we used features that we understood only enough to know how 

The difference between them is that in the second case we relied on features that 

And that is totally OK. If we are mainly interested in the result, we sometimes 
simply have to take shortcuts—we just have to make sure to take these shortcuts 

In the next chapter, we will look at how to apply techniques you have learned  

mahotas computer vision package to preprocess images using traditional image 
processing functions.
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