
Reusing objects

Lecture 07.03

by Marina Barsky

shape.py
shapes.py
shape_movie.py
fish_tank.py

http://hope.simons-rock.edu/~mbarsky/intro18/lectures/objects/code/shape.py
http://hope.simons-rock.edu/~mbarsky/intro18/lectures/objects/code/shapes.py
http://hope.simons-rock.edu/~mbarsky/intro18/lectures/objects/code/shape_movie.py
http://hope.simons-rock.edu/~mbarsky/intro18/lectures/objects/code/fish_tank.py

Two main approaches to reusing objects

•Inheritance

•Composition

I. Inheritance

Factoring out similarities

• If we define a set of new types (classes) we often find that there are
similarities among them

• For example:

• Class Lion and class Bear – both have a lot in common

• We can factor out similarities and define them in a single class
Animal

Lion is an Animal Bear is an Animal

Inheritance hierarchy

• Where there’s inheritance, there’s an Inheritance Hierarchy of
classes
• Mammal “is an” Animal

• Cat “is a” Mammal

• Transitive relationship: a Cat “is an” Animal too

• We can say:
• Reptile, Mammal and Fish “inherit from” Animal

• Dog, Cat, and Moose “inherit from” Mammal

Animal

Reptile Mammal Fish

Cat MooseDog

Subclass of
class Animal

Animal is
called superclass

Inheriting properties (fields) and capabilities
(methods)

• Subclass inherits all capabilities of its superclass

• if Animals eat and sleep, then Reptiles, Mammals, and Fish eat
and sleep

• if Vehicles move, then SportsCars move!

• Subclass specializes its superclass

• adding new fields and methods

• overriding (redefining) existing methods

• Superclass factors out capabilities common among its subclasses

• Subclasses are defined by their differences from their superclass

Inheritance Example: 1/3

• Student inheritance hierarchy:

• Student is base class
• SRStudent is Student’s subclass
• CMPT100Student is subclass of SRStudent

• Student has a capability (or method)
• study() which works by:

• going home, opening a book, and reading 50 pages.

Student

SRStudent

CMPT100Student

Inheritance Example: 2/3

• SRStudent “is a” Student,

so it inherits the study() method

• but it overrides the method by:

• reviewing lectures, and doing an assignment

• note: it doesn’t have to override this method!

• Finally, the CMPT100Student also knows how to study() (it
study()s the same way a SRStudent does)

• however, the CMPT100Student subclass adds two capabilities:
gitDown() and gitFunky()

def gitDown():

Code to party

def gitFunky():

Code to do awesome CMPT100 dance

Student

SRStudent

CMPT100Student

Inheritance Example (cont.)

• Each subclass is a specialization of its superclass

• Student knows how to study(), so all subclasses in hierarchy
know how to study()

• but the SRStudent does not study() the same way a Student
does

• and the CMPT100Student has some capabilities that neither
Student nor SRStudent have (gitDown() and gitFunky())

Student

SRStudent

CMPT100Student

Inheritance: Classic example
Shape hierarchy

shape.py

shapes.py

http://hope.simons-rock.edu/~mbarsky/intro18/lectures/objects/code/shape.py
http://hope.simons-rock.edu/~mbarsky/intro18/lectures/objects/code/shapes.py

Superclass (Generic class): Shape

class Shape:

def __init__(self, x=0, y=0, size=10, color="black"):

self.x = x

self.y = y

self.size = size

self.color = color

__str__ can be defined once for all shapes

class Shape:

def __str__(self):

return "{} {} of size {}" \

" located at ({},{})".format(

self.color,

self.__class__.__name__,

self.size,

self.x,

self.y

)

def __repr__(self):

return self.__str__()

def get_area(self):

return -1

Printing shapes

[red Shape of size 15 starts at 0,0,
green Shape of size 40 starts at 100,50,
blue Shape of size 50 starts at 200,20]

if __name__ == '__main__':

shapes = []

shapes.append(Shape(0, 0, 15, "red"))

shapes.append(Shape(100, 50, 40, "green"))

shapes.append(Shape(200, 20, 50, "blue"))

print(shapes) ?
How does Shape
look like?

How does Animal
look like?

We can print properties of an abstract
Shape but we cannot draw it and we
cannot find its area

Extending abstract Shape: Square is a Shape

class Square (Shape):

def get_area(self):

return self.size ** 2

Square inherits all its properties
and the constructor from Shape

class Shape:

def __init__(self, x=0, y=0, size=10, color="black"):

self.x = x

self.y = y

self.size = size

self.color = color

class Triangle(Shape):

def get_area(self):

k = (3 ** 0.5)/4

return k * self.size ** 2

Extending abstract Shape: Triangle is a Shape

Triangle has its own
special get_area()

class Shape:

def __init__(self, x=0, y=0, size=10, color="black"):

self.x = x

self.y = y

self.size = size

self.color = color

Extending abstract Shape: Circle is a Shape

class Circle(Shape):

def get_area(self):

pi = 3.14

return pi * self.size ** 2

class Shape:

def __init__(self, x=0, y=0, size=10, color="black"):

self.x = x

self.y = y

self.size = size

self.color = color

Drawing shapes: tkinter canvas

window = tk.Tk()

window.title("Test shapes")

frame = tk.Frame(window)

frame.pack()

canvas = tk.Canvas(frame)

canvas.pack()

canvas inside frame inside window canvas coordinate system

X

Y

class Circle(Shape):

def set_shape(self, canvas):

self.canvas = canvas

self.shape = self.canvas.create_oval(

self.x, self.y,

self.x + self.size, self.y + self.size,

fill=self.color,

outline=""

)

class Triangle(Shape):

def set_shape(self, canvas):

self.shape = self.canvas.create_polygon(

self.x, self.y,

self.x + self.size, self.y,

self.x + self.size/2, self.y - self.size,

fill=self.color,

outline=""

)

class Square (Shape):

def set_shape(self, canvas):

self.shape = self.canvas.create_rectangle(

self.x, self.y,

self.x + self.size,

self.y + self.size,

fill=self.color,

outline=""

)

Asking canvas object to hold a shape for us

x0,y0

x1,y1

x0,y0 x1,y1

x2,y2

x0,y0

x1,y1

Create list of shapes,
set it up for drawing

shapes = []

o = Circle(30, 30, 45, "blue")

shapes.append(o)

r = Square(200, 100, 50, "red")

shapes.append(r)

t = Triangle(160, 180, 50, "green")

shapes.append(t)

print(shapes)

for i in range(len(shapes)):

shapes[i].set_shape(canvas)

Draw shapes

window.update() # fix geometry

for i in range(len(shapes)):

shapes[i].set_shape(canvas)

try:

while True:

window.update_idletasks() # redraw

window.update() # process events

except tk.TclError:

pass # to avoid errors when the window is closed

This adds a
drawing to canvas

This is an event
loop: redraws the
shapes and listens
to events

Why use inheritance

• Get rid of duplicate code by abstracting out the common behavior.

• Modify in one place, and the change is ‘magically’ carried out to all
subclasses

• Add new subclasses easily, and they have some methods and
properties right away

II.
Composition

Objects as building blocks

• Object fields (attributes) can be of any type: they can also be of a
new custom type (class)

• This way we can build complex objects which contain simpler objects
within them

• The method of constructing a program by incorporating smaller
objects inside a larger one is called composition

• This is the most useful and widely used approach in Object-Oriented
Programming

Composing with objects

• Combining elementary objects to build a more complex object ensures
that we can abstract only important properties and capabilities of an
elementary object, and concentrate on correct implementation of each
small piece

• We can divide work among many programmers

Car

model: str
engine: Engine
door: Door
wheels: []

move()

EngineComposed
from:

Door

Wheels

People who build
engines do not have
to know how to
make wheels

Shape Movie class: contains shape objects
and moves them on the screen

shape_movie.py

class ShapeMovie:

def __init__(self, shape_list, canvas):

self.shapes = shapes

self.canvas = canvas

def animate(self):

canvas_w = int(self.canvas.cget("width"))

for s in self.shapes:

if s.shape:

s.x += (s.direction*s.speed)

self.canvas.move(s.shape,

s.direction*s.speed, 0)Moves the shape
along X axis

Updates X position
of a Shape object

http://hope.simons-rock.edu/~mbarsky/intro18/lectures/objects/code/shape_movie.py

Shape movie: simple animation

shape_movie.py

class ShapeMovie:

def __init__(self, shape_list, canvas):

self.shapes = shapes

self.canvas = canvas

def animate(self):

canvas_w = int(self.canvas.cget("width"))

for s in self.shapes:

if s.shape:

s.x += (s.direction*s.speed)

self.canvas.move(s.shape,

s.direction*s.speed, 0)

if s.x < 0 or s.x + s.size > canvas_w:

s.direction = - s.direction
If reached the end of
canvas – change
direction

http://hope.simons-rock.edu/~mbarsky/intro18/lectures/objects/code/shape_movie.py

Movie time!

movie = ShapeMovie(shapes, canvas)

window.update() # fix geometry

try:

while True:

movie.animate()

window.update_idletasks() # redraw

window.update() # process events

except tk.TclError:

pass # to avoid errors when the window is closed

Moves shapes a little in each
iteration of the event loop

Class Fish: composed of shapes
class Fish:

def __init__(self, x, y, size, color,

direction=-1, speed=0):

…

def set_shape(self, canvas):

self.canvas = canvas

self.body = Circle(self.x, self.y, self.size,

self.color)

self.body.set_shape(self.canvas)

Our Fish is round!

First, the body

fish_tank.py

http://hope.simons-rock.edu/~mbarsky/intro18/lectures/objects/code/fish_tank.py

class Fish:

…

def set_shape(self, canvas):

self.canvas = canvas

self.body = Circle(self.x, self.y, self.size,

self.color)

self.body.set_shape(self.canvas)

self.eye = Circle(self.x + self.size/2

+ self.direction * (self.size / 4),

self.y + self.size / 4, self.size / 6, "blue")

self.eye.set_shape(self.canvas)

Class Fish: eye

x
y ¼ size

direction = -1 direction = 1
X coordinate of the
eye is ¼ of size from
the middle

class Fish:

…

def set_shape(self, canvas):

…

tail_x = self.x - self.size / 2

if self.direction < 0:

tail_x = self.x - self.direction * self.size

self.tail = Triangle(tail_x, self.y + self.size / 2,

self.size / 2, self.color)

self.tail.set_shape(self.canvas)

Class Fish: tail

direction = -1 direction = 1

Fish tank animation:
works exactly as shape movie

def animate(self):

canvas_w = int(self.canvas.cget("width"))

for fish in self.fish_list:

if fish.body.shape:

fish.x += (fish.direction * fish.speed)

self.canvas.move(fish.body.shape,

fish.direction * fish.speed, 0)

self.canvas.move(fish.eye.shape,

fish.direction * fish.speed, 0)

self.canvas.move(fish.tail.shape,

fish.direction * fish.speed, 0)

Move those
body parts

Fish tank animation:
change direction of each fish

if fish.x < 0 or fish.x + fish.size > canvas_w:

reposition tail

move_x = fish.direction*(fish.size + fish.size/2)

self.canvas.move(fish.tail.shape, move_x, 0)

reposition eye

self.canvas.move(fish.eye.shape,

-fish.direction*fish.size/2, 0)

fish.direction = -fish.direction

