
Objects. Introduction
Lecture 07.01

By Marina Barsky

What is an object?

Real objects vs. software objects

• Real objects in the real
world have

• things that they can
do (actions,
methods)

• things that describe
them (attributes,
properties)

• In programming, we
have the same kind of
thing

What sounds more natural?

• The functionality of real-world objects tends to be tightly
bound up inside the objects themselves

microwave.cook (chicken)

cook (microwave, chicken)

Change of perspective

• So far, we’ve been looking at different ways of organizing
data and actions

• Lists or dictionaries are a way to group variables (data)
together

• Functions are a way to group commands (actions) into a
single unit of code and use it over and over again

• Now we will learn a way of bundling both data and actions
together in a single unit – an object

Modeling a Ball

• Important attributes of a ball

• Important actions of a ball bounce
inflate
move

color
radius
weight
shape

What are attributes (fields)?

• Attributes are all things you know (or can find out) about
the ball

• The ball’s attributes are chunks of data—numbers, strings,
and so on

• They’re just variables that are included inside the object

print (ball.size)

ball.color = 'green'

my_color = ball.color

my_ball.color = your_ball.color

Dot – to show that a
variable is a part of

an object

What are methods?

• Methods are things you can make the object do or that you
can do with an object

• They’re chunks of code that you can call to do something

• Methods are just functions that are included inside the
object

• You can do all the things with methods that you can do with
any other function, including passing arguments and
returning values

ball.bounce()

ball.move()

ball.inflate()

Object = attributes + methods

ball.color = 'green'

ball.shape = 'round'

ball.radius = 20

ball.bounce()

ball.move()

ball.inflate()

Data stored in attribute variables Actions as methods

Creating objects of
the same type (class)

There are two steps in creating
any object

• Make object template – define a
class

• Bake an instance of an object
using the definition of a class as
a blueprint

Step 1: define new type - class
(template, blueprint)

class Ball:

def bounce(self):

if self.direction == "down":

self.direction = "up"

This tells Python we are
making a new type (class)

This is a
method

Step 2: Create an instance (object)
according to the template (class)
my_ball = Ball()

my_ball.direction = "down"

my_ball.bounce()

We can add new
attributes directly
to the object

This will behave according
to the template in class Ball

Big difference: class and instances

Class

Instances

class Ball:

def bounce(self):

if self.direction == "down":

self.direction = "up"

my_ball = Ball()

my_ball.direction = "down"

my_ball.color = "red"

my_ball.radius = 20

print("I just created a ball.")

print("Ball’s diameter is", my_ball.radius*2, "inches")

print("My ball is", my_ball.color)

print("My ball's direction is", my_ball.direction)

print("Now I'm going to bounce the ball")

print()

my_ball.bounce()

print("Now the ball's direction is", my_ball.direction)

Try it out

Initializing an object
• When you create the class definition, you can define a special method

called __init__()

• That code will run whenever a new instance of the class is created. You
can pass arguments to the __init__() method to set up the future object
however you want

class Ball:

def __init__(self, color, radius, direction):

self.color = color

self.radius = radius

self.direction = direction

my_ball = Ball("red", 20, "down")

Here are setup
instructions

This will call __init__

What’s “self”?

• We could use the class (blueprint) to create more than one ball:

class Ball:

def __init__(self, color, radius, direction):

…

def bounce(self):

…

my_ball = Ball("red", 20, "down")

your_ball = Ball("green", 10, "down")

• When we call a method for one of these instances, the method
has to know which instance called it:

• Is it my_ball that needs to bounce, or your_ball?

Self is an instance reference

• Where did the reference to my_ball come from if we did not pass
anything?

• When you call a class method, the information about which
instance called—the instance reference—is automatically passed to
the method using dot notation

my_ball.bounce()

your_ball.bounce()

• The self argument is what tells the method which object called
it

my_ball.bounce() Ball.bounce(my_ball)same as

class Ball:

def bounce(self):

…
self refers to
your_ball instance

Printing the ball

• Default string representation for any new type of objects:

1. where the instance is defined (in __main__, which is the
main part of the program)

2. the class name (Ball)

3. the memory location (the 0x0173D410 part)

<__main__.Ball object at 0x0173D410>

print(my_ball)

We need to redefine (override)
string representation of a Ball
• Special methods are surrounded with double underscores: __init__

• If we implement our own special __str__ method this will override the
default behavior of converting Ball to str

def __str__(self):

msg = "Hi, I'm a {} ball with diameter " \

"of {} inches".format(self.color,self.radius*2)

return msg

print(my_ball)

Converts to str

Default arguments

• If radius is not provided, the default value is 10

• If direction is not provided, the default value is “down”

class Ball:

def __init__(self, color, radius=10,

direction="down"):

self.color = color

self.radius = radius

self.direction = direction

balls = [Ball("red", 20, "down"),

Ball("green", 10),

Ball("blue")]

print(balls)

A list of balls

• We only defined how to convert a separate Ball to str, not
how to make a string from a list of balls

What is radius of
balls[2]?

What is direction
of balls[1]?

[<__main__.Ball object at 0x017D4FB0>,
<__main__.Ball object at 0x017D4FD0>,
<__main__.Ball object at 0x017D4FF0>]

Another special method: __repr__

• To make sure that balls are always printed properly –
whether they are elements of the list or of a dictionary or
anything else – there is another special method __repr__

• __str__ is intended for the user-readable string
representation of an object

• __repr__ is mostly used for debugging and complex nested
objects

Printing list of balls

• Reused method __str__

• We could have implemented completely different __repr__

class Ball:

def __init__(self, color, radius=10,

direction="down"):

def __str__(self):

msg = "Hi, I'm a {} ball with diameter " \

"of {} inches".format(self.color,self.radius*2)

return msg

def __repr__(self):

return self.__str__()

Virtual hotdogs

• Class HotDog

• Attributes:
• cooked_level – a number which shows how long it has been

cooked
• condiments – a list of what is on hotdog, like ketchup,

mustard etc.

• Methods:
• __init__ – initializes hotdog to raw state
• __str__ – string representation of a hotdog
• cook() – cooks hotdog for some period of time
• add_condiment() – adds condiments to the hotdog

Setting it up: __init__

class HotDog():

def __init__(self):

self.cooked_level = 0

self.condiments = []

self.level_to_str = {(0,3):"raw",

(4,5):"medium",

(5,8):"well-done"}

Note the use of tuples
as dictionary keys

Cooking time!

def cook(self, time):

self.cooked_level += time

def add_condiment(self, condiment):

self.condiments.append(condiment)

Print hot dog state

def __str__(self):

state = "charcoal hot dog "

for key,val in self.level_to_str.items():

time_from, time_to = key

if time_from <= self.cooked_level <= time_to:

state = val + " hot dog "

break

s = state

if len(self.condiments) > 0:

s += "with:"

for c in self.condiments:

s += " " + c

return s

Test your hotdog

hot_dog = HotDog()

for i in range(3):

print("Cooking hot dog for 3 more minutes")

hot_dog.cook(3)

print(hot_dog)

print("Now I am going to add some condiments")

hot_dog.add_condiment('mustard')

hot_dog.add_condiment('pickles')

print(hot_dog)

Two ways of changing object state

• There are 2 possible ways of changing cooked level:

• Assign directly:

hot_dog.cooked_level = 5

• Use method to change an attribute:

hot_dog.cook(5)

• If we started with a raw hotdog, the result is the same

• Why did we bother to have a special method if we could do
it directly?

Danger of accessing attributes
directly
• If we were accessing the attributes directly, we could do some

illegal assignments:

hot_dog.cooked_level -= 2

• But you cannot “uncook” the hotdog!

• Using the method, we make sure that our hotdogs behave
logically

• The same for add_condiment: inside the method we can check
that only proper condiments are being added to the hotdog – and
we do not have this opportunity if we would add condiments
directly to the list attribute:

hot_dog.condiments.append("milk")

Data hiding

• In programming terms, restricting the access to an object’s
data so you can only get it or change it by using methods is
called data hiding

• Python doesn’t have any way to enforce data hiding, but
you should write code that follows this rule

• This will protect your data fields (attributes) from illegal
changes

Encapsulation

• Data hiding and protection of object’s data from illegal
changes is a part of a very important principle in OOP:
encapsulation

• You expose methods to the user of your classes through
method interface

• If you later decide to change the internal implementation of
your class, the programs which use your classes would not
need to change

Encapsulate your code under the
stable interface
def add_condiment(self, condiment):

self.condiments.append(condiment)

def add_condiment(self, condiment):

self.condiments[condiment] += 1

print("Now I am going to add some condiments")

hot_dog.add_condiment('mustard')

hot_dog.add_condiment('pickles')

print(hot_dog)

Condiments are
stored in a list

Condiments are stored
in a dictionary

changed to:

• But the main program does not need to change – because
the method interface remains unchanged

Summary: what to know for the
next time

• Classes and objects – what is the difference

• Attributes and methods

• Blueprint for object initialization: Class

• String representation of an object: dunder-str

• Why use data hiding and encapsulation

