Recursive graphics

Lecture 06.02

By Marina Barsky

RecaII° recursion

Pile of copies of the same
function — with smaller
inputs

Using turtle canvas as sketchpad

from turtle import *

reset ()

forward (50)
left (90)
forward (100)
right (90)
color ('blue')
width (5)
forward (100)
circle (50)

done ()

ldentifying repeating patterns

* Drawing a triangle

tri():

""" draws a
triangle
forward (100)
left (120)
forward (100)
left (120)
forward (100)
left (120)

ldentifying repeating patterns

* Drawing a triangle ... recursively
tri(): def tri_rec(n):
[ARAN| draws a 'f L]
triangle th==L
[ARAN| return
forward (100) else:
left (120) > forward(100)
forward (100) Ieft(120)
left (120) . 1
forward (100) tri_rec(n-1)
left (120)

tri_rec (3)

Could we create any regular n-gon?

ldentifying repeating patterns

* Drawing a triangle ... recursively
tri(): def tri_rec(n):
wiwnw draws a 'f L]
triangle th==L
wiwnw return
forward (100) else:
left (120) > forward(100)
forward (100) Ieft(120)
left (120)) 1
forward (100) tri_rec(n-1)
left (120)

tri_rec (3)

Generic n-gon

A default parameter value!
ngon(n, cur side):

""" A simple recursive function to create an arbitrary
n-sided polygon

Parameters:
n - number of sides of the polygon
cur side - currently drawing side used by recursion

wiww

cur_side >= n:

forward (100)

left (360/n) - How many degrees should we
ngon (n,cur_side+l) turn?

ngon(n)

pencolor ('red')
ngon (3)

pencolor ('orange')
ngon (4)

pencolor ('yellow')
ngon (5)

pencolor ('green')
ngon (6)

pencolor ('blue')
ngon (7)

Drawing Spirals

Any self-similarity here?

200

190

=10l x|

Designing recursive drawing

=10l x|

Base Case:

Recursive Step:

Designing any recursive
program boils down to the
same two pieces

Think about the
SIMPLEST POSSIBLE case!

Do ONLY ONE STEP, and
let recursion do the rest...

Recursion: stop when too small

T RI=E
Designing any recursive
program boils down to the
] same two pieces

def spiral square(side len):
if side len < 1:
return
else:
forward (x)
left (90)

spiral square(side len -10)

Recursion: stop after n steps

Designing any recursive
program boils down to the
same two pieces

spiral square (200, 7)

def spiral square(side len, n):
1f n ==
return
else:
forward (x)
left (90)

spiral square(side len-10, n-1)

Exercise in 2D

What does function fea draw?

def tea(size):
nmn Mystery!
forward(size)

mirrn

left (90)
forward(size/2)
backward(size/2)
right (90)

right (90)
forward(size/2)
backward (size/2)
left (90)

backward (size)

Exercise in 2D

What if [want to draw a double-headed axe?

def tea(size): o
rrrn Letter T rrrn
»{ S —
forward(size)

left (90)
forward(size/2)
backward (size/2)
right (90)

right (90)
forward (size/2)
backward (size/2)
left (90)

backward (s ize) An ornamented golden Minoan double axe,
often spuriously called a labrys.

Extend T

Simpler tea _
. def small tea(size):
def tea(size): - .
rrrrn rrrn forward(Slze)
letter T

forward (size) left (90)

forward (size / 2)

left (90
eft (90) | backward(size / 2)
forward (size/2) i ght (90)
backward (size/2) ol
i?aiiTBE?(Size/Z right (90)
g forward(size / 2)
Fight (90) backward (size / 2)

forward (size/2) left (90)

backward (size/2)
small tea(size/2)
left (90)

backward (size)

But 2 functions are the same —

backward (size) recursion!

Recursive tea

def tea(size, 1teration
"nn letter T """
if lteration == (! < ——\Nhen to stop
return
forward(size)

left (90) When finished
forward(size / 2) one branch —
backward (size / 2) ‘(”” make it into a
tea(size / 2, iteration -1) smaller T!
right (90)

right (90)

forward(size / 2)
backward(size / 2)

tea(size / 2, iteration - 1)
left (90)

backward (size)

Fractals: recursive drawings

When you look at fractal it has the same basic shape no
matter how much you magnify it

Nature:

* Coastlines of continents
* Snowflakes

* Mountains

* Trees or shrubs

The fractal nature of these natural phenomena makes it
possible for programmers to generate very realistic looking
scenery for computer-generated movies.

Fractal: side-view tree

Level 1

Level 2

Level 3

Level 4

sv_tree(100, 4)

How to describe a tree
using a fractal
vocabulary?
A tree is a trunk with:
 Smaller tree to the
left
 Smaller tree to the
right
We can apply the
recursive definition of a
tree to both the smaller
left and right trees.

sv_tree(trunk size, levels)

Recursion In nature

Key: self-similarity

Fractals: emerging patterns

Mandelbrot set:
* https://www.youtube.com/watch?v=2JUAojvFpCo

Minskytron:
* https://www.youtube.com/watch?v=IXsVWwPa7bc
* https://www.masswerk.at/minskytron/

The pair of equations can be expressed succinctly as
y -=X>>4;
X+=y>>4;

Demo:

e http://hope.simons-rock.edu/~mbarsky/intro18/mandel/

* http://hope.simons-rock.edu/~mbarsky/intro18/minski/

https://www.youtube.com/watch?v=2JUAojvFpCo
https://www.youtube.com/watch?v=lXsVWwPa7bc
https://www.masswerk.at/minskytron/
http://hope.simons-rock.edu/~mbarsky/intro18/mandel/
http://hope.simons-rock.edu/~mbarsky/intro18/minski/

