
Design Theory for Relational 
Databases
Self-study material

By Marina Barsky

CMPT 321
FALL 2017

Kent, W. (1983) A Simple Guide to Five Normal Forms in Relational Database Theory

http://www.bkent.net/Doc/simple5.htm


BCNF decomposition: 
formally
Textbook: 3.1 – 3.3



Functional dependencies: 
formal definition
• X → Y is an assertion about a relation R that whenever two 

tuples of R agree on all the attributes X, then they must also 
agree on all attributes in set Y.

• Say “X → Y holds in R.”

• Convention: …, X, Y, Z represent sets of attributes; A, B, C,… 
represent single attributes.

• Convention: no set formers in sets of attributes, just ABC, 
rather than {A,B,C}.



Formal example of FDs

• AC → B

A B C

5 3 2

5 4 3

5 5 2

Does this instance violate AC → B? 



Formal example of FDs

• AC → B

A B C

5 3 2

5 4 3

5 5 2

Does this instance violate AC → B? 



Keys: formal definition

• K is a superkey for relation R if K functionally determines 
all of R

• K is a key for R if K is a superkey, but no proper subset of K
is a superkey



Formal example of keys

• Suppose R is a relation with attributes A, B, C

• Tell how many superkeys R has if the only key is A?



Formal example of keys

• Suppose R is a relation with attributes A, B, C

• Tell how many superkeys R has if the only key is A?

• Superkeys:

• A

• AB

• ABC

• AC



Inferring FD’s

• We are given FD’s X1 → A1, X2 → A2,…, Xn → An , and we want 
to know whether an FD Y → B must hold in any relation that 
satisfies the given FD’s.

• Example: If A → B and B → C hold, does A → C hold? 



Inference rules

• Splitting rule

• Transitive rule

• Trivial FDs

• Closure



Splitting (and combining) rule

• Splitting right sides of FD’s:

• X → A1A2…An holds for R precisely when 

each of X → A1, X → A2,…, X → An hold for R.

• Combining right sides of FD’s:

• when X → A1, X → A2,…, X → An hold

then X → A1A2…An holds

• There is no splitting (combining) rule for left sides!

• We’ll generally express FD’s with singleton right sides



Splitting rule reasoning

• Suppose we have A → BC

• This is an assertion that if 2 tuples agree on A, they also 
agree in all B and C

• That means that they agree in B and they agree in C: A → B, 
A → C

(a, b, c)
(a, b1, c1)
(a, b2, c2)

(a, b, c)
(a, b, c)
(a, b, c)

A → BC

(a, b, c)
(a, b, c1)
(a, b, c2)

(a, b, c)
(a, b1, c)
(a, b2, c)

A → B A → C



Inference rules

• Splitting rule

• Transitive rule

• Trivial FDs

• Closure



Transitive rule

• If X → Y and Y → Z then X → Z 

(a, b, c)
(a, b1, c1)
(a, b2, c2)

A → B

(a, b, c)
(a, b, c1)
(a, b, c2)

A → B

(a, b, c)
(a, b, c1)
(a, b, c2)

B → C

(a, b, c)
(a, b, c)
(a, b, c)

B → C

(a, b, c)
(a, b, c)
(a, b, c)

A → C



Inference rules

• Splitting rule

• Transitive rule

• Trivial FDs

• Closure



Trivial FD’s

• If X → Y and Y ⊆ X then X → Y is called a trivial dependency

• Explanation: All tuples that agree in all of X surely agree in a 
subset of them

• Example: AB → B is a trivial dependency 



Inference Test

• To test if Y → B, start by assuming two tuples agree in all 
attributes of Y

• Use the given FD’s to infer that these tuples must also agree 
in certain other attributes.

• If B is one of these attributes, then Y → B is true.

• Otherwise, the two tuples, with any forced equalities, 
form a two-tuple relation that proves Y → B does not 
follow from the given FD’s.



Inference rules

• Splitting rule

• Transitive rule

• Trivial FDs

• Closure



Closure for a set of attributes Y

• The closure of a set Φ of functional dependencies is the set 
of all functional dependencies logically implied by Φ

• The closure for an attribute set Y is a set of all implied 
dependencies with Y in the left-hand side

• The closure of Y is denoted Y +.



Computing closure for a set of 
attributes Y
• Convert all FDs to LHS-singleton FD’s using splitting rule

• Basis: Y + = Y.

• Induction: Look for an FD’s left side X that is a subset of the 
current Y +.  If the FD is X → A, add A to Y +.

Y+

new Y+

X A



Example: computing closure

• Given:

R(A,B,C,D) with FD’s AB → C, B → D, CD → A, AD → B. 

• Computing closure for AB:

{AB}+ = {ABC}  (from AB → C)

{ABC}+ = {ABCD}  (from B → D)

• Answer: 

{AB}+ = {ABCD}



Example: computing closure

• Given:

R(A,B,C,D) with FD’s AB → C, B → D, CD → A, AD → B. 

• Computing closure for B:

{B}+ = {BD}  (from B → D)

• Answer: 

{B}+ = {BD}



Example: computing closure

• Given:

R(A,B,C,D) with FD’s AB → C, B → D, CD → A, AD → B. 

• Computing closure for CD:

{CD}+ = {CDA}  (from CD → A)

{CDA}+={CDAB} (from AD → B)

• Answer: 

{CD}+ = {ABCD}



Example: computing closure

• Given:

R(A,B,C,D) with FD’s AB → C, B → D, CD → A, AD → B. 

• Computing closure for AD:

{AD}+ = {ADB}  (from AD → B)

{ADB}+={ADBC} (from AB → C)

• Answer: 

{AD}+ = {ABCD}



Why do we need to compute 
closure
• By computing closure for every possible set of attributes we 

obtain a full exhaustive set of FD’s – both declared and 
implied

• Closure has multiple applications



Using closure to test for an FD

• Suppose R(A,B,C,D,E,F) and the the FD's are

ABC, BCAD, DE, and CFB

• We wish to test whether ABD follows from the set of 
FD's?

• We compute {A,B}+ which is {A,B,C,D,E}.

• Since D is a member of the closure, we imply ABD



Using closure to test for an FD

• Consider the relation R(A, B, C, D, E) and the set of FD’s S1 = 
{AB->C, AE->D, D->B}

• Which of the following assumptions does not follow from S1

1. S2={AD->C}

2. S2={AD->C, AE->B}

3. S2 = {ABC->D, D->B}

4. S2 = {ADE->BC}



Using closure to test for a key

One way of testing if a set of attributes, let’s say A,  is a key, is:

1. Find it’s closure A+.

2. Make sure that it contains all attributes of R.

3. Make sure that you cannot create a smaller set, let’s say 
A’, by removing one or more attributes from A, that has 
the property 2.



Using closure to compute all 
superkeys
• Given:

R(A,B,C,D) with FD’s AB → C, B → D, CD → A, AD → B. 

{AB}+ = {ABCD}

{B}+ = {BD}

{CD}+ = {ABCD}

{AD}+ = {ABCD}

{AB}, {CD}, {AD} are superkeys



Using superkeys for identifying 
candidate keys
R(A,B,C,D) with FD’s AB → C, B → D, CD → A, AD → B. 

{AB}, {CD}, {AD} are superkeys

Can A be a key?

{A}+ = {A} – no

Can B be a key?

{B}+ = {BD} – no

{AB} is a key – minimal superkey

Analogous tests show that {CD} and {AD} are also keys



Boyce-Codd Normal Form: 
formal definition

• Boyce-Codd Normal Form (BCNF): simple condition 
under which all the anomalies of 2NF, 3NF and 
BCNF can be guaranteed not to exist. 

• A relation is in BCNF if: 
Whenever there is a nontrivial dependency 

A1A2…AnB1B2…Bm

for R, it must be the case that 

{A1 , A2 , … , An} is a superkey for R.



One more time: relation is in 
BCNF when
whenever X  Y is a nontrivial FD that holds in R, 

X is a superkey

• Remember: nontrivial means Y is not contained in X.

• Remember, a superkey is any superset of a key (not 
necessarily a proper superset).



Example BBD

Beers(name, manf, manfAddr)

• FD’s: name  manf,   manf  manfAddr

• Only key is {name} .

• name  manf - does not violate BCNF

• manf  manfAddr - violation



Decomposition into BCNF

• Find a non-trivial FD A1A2…An  B1B2…Bm that violates 
BCNF, i.e. A1A2…An isn’t a superkey. 

• Decompose the relation into two overlapping relations: 

• One is all the attributes involved in the violating 
dependency and 

• the other is the left side of the violating FD and all the 
other attributes not involved in the violating FD 

• By repeatedly, choosing suitable decompositions, we can 
break any relation schema into a collection of smaller 
relations, each in BCNF.



BCNF decomposition algorithm: 
step 1

• Given: relation R with FD’s F

• Look among the given FD’s for a BCNF violation X  Y

• Compute X +.

• Not all attributes, or else X is a superkey



BCNF decomposition algorithm: 
step 2
• Replace R by relations with schemas:

1. R1 = X +

2. R2 = R – (X + – X )

R-X + X X +-X

R2

R1

R



BCNF decomposition algorithm: 
step 3
• Identify all new FD’s in R1 and R2

• For each R1 and R2 – if any dependency violates BCNF - go 
to step 1

• Until no more BCNF violations 



Formal Example 1/5

• Given R(A,B,C,D) with AB  C, C  D, and D  A

• Indicate all BCNF violations

{AB}+={ABCD}  - not a violation, {AB} is (super)key

C+ = {CDA} – violation

D+ = {DA} - violation



Formal Example 2/5

• Given R(A,B,C,D) with AB  C, C  D, and D  A

C+ = {CDA} – violation

D+ = {DA} – violation

• Decompose into relations that are in BCNF

• Variant 1:

R1 (C, D, A}

R2 (B, C)



Formal Example 3/5

• Given R(A,B,C,D) with AB  C, C  D, and D  A

C+ = {CDA} – violation

D+ = {DA} – violation

• Decompose into relations that are in BCNF

• Variant 2:

R1 (D, A}

R2 (B, C, D)



Formal example 4/5

• R(A,B,C,D) with AB  C, C  D, and D  A

R1 (C, D, A}

R2 (B, C)

• Should we stop? No, we need to test R1 and R2 for BCNF 
violations

• Which FD’s do we have in R1? 

C  D, and D  A

C+ = {CDA} – not a violation

D+ = {DA} - violation



Formal example 5/5

• R(A,B,C,D) with AB  C, C  D, and D  A

R1 (C, D, A}

R2 (B, C)

• Decomposing R1 with C  D, and D  A

D+ = {DA} – violation

R1.1 (D,A)

R1.2 (C, D)



Final result

• R(A,B,C,D) with AB  C, C  D, and D  A

• Decomposed into:

R2 (B, C)

R1.1 (D,A)

R1.2 (C, D)

• Should we decompose any further? 

• No, because every relation with 2 attributes is automatically 
in BCNF



Every relation with 2 attributes is 
in BCNF
• R (A, B)

3 cases:

• There are no non-trivial FD’s

No violations

• A  B holds

A is the key – no violations

• B  A holds

B is the key no violations



Desired properties of 
decompositions

Textbook: 3.4 – 3.5



We expect that after decomposition

• No anomalies and redundancies

• We can recover the original relation from the tuples in its 
decompositions

• We can ensure that after reconstructing the original relation 
from the decompositions, the original FD's hold



Desired properties of normalization: 
after decomposition

• No redundancies and anomalies

• Recoverability of information

• Preservation of original FD’s 



Recovering Information from a 
decomposition by join
• We have the relation R(A, B, C) and B C holds

Then we decompose R into R1 and R2 as follows:

Joining the two would get the R back. 

A B C

a b c

A B

a b

B C

b c



Recovering Information from a 
decomposition by join: 
lossless join
• Getting the tuples we started back is not enough to show that the 

original relation R is truly represented by the decomposition. 

Then we decompose R into R1 and R2 as follows:

A B C

a b c

a1 b c1

A B

a b

a1 b

B C

b c

b c1

We have the relation R(A, B, C) 
and B C holds



Recovering Information from a 
decomposition by join: 
lossless join
• Getting the tuples we started back is not enough to show that the 

original relation R is truly represented by the decomposition. 

Then we decompose R into R1 and R2 as follows:

A B C

a b c

a1 b c1

A B

a b

a1 b

B C

b c

Because we decomposed along B C, 
we can conclude that c1=c  are the same 
so really there is only one tuple in R2

We have the relation R(A, B, C) 
and B C holds



Recovering Information from a 
non-BCNF decomposition: 
lossy join 
• Note that the FD should exist, otherwise the join wouldn't reconstruct 

the original relation

• Example: we have the relation R(A, B, C) but neither B  A nor B C 
holds. 

Then we decompose R into R1 and R2 as follows:

A B C

a b c

a1 b c1

A B

a b

a1 b

B C

b c

b c1



• Since both R1 and R2 share the same attribute B, if we natural join 
them, we'll get:

• We got two bogus tuples, (a, b, c1) and (a1, b, c), which were not in the 
original relation

A B C

a b c

a b c1

a1 b c

a1 b c1

A B

a b

a1 b

B C

b c

b c1
⋈ =

A B C

a b c

a1 b c1

Recovering Information from a 
non-BCNF decomposition: 
lossy join 



Testing for a lossless Join

• If we project R onto R1, R2,…, Rk , can we recover R by 
rejoining?

• Any original tuple in R surely can be recovered from its 
projected fragments.

• So the only question is: when we rejoin, do we ever get 
back something we didn’t have originally?



Chase test for lossless join

• An organized way of proving that any tuple t in R1⋈ R2⋈ … 
Rk is in the original relation R

• We construct an example of the original relation in a special 
way, representing the decompositions by leaving the 
corresponding values unsubscribed 

• This representation is called a Tableau (example on the next 
page)



Example: Tableau

• Relation R(A, B, C, D) 

• Decomposed into:

R1 (A,D)

R2 (A, C)

R3 (B, C, D)

A B C D

a b1 c1 d

a b2 c d2

a3 b c d

Tuple t = (a, b, c, d)

This row is a test case for R1(A,D). So we 
leave a and d unsubscribed, and label b1 
and c1 as arbitrary values in row 1



Example: Tableau

• Relation R(A, B, C, D) 

• Decomposed into:

R1 (A,D)

R2 (A, C)

R3 (B, C, D)

A B C D

a b1 c1 d

a b2 c d2

a3 b c d

Tuple t = (a, b, c, d)

This row is a test case for R2(A,C). So we 
leave a and c unsubscribed, and label b2 
and d2 as arbitrary values in row 2



Example: Tableau

• Relation R(A, B, C, D) 

• Decomposed into:

R1 (A,D)

R2 (A, C)

R3 (B, C, D)

A B C D

a b1 c1 d

a b2 c d2

a3 b c d

Tuple t = (a, b, c, d)

This row is a test case for R3(B,C,D). So 
we leave b, c, and d unsubscribed, and 
label a3 as arbitrary value in row 3



Goal: show that after project and 
join no new bogus tuples
• We “chase” the tableau applying FD’s one-by-one

• Relation R(A, B, C, D) 

• FD’s: 

A B

B  C

CD  A

A B C D

a b1 c1 d

a b2 c d2

a3 b c d

?

Tableau

A B C D

a b1 c1 d

a b2 c d2

a3 b c d
Project and join



Chase test 1/4

• Relation R(A, B, C, D) 

• FD’s: 

A B

B  C

CD  A

A B C D

a b1 c1 d

a b2 c d2

a3 b c d

A B C D

a b1 c1 d

a b1 c d2

a3 b c d



Chase test 2/4

• Relation R(A, B, C, D) 

• FD’s: 

A B

B  C

CD  A

A B C D

a b1 c1 d

a b2 c d2

a3 b c d

A B C D

a b1 c1 d

a b1 c d2

a3 b c d

A B C D

a b1 c d

a b1 c d2

a3 b c d



Chase test 3/4

• Relation R(A, B, C, D) 

• FD’s: 

A B

B  C

CD  A

A B C D

a b1 c1 d

a b2 c d2

a3 b c d

A B C D

a b1 c1 d

a b1 c d2

a3 b c d

A B C D

a b1 c d

a b1 c d2

a b c d

A B C D

a b1 c d

a b1 c d2

a3 b c d



Chase test: conclusion

• Relation R(A, B, C, D) 

• FD’s: 

A B

B  C

CD  A

A B C D

a b1 c1 d

a b2 c d2

a3 b c d

A B C D

a b1 c1 d

a b1 c d2

a3 b c d

A B C D

a b1 c d

a b1 c d2

a b c d

A B C D

a b1 c d

a b1 c d2

a3 b c d

Once we have an entire row 
unsubscribed, we know that the 
decomposition is lossless – chase 
test is complete



Chase test: conclusion

• Relation R(A, B, C, D) 

• FD’s: 

A B

B  C

CD  A

A B C D

a b1 c1 d

a b2 c d2

a3 b c d

A B C D

a b1 c1 d

a b1 c d2

a3 b c d

A B C D

a b1 c d

a b1 c d2

a b c d

A B C D

a b1 c d

a b1 c d2

a3 b c d

If you project this relation onto R1 (A,D), R2
(A, C), and R3 (B, C, D), and then join, you 
will get exactly the same original relation 
(you can check)



Chase test: conclusion

• Relation R(A, B, C, D) 

• FD’s: 

A B

B  C

CD  A

A B C D

a b1 c1 d

a b2 c d2

a3 b c d

A B C D

a b1 c1 d

a b1 c d2

a3 b c d

A B C D

a b1 c d

a b1 c d2

a b c d

A B C D

a b1 c d

a b1 c d2

a3 b c d

The decomposition into R1 (A,D), R2 
(A, C), R3 (B, C, D) is a lossless
decomposition



Chase test: another example

• Suppose we have relation R(A,B,C,D) 
with FD BAD

• We have decomposed into 

R1(A,B), R2(B,C), R3(C,D) 

A B C D

a b c1 d1

a2 b c d2

a3 b3 c d

A B C D

a b c1 d1

a b c d1

a3 b3 c d

If you now project and join back, 
you will get bogus tuples, for 
example (a3, b3, c, d1) which 
was not in the original relation

The decomposition into R1{A,B}, 
R2{B,C}, R3{C,D} is a lossy
decomposition



Summary of the “Chase”

1. If two rows agree in the left side of a FD, make their right 
sides agree too.

2. Always replace a subscripted symbol by the 
corresponding unsubscripted one, if possible.

3. If we ever get an unsubscripted row, we know any tuple 
in the project-join is in the original (the join is lossless).

4. Otherwise, the final tableau is a counterexample.



Desired properties of normalization: 
after decomposition

• No redundancies and anomalies

• Recoverability of information

• Preservation of original FD’s 



Preservation of original FD’s

• Most BCNF decompositions preserve original FD’s

• There are special cases when the original relation cannot be 
decomposed into BCNF and preserve original FD’s 



BCNF decomposition which does not 
preserve FD’s
• There is one structure of FD’s that causes trouble when we 

decompose.

AB  C and C  B

• There are two keys, {A,B} and {A,C}

• C  B is a BCNF violation, so we must decompose into AC, 
BC

• The difference here that a violating FD C  B has B in RHS, 
and B is a part of a primary key 

• An attribute that is a part of some key is called a prime



Example: BCNF gone wrong

• Given R (client, bank, banker) with FD’s:

{client, bank}  banker - {client, bank}  is the key

banker  bank – violation

• We decompose into

R1 (banker, bank)

R2 (client, banker)

• However the original FD {client, bank}  banker is lost in 
this decomposition!



Example continued: at the 
moment of decomposition
• R (client, bank, banker)

• FD’s:

{client, bank}  banker

banker  bank

• Decomposition:

R1 (banker, bank)

R2 (client, banker)

R

client bank banker

A 1 X

A 2 Y

B 1 X

R1

banker bank

X 1

Y 2

{client, bank}  banker
banker  bank

R1

client banker

A X

A Y

B X

banker  bank No FD’s



Example continued: lossless 
decomposition

R

client bank banker

A 1 X

A 2 Y

B 1 X

R1

banker bank

X 1

Y 2

{client, bank}  banker
banker  bank

R2

client banker

A X

A Y

B X

banker  bank
No FD’s

⋈

The decomposition is 
lossless – requirement 
2 is satisfied



Example continued: no original 
constraint {client, bank}  banker

R1

banker bank

X 1

Y 1

R2

client banker

A X

A Y

B X

banker  bank
No FD’s

The only requirement is that 
banker uniquely identifies 
bank

Now we can insert into R1 and R2 without the original 
constraints, and that will allow to insert invalid values



Example continued: no original 
constraint {client, bank}  banker

R

client bank banker

A 1 X

A 1 Y

B 1 X

R1

banker bank

X 1

Y 1

{client, bank}  banker
banker  bank

R2

client banker

A X

A Y

B X

banker  bank
No FD’s

⋈

Invalid join! Tuple (A, 1, Y) 
should have been 
prevented by the original 
FD {client, bank}  banker



Another example – zip code

R (city, street, zipcode)

• FD’s:

{city, street}  zipcode

zipcode  city

R

city street zipcode

A X 10

B X 20

A Y 11

B Y 20

R1

zipcode city

10 A

20 B

11 A

R2

street zipcode

X 10

X 20

Y 11

Y 20

It seems that we can 
still recover the 
original by join



Another example – concluded

R

city street zipcode

A X 10

A X 20

A Y 11

B Y 20

R1

zipcode city

10 A

20 A

11 A

R2

street zipcode

X 10

X 20

Y 11

Y 20

But we are now free 
to enter invalid 
values into R1 and R2 
because the original 
FD {city, street} 
zipcode is lost!

⋈



Relationship between normal 
forms

UNF

1 NF

2 NF

3 NF

BCNF



Relaxing normalization requirements: 
3NF

• 3rd Normal Form (3NF) modifies the BCNF condition so we 
do not have to decompose in this problematic situation

• An attribute is prime if it is a member of any key.

• X  A violates 3NF if and only if X is not a superkey, and also 
A is not prime



Example: 3NF

• In our situation with FD’s AB  C and C  B, we have key 
AB

• Thus A and B are each prime.

• Although C  B violates BCNF, it does not violate 3NF

• So no decomposition is performed, and all the original FD’s 
are preserved



Desired properties of normalization: 
after decomposition

• No redundancies and anomalies

• Recoverability of information

• Preservation of original FD’s 
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Multivalued Dependencies &
Fourth Normal Form (4NF)

Textbook: 3.6 – 3.7



A New Form of Redundancy

• Multivalued dependencies (MVD’s) express a condition 
among tuples of a relation that exists when the relation is 
trying to represent more than one many-many relationship.

• Then certain attributes become independent of one 
another, and their values must appear in all combinations.



Example
Drinkers (name, addr, phones, beersLiked)

• A drinker’s phones are independent of the beers they like.

• Thus, each of a drinker’s phones appears with each of the 
beers they like in all combinations.

• If a drinker has 3 phones and likes 10 beers, then the 
drinker has 30 tuples

• where each phone is repeated 10 times and each beer 3 
times

• This repetition is unlike redundancy due to FD’s, of which 
name->addr is the only one.



Tuples Implied by Independence

If we have tuples:

name addr phones  beersLiked
sue a p1 b1
sue a p2 b2

sue a p2 b1
sue a p1 b2

Then these tuples must also be in the relation:



Definition of MVD

• A multivalued dependency (MVD)  X ->->Y is an assertion 
that if two tuples of a relation agree on all the attributes of 
X, then their components in the set of attributes Y may be 
swapped, and the result will be two tuples that are also in 
the relation.



Example

Drinkers (name, addr, phones, beersLiked)

FD: name -> addr

MVD’s: name ->-> phones

name ->-> beersLiked

• Key is 

• {name, phones, beersLiked}.

• Which dependencies violate 4NF ? 

• All 



Example, Continued
• Decompose using name -> addr:

1. Drinkers1 (name, addr)

▪ In 4NF, only dependency is name -> addr.

2. Drinkers2(name, phones, beersLiked)

▪ Not in 4NF.  MVD’s name ->-> phones and name ->-> 
beersLiked apply.  

▪ Key? 
▪ No FDs, so all three attributes form the key.



Example: Decompose Drinkers2

• Either MVD name ->-> phones or  name ->-> beersLiked tells 
us to decompose to:

• Drinkers3(name, phones)

• Drinkers4(name, beersLiked)



Fourth Normal Form

• The redundancy that comes from MVD’s is not removable 
by putting the database schema in BCNF.

• There is a stronger normal form, called 4NF, that (intuitively) 
treats MVD’s as FD’s when it comes to decomposition, but 
not when determining keys of the relation.



4NF Definition

• A relation R is in 4NF if whenever  X ->->Y is a nontrivial 
MVD, then X is a superkey.

• Nontrivial means that:
1. Y is not a subset of X, and

2. X and Y are not, together, all the attributes.

• Note that the definition of “superkey” still depends on 
FD’s only.



BCNF Versus 4NF

• Remember that every FD X ->Y is also an MVD, X ->->Y.

• Thus, if R is in 4NF, it is certainly in BCNF.

• Because any BCNF violation is a 4NF violation.

• But R could be in BCNF and not 4NF, because MVD’s are 
“invisible” to BCNF.



Decomposition and 4NF

• If X ->->Y is a 4NF violation for relation R, we can 
decompose R using the same technique as for BCNF.

1. XY is one of the decomposed relations.

2. All but Y – X is the other.



Example

Drinkers (name, areaCode, phone, beersLiked, manf)

• A drinker can have several phones, with the number divided 
between areaCode and phone (last 7 digits).

• A drinker can like several beers, each with its own 
manufacturer.



Example, Continued

• Since the areaCode-phone combinations for a drinker are 
independent of the beersLiked-manf combinations, we 
expect that the following MVD’s hold:

name ->-> areaCode phone

name ->-> beersLiked manf



Example Data

Here is possible data satisfying these MVD’s:

name areaCode phone beersLiked manf
Sue 650 555-1111 Bud A.B.
Sue 650 555-1111 WickedAle Pete’s
Sue 415 555-9999 Bud A.B.
Sue 415 555-9999 WickedAle Pete’s



Another Example



Relationships Among Normal Forms

UNF

1 NF2 NF3 NFBCNF4NF


