Recursion

Lecture 06.01
by Marina Barsky

Readings:
https://www.cs.hmc.edu/csforall/index.html#functional-
programming

You may read the entire Chapter 2 (for a review on functions),
concentrateon 2.7 —-2.12

https://www.cs.hmc.edu/csforall/index.html#functional-programming

Functions as mathematical concepts
(proper functions)

0

function name input

parameter |
7
def f (x):
return

return value

result = £(4)

calling function f with argument 4

Recall: functions can call other functions

def f (x):
X = 2%*x
return x

def g (x):
X = 2*f(x/3)
return x

def h (x):
X =2*g(x/2)
return x

#function call
h (6)

Stack — stacking functions until can compute

value

def f (x):
X = 2%*x
return x

def g (x):
x = 2*f(x/3)
return x

def h (x):
X =2%*g(x/2)
return X

#function call
y =h(6)

x=3 | 8(x) x = 2*f(x/3)

return x

O
h(x) X =2%g(x/2)
return X

!

!

5

Unloading functions from the stack

def f (x):
X = 2%*x
return x

def g (x):
X = 2*f(x/3)
return X

def h (x):
X =2%*g(x/2)
return x

#function call
y =h(6)

O
X =2%g(x/2)
return x

A function can call the same function!

* What will happen if we place call to function f() inside
function f()?

* The stack frames will pile up until memory permits and then
the program will crash

* We use functions which call the same function inside them if
the problem can be broken into smaller problems, which
require the same computation

* Such problems are called recursive problems, and the
function which contains call to itself is called a recursive
function

Example of recursive problem: factorial

51 = 5*4*3*%2%
4!

51=5%*(4!)
4! = 4*(31)
Etc.

F(n)=n * F(n-1) forn>1
F(1) =1

Two important features of a recursive
solution

e A recursive solution must have one or more base cases
(when to stop)

factorial(1) =1
* A recursive solution can be expressed through the exact
same solution with a smaller problem size
factorial(n) = n * factorial(n-1)

Function factorial

F(n)=n * F(n-1) forn>0
F(1)=1

def factorial (n):
""" (int) -> int

Computes factorial of
positive integer n

>>> factorial (3)

6

>>>factorial (7)

5040

o Recursion with

Base case
\\\\‘if n<=1: smaller problem
return 1

return n * factorial (n-1)

Behind the curtain: factorial

"The Stack"
def fac (n):
return 1

return n * fac (n-1)

fac(n) return *f;c() l
a = fac (4)
)
fac(n return *fac() l

-

fac(n) return *fac()

!

®
a = fac

4

Behind the curtain: factorial

"The Stack"
def fac (n):
if n <= 1:
return 1

return n * fac (n-1)

a = fac (4)
Loaded definition of fac D
to compute fac(4), but fac(n) return *fac()

cannot compute, needs
to compute fac(3) first

Behind the curtain: factorial

def fac (n):
if n <= 1:
return 1

return n * fac (n-1)

a = fac (4)

Loaded a different
copy of fac, to fac(n
compute fac(3)

fac(n)

"The Stack"

return

Behind the curtain: factorial

Finally can "The Stack"
compute fac(1)

def fac (n):
return 1
return n * fac (n-1) ®
o | 4
a = fac (4)
()
!
!
.

a fac

\4

Behind the curtain: factorial
"The Stack"

And return

def fac (n):
if n <= 1: fac(n)
return 1
return n * fac (n-1)
fac(n) l
a = fac (4)
(
o [§
<o I }
‘D

a fac

\4

Behind the curtain: factorial

def fac (n):
if n <= 1:
return 1

return n * fac (n-1)

a = fac (4)

fac(n)

return

"The Stack"

Behind the curtain: factorial

"The Stack"
def fac (n):
if n <= 1:
return 1

return n * fac (n-1)

a = fac (4)

Let recursion do the work for youl!

Exploit self-similarity
Less work !
Produce short, elegant code

def factorial(n):
You handle the base

case — the easiest
- possible case to think of!
if n <= 1: |
Recursion does almost all of
return 1 / the rest of the problem:!

el sSe: Always a “smaller” problem!

return n * factorial (n-1)

Exercise 1: recursive sum

* How to modify factorial function to give us a sum of integers
from 1ton?

def factorial(n):

if n <= 1:
return 1
else:
return n * factorial (n-1)

Exercise 1: recursive sum solution

* How to modify factorial function to give us a sum of integers
from 1ton?

def sum(n) :

if n <= 1:
return 1
else:
return n + sum(n-1)

How to read recursive functions

def factorial (n):
if n <= 1:
return 1
else:
return n * factorial (n-1)

* Take an example, say, factorial(3)
* Draw separate copies of the same factorial function for 3, 2, 1.
* Pile them up in stack frames, and follow the logic of returns

Reading exercise: what is computed?

def func(s):
if s == "'':
return 0
elif s[0] in 'aeiou':
return 1 + func(s[1l:])
else:
return 0 + func(s[1l:])

Reading exercise: what is computed?

def func(s):
if s == "'':
return 0
elif s[0] in 'aeiou':
return 1 + func(s[1l:])
else:
return 0 + func(s[1l:])

func counts vowels in s

How to write recursive functions

e Start from the base case: teach def fac(n):
computer how to compute if p ==
factorial(1) return 1
* If | want to compute factorial(2), | if n == 2:
need to multiply 2 by factorial(1) — | return 2 * fac(1l)
will reuse factorial(1) if pn ==
* Now | know how to compute return 3 * fac(2)

factorial(2). To compute factorial(3), |
just multiply 3 by the value computed
in factorial(2).

* Now | see the general pattern!

How to write recursive functions: generalizing

* To compute factorial for any def fac(n):
n, | multiply n by factorial of if n ==
n-1 return 1
else:

return n * fac(n-1)

Exercise 2: string length

* Write a recursive function called my_len that computes the
length of a string
Example:
my_len("aliens") 2 6

* What is the base case?
Empty string
my _len(") 2> 0

e Recursive call:
1+ my len(s[1:])

Exercise 2: string length solution (stop and
try)

my len(s):
""" input: any string, s

output: the number of characters in s

Exercise 2: string length solution

my len(s):
""" input: any string, s

output: the number of characters in s

== 1T

rest = s[1:]

l + my len(rest)

my len(s):

Behind the curtain: s == 1.
string length... 0

1l + my len(s[1l:])

my len('abc') ﬁ

\ }
Y \

l + my len('bc') .3

| }\
|
1 + my len('c') >~ 2

\

|

1 +my len('') — 1

\)
Y

.

Exercise 3: sum of digits (try it out!)

sum digits(s):

""" jnput: a string s of int numbers
'252674"

output: the sum of the numbers

>>> sum digits ('1231'")

7

mwiiw

Exercise 4: find list max

* Write a recursive function called find list_ max that returns
the maximum value in a list

* Examples:
>>> find list max ([4, 13, 21, 5, 2])
21
>>> find list max ([1, -3, 8, -5, 12])
12

Exercise 4: find list max

find list max(t):
""" input: a NONEMPTY list, t

output: t's maximum element

f ind_l is t max

find list max(t):
""" input: a NONEMPTY list, t
output: t's maximum element
len(t) ==
t[0]
t[0] < t[1l]: # t[0] can’t be the max, remove it
find list max(t[1l:])
t[l] can’t be the max, remove it
find list max(t[0:1] + t[2:])

\

t[0:1] returns list with a single element
We concatenate lists with lists!

Exercise 5: extract a sub-list

* Write a recursive function called extract _list that returns a sub-list for a
given range of indexes

* Examples:
>>> extract list([4, 13, 21, 5, 2], 2, 5)
[21, 5, 2]

>>> extract list(['hello', 'world', 'how',6 'are',
'you', '?'], 2, 5)

['Thow', 'are', 'you']

extract_list

def extract list(t, low, hi):
""" input: list t, two ints, low and hi
output: list from low up to, not
including hi
if hi <= low: # base case
return []
else:

return

extract_list

def extract list(t, low, hi):
""" input: list t, two ints, low and hi
output: list from low up to, not
including hi
1f hi <= low:
return []
else:

return [t[low]] + extract list(t, low+l, hi)

