Nested functions.
Homework 2

Lecture 03.03
By Marina Barsky

Docstring: tests, type contracts, and
preconditions

Following the Function Design Recipe, write a function that meets this description:

This function returns a string containing a particular word repeated a particular
number of times.

For example, someone should be able to call the function to repeat "Marcia " three
times and the function should return "Marcia Marcia Marcia ", or call the function to
repeat "Buffalo " eight times and have it return "Buffalo Buffalo Buffalo Buffalo
Buffalo Buffalo Buffalo Buffalo ".

Examples
Type Contract and preconditions

Header

Code the Body

1

2

3

4. Description
5

6 Test

Importing functions: 2 ways

This is preferred — so you

import random always know where the
function is coming from
* To use:

random.choice (["rock", "paper", "scissors")

from random import *
* To use:

choice (["rock", "paper", "scissors")

Nested functions

functions that call other functions

How functions work: inside the machine

* When the program reaches the point of function call:

* The calling program suspends execution at the point of
the call

* The parameters that are used by the function get
assigned the values supplied for this call.

* The body of the function is executed.

* Control returns to the point just after where the function
was called.

Functions can call other functions

def f (x):
X = 2*X
return X

def g (x):
X = 2*f(x/3)
return x

def h (x):
X =2%*g(x/2)
return x

#function call
h (6)

Stack — program is loaded, now calling h(x)

def f (x):
X = 2*X
return X

def g (x):
X = 2*f(x/3)
return x

def h (x):
X =2%*g(x/2)
return X

#function call
y =h(6)

e

Stack — h(x) loaded, now calling g(x)

def f (x):
X = 2*X
return X

def g (x):
X = 2*f(x/3)
return x

def h (x):
X =2%*g(x/2)
return x

#function call
y =h(6)

Xx=3

X=6

g(x)

h(x)

X =2%g(x/2)
return x

Stack — g(x) loaded, calling f(x)

def f (x):
X = 2*X
return X

def g (x):
X = 2*f(x/3)
return x

def h (x):
X =2%*g(x/2)
return X

#function call
y =h(6)

x=1

Xx=3

g(x) x = 2*f(x/3)
return x

()
Y x=2%(2)
return X

!

!

5

Stack — f(x) loaded, computing

def f (x):
X = 2*X
return X

def g (x):
X = 2*f(x/3)
return x

def h (x):
X =2%*g(x/2)
return X

#function call
y =h(6)

return x

()
g(x) x = 2%f(x/3)
return x

h(x) X = Z*g(x/Z)
return x

e {

Stack — f(x) returning 2

x=1 f(X)

def f (x): X = 2%*x
X = 2%*x return X
return x
def g (x): X ()
X = 2*f(x/3) g() x = 2*f(x/3)
return X return x
def h (x):
X = 2%g(x/2) h(x e
eturn x () - 252 l
Freturn X

#function call
e yshe)

Stack — f(x) unloaded (exited), computing g(x)

def f (x):
X = 2*X
return X

def g (x):
X = 2*f(x/3)
return x

def h (x):
X =2%*g(x/2)
return X

#function call
y =h(6)

g(x)

h(x) X = 2*;(x/2)
return x !

e §

Stack — g(x) returning 4

def f (x):
X = 2*X
return X

def g (x): O
X = 2*f(x/3) g(x) x = 2*f(x/3)

return X return x

def h (x):
X =2%*g(x/2) h(X)

return x

return x

#function call
y =h(6)

Stack — g(x) exited, computing h(x)

def f (x):
X = 2*X
return X

def g (x):
X = 2*f(x/3)
return x

def h (x):
X =2%*g(x/2)
return x

#function call
y =h(6)

O
X =2%g(x/2)
return x

Stack — h(x) returns 8

def f (x):
X = 2*X
return X

def g (x):
X = 2*f(x/3)
return x

def h (x):
X =2%*g(x/2) h(X)

return x

x =2*g(x/2)
return x x=38

#function call
y =h(6)

Stack — h(x) exited, placing 8 into variabley

def f (x):
X = 2*X
return X

def g (x):
X = 2*f(x/3)
return x

def h (x):
X =2%*g(x/2)
return x

#function call
y =h(6)

Order of execution for nested functions

Function arguments are evaluated from left to right and only
then the function itself is executed

£(g() + 3, h())

Example 1: max of min

e Underline expressions and number them in the order of evaluation

max of min(numl, num2, valuel, value2):
max (min (numl, num2), min(valuel, value2))

Example 2: pow of pow

print (pow (2, pow(pow(2, 1), 2)))

Use case:
function to produce roots of quadratic equations

* A quadratic equation is an equation that could be written as
Ax?2+Bx+C=0

e Our ultimate goal is to write a function solve(A,B,C), which will return
the list of rational roots (if any) of the above equation.

» We are going to perform this task in steps, to exercise nested
function design and function reuse.

Steps

1. Function num_roots(A, C) which returns the number of roots(0, 1,
or 2) according to values of A,B,C

2. Function get_discriminant(A,B,C) which will compute the value of
discriminant

3. Function get_roots(A, B, C) which will returnalistof 1, 2,0r0
roots

Step 1

* num_roots(A,B, C)

* If B2—4ACis equal to 0 = return 1
* [fB2—4ACis>0—> 2
* Else 2 return 0

Step 2. Value of Discriminant: D =VB2 - 4AC

e get_discriminant (A, B, C)

* If num_roots == 0 - return None
* If num_roots==1 - return0
* Else > return (B**2 —-4*A*C)**0.5

Step 3. List of roots:
X, = (-B+D)/(2*A), x, = (-B - D)/(2*A)

* solve(A, B, C)

e D = get_discriminant(A,B,C)
* If D is None = return empty list []
* If D==0 - return—[-B /(2*A)]

* Else - Compute x1, and x2, and return [x1, x2]

Homework 2

Functions and algorithms

Homework 2: a little bit of history

* August 1953 — strange love SALUTATION1
letters appear on the notice SALUTATIONZ,
board at the University of
Manchester’s computer lab

Repeat 5 times

* They are all variations on a
basic syntactic template: —

You are my ADJECTIVE NOUN .

* And the signatory is: “M.U.C.”

(Manchester University
computer) My [ADJECTIVE] NOUN

[ADVERB] VERB
Your [ADJECTIVE] NOUN .

Yours ADVERB,
MUC

Ferranti Mark 1

* The computer * The console

The world’s first general-purpose and commercially available
machine of its kind.

Others used it strictly for numerical calculations: analyzing weapons trajectories or
seeking prime factors of huge numbers

Strachey was the first Al programmer, he taught the machine to play checkers
(“draughts,” in British). If M.U.C/s opponent made too many mistakes, it would print:
“I refuse to waste any more time. Go and play with a human being.”

Combinatorial nature of love

 Strachey: “There are many obvious imperfections in [my algorithm]
(indeed very little thought went into its devising), and the fact that the
vocabulary was largely based on Roget’s Thesaurus lends a very peculiar
flavor to the results.”

* The interesting thing was that a simple setup, using only 70 base words,
could produce a combinatorial explosion of results—on the order of
three hundred billion different love letters.

“Ultimately the software is based on a reductionist position vis-a-vis
love and its expression. Love is regarded as a recombinatory
procedure with recurring elements.”

David Link “Archaeology of Algorithmic Artefacts”

String.format()

* Template = “Dear {}, would you come with me to the party today at
{}. Please bring {} dollars for snacks”

PyCharm

* Time to use real IDE (Integrated Development Environment)

* Download and install PyCharm (Community Edition) for your
operating system:

https://www.jetbrains.com/pycharm/download

https://www.jetbrains.com/pycharm/download/#section=windows

Connect to 3.X version of Python

(previously installed)

File | Settings | Project Interpreter - for Windows and Linux

PyCharm [Preferences | Project Interpreter - for macOS
Ctrl + Alt+S

B settings
[:Ek :I Project: recursivegraphics » Project Interpreter For current project
Appearance & Behavior Project Interpreter: 3.5.4rcl (C:\Users\MGBar \AppData\LocalPrograms \Python \Python 35 python.exe)
Keymap
Editor Package Version Latest
) Flask 0.12.2 0.12.2
Plugins Flask-SQLAlchemy 2.2 2.2
Version Control I Jinja2 2.9.6 2.9.6
i i i MarkupSafe 1.0 1.0
e I <t Aichemy 1.1.13 = 1.2.0b2
Project Interpreter Werkzeug 0.12.2 0.12,2
— - beautifulsoup4 4.6.0 4.6.0
ject Structure dick 6.7 6.7
Build, Execution, Deployment itsdangerous 0,24 0.24
R s = 3.0.0b3
Languages & Frameworks | c\users\mgbar\appdata‘local\programs'python\python35\lib\site-packages 9.0.1
= Tools pygame 1.9.3
\Web Browsers setuptools 23.8.0 = 36.5.0
wheel 0.29.0 =y 0,30.0a0

External Tools

Using PyCharm for docstring tests

A\example_is_vowel.py [PYTHON_COURSE_EXERCISES] - PyCharm

— | guessing_game.py

def

example_is_vowel.py

&)
0
m
v

@ for_all_fluffy.py # for_contains.py @ for_add_underscores.py @ for_count_matches.py

tr —-> hnnl
(S L,;) o ololoni

“ha~lae 1 F ¥ —~ F ol =N ~F 31 1 r ~ 1 a TrOwWe |
1 cneckKks 11T a)J:e_\.fl&rz;t fe‘f S llf}‘\;{ O 185 a vowel.

>>> 1is_vowe

lrue
>>> 1s vowe
Fal -
1 mon
1 if ¢ in "ae
12 return
else:
- return

is_vowel()

its passed: 2

-0ms

Copy Reference
[paste
Paste from History...

Ctrl+Alt+Shift+C
Ctrl+V
Ctrl+Shift+Vv

1('a'")

l (1 b L) Paste Simple Ctrl+Alt+Shift+V
Column Selection Mode Alt+Shift+Insert
Find Usages Alt+F7
Refactor >

. _ Folding >

tour: Go To >

True iene

False

+ Save ‘Doctest is_vowel

Show in Explorer

Open in Terminal
Local History >
Execute Line in Console Alt+Shift+E
Run File in Console

[5¢ Compare with Clipboard
File Encoding

@ Create Gist...

venv\for_add_.

Automatic testing

def is vowel (c):

rmirrmn

(str) —-> bool
Checks 1f a one-character string ¢ 1s a vowel.

-« SPACE after >>>
>>>lls_vowel('a')

True
>>> 1s vowel ('b'")
False

rmirrnmn

if ¢ in "aeiou'":
return True

else:
return False

