
SQL queries with views
Lecture 03.05
By Marina Barsky

CMPT 321
FALL 2017

Views

• A view is a “virtual table”, a relation defined in terms of the
contents of other tables and views

• Views take very little space to store - the database contains only
the definition of a view, not a copy of all the data that it presents

• In contrast, a relation whose value is really stored in the database
is called a base table

Example

CREATE VIEW DMovies AS

SELECT title, year, length

FROM Movie

WHERE studioName = 'Disney';

Querying a View

• Query a view as if it were a base table.

Examples

SELECT title

FROM DMovies

WHERE year = 1990;

SELECT DISTINCT starName

FROM DMovies, StarsIn

WHERE DMovies.title = StarsIn.movietitle AND DMovies.year
= StarsIn.movieyear;

View on more than one relation

CREATE VIEW MoviesAndStars AS
SELECT Movies.Title asa title, Movies.year as year,

MovieStar.name as star FROM Movies, StarsIn,
MovieStar

WHERE Movie.title= StarsIn.movietitle
AND Movies.year= StarsIn.movieyear
AND MovieStar.name= StarsIn.starname;

SELECT * FROM MoviesAndStars;

SQL queries
with views

movie (title, year, length, incolor, studio, producer_cert)

star (name, address, gender, birthdate)

starsIn (movie_title, movie_year, star_name)

movieexec (name, address, cert, net_worth)

studio (name, president_cert)

1. Find the stars who have worked for every studio.

CREATE VIEW MovieStarView AS

SELECT title, year, studio, star_name

FROM Movie, StarsIn

WHERE Movie.title = StarsIn.movie_title and Movie.Year = Starsin.Movie_year;

SELECT DISTINCT star_name

FROM MovieStarView X

WHERE NOT EXISTS (

SELECT studio

FROM Studio

EXCEPT

SELECT studio

FROM MovieStarView

WHERE star_name = X.star_name);

Checks emptiness of the subquery.

Correlated subquery

2. Find the stars who have worked for Disney but no other studio.
CREATE VIEW MovieStarView AS

SELECT title, year, studioName, starName

FROM Movies, StarsIn

WHERE Movies.title = StarsIn.movieTitle

AND Movies.Year = Starsin.MovieYear;

SELECT starName

FROM MovieStarView X

WHERE X.studioName='Disney' AND NOT EXISTS (

SELECT *

FROM MovieStar

WHERE starName=X.starName AND

studioName<>'Disney'

);

3. Find the stars who have worked for only one studio.
CREATE VIEW MovieStarView AS

SELECT title, year, studioName, starName

FROM Movies, StarsIn

WHERE Movies.title = StarsIn.movieTitle

AND Movies.Year = Starsin.MovieYear;

SELECT starName

FROM MovieStarView X

WHERE NOT EXISTS (

SELECT *

FROM MovieStarView

WHERE starName=X.starName AND

studioName<>X.studioName

);

4. For each star that has more than two movies with
Paramount, find how many movies he/she has with Fox.

CREATE VIEW ParamountStars2 AS

SELECT starName

FROM MovieStarView

WHERE studioName='Paramount'

GROUP BY starName

HAVING COUNT(title)>=2;

CREATE VIEW FoxStars AS

SELECT *

FROM MovieStarView

WHERE studioName='Fox';

SELECT starName, COUNT(title) as countFox

FROM ParamountStars2 NATURAL LEFT OUTER JOIN FoxStars

GROUP BY starName;

5. Find the stars who have co-starred with the same star.

CREATE VIEW costars AS

SELECT X.starname AS star1, Y.starname AS star2

FROM StarsIn X JOIN StarsIn Y USING(title,year)

WHERE X.starname <> Y.starname;

SELECT Z.star1, W.star1

FROM costars Z, costars W

WHERE Z.star2=W.star2 AND Z.star1<W.star1;

star1 star2

A B

A C

D B

costars

star1 star2

A B

A C

D B

Z

star1 star2

A B

A C

D B

W

6. For each pair of co-stars give the number of movies each has
starred in.

The result should be a set of (star1 star2 n1 n2) quadruples, where n1 and n2
are the number of movies that star1 and star2 have starred in, respectively.
Observe that there might be stars with zero movies they have starred in.

CREATE VIEW starMovieCounts AS

SELECT name AS star, COUNT(title) AS moviecount

FROM Stars LEFT OUTER JOIN StarsIn ON name=starname

GROUP BY name;

SELECT C.star1, C.star2, X.moviecount, Y.moviecount

FROM costars C, starMovieCounts X, starMovieCounts Y

WHERE C.star1=X.star AND C.star2=Y.star;

Summary: Views

• Provide modularization abstraction for SQL queries (like a
function in programming languages)

• Limit the degree of exposure of the underlying tables to the
outer world

• Allow to join and simplify multiple tables into a single virtual
table

• Hide the complexity of data: provide logical data
independence

In your program, retrieve data from the view: if the
definition of underlining tables changes, you do not need
to update your code – just re-write the view

