
Transactions
Lecture 05.04

By Marina Barsky

CMPT 321
FALL 2017

Integrity or correctness of data

We would like data to be “accurate” or “correct” at all times

Name

White
Green
Gray

Age

52
3421

1

EMP table

Integrity or consistency constraints

• Predicates that data must satisfy

For example:

- x is key of relation R

- Domain(x) = {Red, Blue, Green}

- no employee should make more than twice the average
salary

Definition:

• Consistent state: satisfies all constraints

• Consistent DB: DB in consistent state

Integrity constraints may not capture
“full correctness”

Implicit (business) constraints:

• When salary is updated,

new salary > old salary

• When account record is deleted,

balance = 0

Observation:
DB cannot be consistent always

Example: a1 + a2 +…. an = TOT (constraint)

Deposit $100 in a2: a2  a2 + 100

TOT  TOT + 100

.

.

50

.

.

1000

.

.

150

.

.

1000

.

.

150

.

.

1100

a2

TOT

Transaction: collection of actions that
bring DB from one consistent state to
another

Consistent DB Consistent DB’T

If T starts with consistent state + T executes in isolation

T leaves consistent state

Inconsistent DB

Concurrent transactions

• In production environments, it is unlikely that we can limit our

system to just one user at a time.

• Consequently, it is possible for multiple queries to be

submitted at approximately the same time.

• If all of the queries were very small (i.e., in terms of time), we

could probably just execute them serially, on a first-come-first-

served basis.

SERIALLY – ONE AFTER ANOTHER

Queries are executed
“simultaneously”

• However, many queries are both complex and time

consuming.

• Executing these queries would make other queries wait a

long time for a chance to execute.

• Disk usage can be optimized for several queries running in

parallel

• So, in practice, the DBMS may be running many different

queries at about the same time.

INTERLEAVING QUERY PROCESSING

Concurrent Transactions

• Unlike operating systems, which support interaction of
processes, a DMBS needs to keep processes from
troublesome interactions.

• Even when there is no “failure”, several transactions can
interact to turn a
consistent state

into an
inconsistent state.

• Before withdrawing money, each needs to check if the balance is sufficient

• Initially there is 100$ on the account

Ryan Monica____________________

READ(X, b)

b=100

READ(X, c)

c = 100

c - = 50

WRITE (X, c)

b - = 100

WRITE (X, Ryan)

Monica: thinks
50 $ left

Ryan: thinks
0 $ left

In fact, the withdrawn amount is 150$

Example: two people - one bank
account

• Before withdrawing money, each needs to check if the balance is sufficient

• Initially there is 100$ on the account

Ryan Monica____________________

READ(X, b)

b=100

READ(X, c)

c = 100

c - = 50

WRITE (X, c)

b - = 100

WRITE (X, b)

The problem is that the reading and writing operations should be
performed as one transaction, their combination should be atomic

Example: two people - one bank
account

Transaction

• DBMS groups your SQL statements into transactions.

• The transaction is the atomic unit of execution of database

operations

• By default, each query or DML statement is a transaction

• User can group multiple SQL statements into a single

transaction

Transactions with SQL

START TRANSACTION; (BEGIN;)

…SQL statements

COMMIT; (END;)

End of a transaction

• The transaction ends when one of the following occurs:

• A COMMIT or ROLLBACK are issued

• A DDL (CREATE, ALTER, DROP …) or DCL (GRANT, REVOKE) statement

is issued

• A user properly exits (COMMIT)

• System crashes (ROLLBACK)

COMMIT and ROLLBACK

• The SQL statement COMMIT causes a transaction to
complete.
• Its database modifications are now permanent in the

database.

• The SQL statement ROLLBACK also causes the transaction to
end, but by aborting.
• No effects on the database.

• Failures like division by 0 or a constraint violation can also
cause rollback, even if the programmer did not request it.

Banking example: DB terminal

BEGIN;

SELECT balance

FROM accounts

WHERE

account_name = "Monica and Ryan";

UPDATE accounts

SET balance = balance – 100

WHERE

account_name = "Monica and Ryan";

COMMIT;

BEGIN;

SELECT balance

FROM accounts

WHERE

account_name = "Monica and Ryan";

UPDATE accounts

SET balance = balance – 50

WHERE

account_name = "Monica and Ryan";

COMMIT;

Failure – constraint violated

Assuming we defined a CHECK constraint on balance >=0

Ryan Monica

Transaction should have ACID

• Atomicity: Whole transaction or none is done.

• Consistency: Database constraints preserved. Transaction,
executed completely, takes database from one consistent
state to another

• Isolation: It appears to the user as if only one process
executes at a time.

• That is, even though actions of several transactions
might be interleaved, the net effect is identical to
executing all transactions one after another in some
serial order.

• Durability: Effects of a process survive a crash.

