
Syntax: variables, expressions 
and statements

Lecture 02.01
By Marina Barsky

http://interactivepython.org/runestone/static/CS152f17/SimplePythonData/toctr
ee.html

http://interactivepython.org/runestone/static/CS152f17/SimplePythonData/toctree.html




Trace the following code snippets

• Write and trace in visualizer: 
http://pythontutor.com/live.html#mode=edit

x = 5

y = 4

x = 2*y

x = 4

y = x + 2

x = y + 1

y = y + 6

a = 5

b = 15

Write code to swap which values a and b refer to: after your 
statements are executed, a should refer to the value that b used to 
refer to, and b should refer to the value that a used to refer to. 
Hint: use a third variable.
Once you have written the code, trace your code manually using 
variable table

http://pythontutor.com/live.html#mode=edit


Language tokens (single words)

Reserved words

Values

Variables



Reserved Words

Reserved words have special meaning and used to give 
special instructions

False class return is finally

None if for lambda continue 

True def from while nonlocal

and del global not with

as  elif try or yield

assert else import pass

break except in raise



Fixed values: constants

Numeric 

types

list

str
Sequence 

types

float

int

bool

>>> type(‘writer’)

<class ‘str’>

>>> type([1,2,3])

<class ‘list’>

>>> type(3.14)

<class ‘float’>

>>> type(True)

<class ‘bool’>

Values have type



Variables

• A variable is a named place in memory where we can store 
value and later retrieve it using the variable “name”

• Programmers get to choose the names of the variables

• You can change the contents of a variable in a later statement

https://goo.gl/bcGWi8

Visualize programs with pythontutor.com

https://goo.gl/bcGWi8


x1q3z9ocd = 35.0 

x1q3z9afd = 12.50

x1q3p9afd = x1q3z9ocd * x1q3z9afd

print(x1q3p9afd)

What is this 

program 

computing?

Naming your variables: good names?



x1q3z9ocd = 35.0 

x1q3z9afd = 12.50

x1q3p9afd = x1q3z9ocd * x1q3z9afd

print(x1q3p9afd)

a = 35.0 

b = 12.50 

c = a * b 

print(c)

What is this 

program 

computing?

Naming your variables: better names?



x1q3z9ocd = 35.0 

x1q3z9afd = 12.50

x1q3p9afd = x1q3z9ocd * x1q3z9afd

print(x1q3p9afd)

a = 35.0 

b = 12.50 

c = a * b 

print(c)

What is this 

program 

computing?

Naming your variables

hours = 35.0 

rate = 12.50 

pay = hours * rate 

print(pay)



Python Variable Name Rules

• Must start with a letter or underscore _ 

• Must consist of letters, numbers, and underscores

• Case Sensitive

• Combine words using snake_case

Good: spam    eggs   top_score _speed

Bad:    23spam    #sign  var.12

All different:  spam   Spam   SPAM

Mnemonic Variable Names



Python is a weakly typed language

• When we declare new variable – the type is not declared 

• The type is deduced (guessed) from the value

• We change the type of variable by assigning it a value of a 
different type

>>> x = 4

>>> type (x)

<class 'int'>

>>> x = 'abc'

>>> type (x)

<class 'str'>



Expressions and assignments
Numeric expressions

String expressions

Assignment statement



Combining values and variables into 
expressions

a = 2 + 3**2

b = a / 2

c = a // 2

d = a % 2

Assignment ←

Operator Operand

= does not mean equal in Python, it means: assign value 
on the right into a variable on the left



Assigning expressions to variables

• We assign a value to a variable using the assignment statement 
(=)

• An assignment statement consists of an expression on the 
right-hand side and a variable to store the result

x = 3.9 * x * ( 1 - x )



>>> xx = 2

>>> xx = xx + 2

>>> print(xx)

4

>>> yy = 440 * 12

>>> print(yy)

5280

>>> zz = yy / 1000

>>> print(zz)

5.28

>>> jj = 23

>>> kk = jj % 5

>>> print(kk)

3

>>> ll = jj // 5

4

>>> print(4 ** 3)

64

Operator Operation

+ Addition

- Subtraction

* Multiplication

/ Division

// Int. division

** Power

% Remainder

5 23

4 R 3

20

3

Numeric Expressions: try in IDLE



Operator Precedence Rules

• When we string operators together - Python must know 
which one to do first

• This is called “operator precedence”

Highest to lowest precedence:

• Parentheses are always respected

• Exponentiation (raise to a power)

• Multiplication, Division, and Remainder

• Addition and Subtraction

• Left to right

Parenthesis

Power

Multiplication

Addition

Left to Right



1 + 2 ** 3 / 4 * 5

1 + 8 / 4 * 5

1 + 2 * 5

1 + 10

11

>>> x = 1 + 2 ** 3 / 4 * 5

>>> print(x)

11.0

>>> 

Parenthesis

Power

Multiplication

Addition

Left to Right

Order of evaluation



The type of the result depends on the type 
of operands

• When you put an integer 
and floating point in an 
expression, the integer is 
implicitly converted to a 
float

• You can control this with 
the built-in convertors
int() and float()

>>> print(float(99) + 100)

199.0

>>> i = 42

>>> type(i)

<class'int'>

>>> f = float(i)

>>> print(f)

42.0

>>> type(f)

<class'float'>

>>> 



Integer division and modulo operator

Division operator / always 
produces a floating point result

If you want an integer division (the 
whole part of the result) use 
operator //

>>> print(10 / 2) 

5.0

>>> print(9 / 2) 

4.5

>>> print(99 / 100) 

0.99

>>> print(9 // 2) 

4

>>> print(99 // 100) 

0



Integer division and modulo operator

If you want an integer division (the 
whole part of the result) use 
operator //

Modulo operator % produces the 
remainder of the integer division

>>> print(10 // 4) 

2

>>> print(10 % 4) 

2



String expressions

Values and variables of type str can also be combined into 
expressions

The meaning of the only valid two operators + and * is 
different for string operands:

+ concatenates strings
* repeats strings

>>> 'first' + 'class'

'firstclass'

>>> 'bro' + 'ha' * 5

'brohahahahaha'



Operators cannot work on operands 
of two different types: number and 
string
You cannot “add 1” to a string

To concatenate strings with 
numbers we need to convert 
numbers to strings first - using 
str() convertor

>>> 'hello' + 1

Traceback (most recent call last):

File "<pyshell#6>", line 1, in 

<module>

'hello' + 1

TypeError: must be str, not int

>>> 'hello ' + str (1)

'hello 1'



String Conversions

• You can also use int() and 
float() to convert between 
strings and integers

• You will get an error if the 
string does not contain 
numeric characters

>>> sval = '123'

>>> type (sval)

<class 'str'>

>>> print (sval + 1)

Traceback (most recent call last):

File "<pyshell#12>", line 1, in 

<module>

print (sval + 1)

TypeError: must be str, not int

>>> ival = int (sval)

>>> print (ival + 1)

124

>>> sval = 'Bob'

>>> ival = int (sval)

Traceback (most recent call last):

File "<pyshell#16>", line 1, in 

<module>

ival = int (sval)

ValueError: invalid literal for int() 

with base 10: 'Bob'



Dialogue with users
input

print



User Input

• We can instruct Python to 
pause and get data from the 
keyboard using the input()  
function

• The input()  function 
produces a string

name = input('Who are you? ')

print('Welcome', name)



Converting User Input

• If we want to read a number from the user, we must convert it 
from a string to a number using a type conversion function:

inp = input ('Fahrenheit Temperature ? ')

fahr = float (inp)

cel = (fahr - 32.0) * 5.0 / 9.0

print (cel)



Converting User Input

• If we want to read a number from the user, we must convert it 
from a string to a number using a type conversion function:

• What happens if the user enters text instead of a number? 

inp = input ('Fahrenheit Temperature ? ')

fahr = float (inp)

cel = (fahr - 32.0) * 5.0 / 9.0

print (cel)



The try / except Structure

• You surround a dangerous section of code with try and except

• If the code in the try works - the except is skipped

• If the code in the try fails - it jumps to the except section

inp = input ('Fahrenheit Temperature ? ')

try:

fahr = float (inp)

cel = (fahr - 32.0) * 5.0 / 9.0

print (cel)

except:

print ('Invalid input')

print ('this was Fahrenheit to Celsius converter')



try / except
astr = 'Bob'

astr = 'Bob'

try:

print('Hello') 

istr = int(astr)

print('There') 

except:

istr = -1

print('Done', istr) 

print('Hello')

print('There')

istr = int(astr)

print('Done', istr)

istr = -1

Safety net



Sample try / except

>>Enter a number:42

Nice work

>>Enter a number:forty-two

Not a number

rawstr = input('Enter a number:')

try: 

ival = int(rawstr)

except: 

ival = -1

if ival > 0 :  

print('Nice work')

else:  

print('Not a number')


