
Extending default vocabulary
with functions

Lecture 03.01

By Marina Barsky

What operators (verbs, actions) do we already know?

We can have extended operations on
variables and values with functions:

max_number = max (1,4)

min_in_list = min ([1.5, 5, 10.6])

max_char = max ('Hello world')

What functions exists?

>>> dir(__builtins__)

What does each function do?

>>> help (max)

>>> help (round)

Functions are evaluated from inside out

a = -14

b = 3

c = -4

d = 11

absolute_max = max(abs(a), abs(b), abs(c), abs(d))

min_of_max = min(max(a,b), max(c,d))

max_sum= max(sum(a, b), sum(c, d))

Sorting function

a = [12, 10, 21]

b = sorted(a)

s = 'bath'

t = sorted(s)

Abstraction

• Abstraction is a way of managing complexity

• Each piece of program is an abstraction

• Abstraction contains only important features

• Abstraction hides (encapsulates) complexity and
makes your story easier to read

Enso – abstract symbol for absolute
enlightenment: strength, elegance, the universe,
and mu (the void)

We use abstraction in our language all the
time

Recipe:

• Preheat oven to 320o Fahrenheit

• …

How?

What is
oven?

What is that?

The structured programming paradigm:
daily activities example

Split this list into three blocks of related activities and give each block a
heading

• Get out of bed

• Eat breakfast

• Park the car

• Get dressed

• Get the car out of the garage

• Drive to work

• Find out what your boss wants you to do today

• Feedback to the boss on today’s results.

• Do what the boss wants you to do

Daily activities: 3 sub-programs
Get up

• Get out of bed

• Get dressed

• Eat breakfast

Go to work

• Get the car out of the garage

• Drive to work

• Park the car

Do your job

• Find out what your boss wants you to do today

• Feedback to the boss on today’s results.

• Do what the boss wants you to do

We can work on each part separately

Improve instructions in go to work module:

• Listen to the local traffic and weather report

• Decide whether to go by bus or by car

• If going by car, get the car and drive to work.

• Else walk to the bus station and catch the bus

Other modules are not affected

History: the progress of abstraction I

• The 1950s – Machine code is common. Assembly language
abstracts an underlying computing machine

• The 1960s - “Imperative” languages (FORTRAN, BASIC, C) –
built as an abstraction level upon Assembly. Their primary
abstraction still requires you to think in terms of the
structure of the computer rather than the structure of the
problem you are trying to solve.

History: the progress of abstraction II

• The 1970s - The alternative to modeling the machine is to
model the problem you’re trying to solve.

• Early languages such as LISP and APL chose particular views
of the world (“All problems are ultimately lists” or “All
problems are algorithmic,” respectively).

• PROLOG casts all problems into chains of decisions.

History: the progress of abstraction III

• The 1980s – “modular” languages (Modula-2, ADA) – can
work on each part separately, precursors of modern Object-
oriented languages – Java, Python

defining our own abstractions and teaching
machines how to interpret them

def happy ():

print ('Happy birthday to you!’)

def greeting (name):

print ('Happy birthday, dear ' + name)

We can now rewrite the song using new
abstractions

#now in the program we can call these

functions

happy()

happy()

greeting ('Peter')

happy()

This is an example of using functions as sub-programs (sub-routines)
to make set of instructions modular

How functions look: syntax

def happy ():

print ('Happy birthday to you!’)

def greeting (name):

print ('Happy birthday, dear ' + name)

Reserved
word def

How functions look: syntax

Function
name

def happy ():

print ('Happy birthday to you!’)

def greeting (name):

print ('Happy birthday, dear ' + name)

How functions look: syntax

Function
parameters

def happy ():

print ('Happy birthday to you!’)

def greeting (name):

print ('Happy birthday, dear ' + name)

def happy ():

print ('Happy birthday to you!’)

def greeting (name):

print ('Happy birthday, dear ' + name)

How functions look: syntax

Function

body
(indented)

def greeting (name):

""" (str) -> None

Prints customized greeting by
concatenating name with the constant

>>> greeting ('Ann')

'Happy birthday, dear Ann'

"""

print('Happy birthday, dear ' + name)

All functions should have a docstring

Functions as mathematical concepts
(proper functions)

def f(x):

return x**2

result = f(4)

parameter

return value

calling function f with argument 4

Function design recipe (6 steps)

1. Examples
• What should your function do?
• Type a couple of example calls.
• Pick a name (often a verb or verb phrase)

2. Type Contract
• What are the parameter types?
• What type of value is returned?

3. Header
• Pick meaningful parameter names.

4. Description
• Mention every parameter in your description.
• Describe the return value.

5. Body
• Write the body of your function.

6. Test
• Run the examples.

Step-by-step example

The problem:

The United States measures temperature in Fahrenheit and
Canada measures it in Celsius. When travelling between the
two countries it helps to have a conversion function.

Write a function that converts from Fahrenheit to Celsius.

1. Write examples (inside docstring)

>>> convert_to_celsius(32)

0

>>> convert_to_celsius(212)

100

2. Define parameter and return types

(number) -> number

3. Write function header (name and
parameters)

def convert_to_celsius(fahrenheit):

4. Write function description (in a docstring)

Return the number of Celsius degrees equivalent

to fahrenheit degrees.

We have so far:

def convert_to_celsius(fahrenheit):

"""

(number) -> number

Return the number of Celsius degrees

equivalent to fahrenheit degrees.

>>> convert_to_celsius(32)

0

>>> convert_to_celsius(212)

100

"""

5. Write the body of the function

return (fahrenheit - 32) * 5 / 9

6. Call function to test its correctness using
examples in docstring

convert_to_celsius(32)

convert_to_celsius(212)

Use case

English metric

1 inch = 2.54 cm

1 foot = 12 in.

1 yard = 3 ft.

1 rod = 5(1/2) yd.

1 furlong = 40 rd.

1 mile = 8 fl.

The United States uses the English system of
(length) measurements. The rest of the
world uses the metric system.

So, people who travel abroad and
companies that trade with foreign partners
often need to convert English
measurements to metric ones and vice
versa.

Develop the functions
inches->cm
feet->inches
yards->feet

Then develop the functions
feet->cm
yards->cm

Hint: Reuse functions as much as possible.

