CMPT 321
FALL 2017

Transactions

Lecture 05.04
By Marina Barsky

Integrity or correctness of data

We would like data to be “accurate” or “correct” at all times

EMP table
Name | Age
White | 52
Green (3421
Gray 1

Integrity or consistency constraints

* Predicates that data must satisfy
For example:

- X is key of relation R

- Domain(x) = {Red, Blue, Green}

- no employee should make more than twice the average
salary

Definition:

e Consistent state: satisfies all constraints

 Consistent DB: DB in consistent state

Integrity constraints may not capture
“tull correctness”

Implicit (business) constraints:
 When salary is updated,

new salary > old salary
 When account record is deleted,

balance =0

Observation:
DB cannot be consistent always

Example: al + a2 +.... an = TOT (constraint)
Deposit $100 in a2: a2 « a2+100
TOT <« TOT + 100

a2 50 150 | 150

TOT 1000 1000 1100

Transaction: collection of actions that
bring DB from one consistent state to
another

ConsistentDB)—— T Consistent DB’

Inconsistent DB

If T starts with consistent state + T executes in isolation

=T leaves consistent state

Concurrent transactions

* In production environments, it is unlikely that we can limit our
system to just one user at a time.
* Consequently, it is possible for multiple queries to be
submitted at approximately the same time.

* If all of the queries were very small (i.e., in terms of time), we
could probably just execute them serially, on a first-come-first-

served basis.

SERIALLY — ONE AFTER ANOTHER

Queries are executed
“simultaneously”

* However, many queries are both complex and time
consuming.
e Executing these queries would make other queries wait a
long time for a chance to execute.
* Disk usage can be optimized for several queries running in

parallel
* So, in practice, the DBMS may be running many different
gueries at about the same time.

INTERLEAVING QUERY PROCESSING

Concurrent Transactions

* Unlike operating systems, which support interaction of
processes, a DMBS needs to keep processes from
troublesome interactions.

 Even when there is no “failure”, several transactions can
interact to turn a
consistent state
into an
inconsistent state.

Example: two people - one bank
account

e Before withdrawing money, each needs to check if the balance is sufficient
e Initially there is 100S on the account

Ryan Monica
READ(X, b)
b=100
READ(X, c)
c=100
c-=50 Monica: thinks
WRITE (X, c) 50 S left
b-=100
Ryan: thinks = WRITE (X, Ryan)

0S left

In fact, the withdrawn amount is 1505

Example: two people - one bank
account

e Before withdrawing money, each needs to check if the balance is sufficient
e Initially there is 100S on the account

Ryan Monica

READ(X, b)

b=100
READ(X, c)
c=100
c-=50
WRITE (X, c)

b-=100

WRITE (X, b)

The problem is that the reading and writing operations should be
performed as one transaction, their combination should be atomic

Transaction

* DBMS groups your SQL statements into transactions.

 The transaction is the atomic unit of execution of database
operations

» By default, each query or DML statement is a transaction

e User can group multiple SQL statements into a single
transaction

Transactions with SQL

START TRANSACTION; (BEGIN;)
..SQL statements

COMMIT; (END;)

End of a transaction

* The transaction ends when one of the following occurs:
e ACOMMIT or ROLLBACK are issued

A DDL (CREATE, ALTER, DROP ...) or DCL (GRANT, REVOKE) statement
is issued

* A user properly exits (COMMIT)
e System crashes (ROLLBACK)

COMMIT and ROLLBACK

 The SQL statement COMMIT causes a transaction to
complete.
* |ts database modifications are now permanent in the
database.

* The SQL statement ROLLBACK also causes the transaction to
end, but by aborting.
* No effects on the database.

* Failures like division by 0 or a constraint violation can also
cause rollback, even if the programmer did not request it.

Banking example: DB terminal

Assuming we defined a CHECK constraint on balance >=0

Ryan
BEGIN;

SELECT balance
FROM accounts
WHERE

account_name = "Monica and Ryan";

UPDATE accounts
SET balance = balance — 100
WHERE

account_name = "Monica and Ryan";

COMMIT;

Monica
BEGIN;

SELECT balance
FROM accounts
WHERE
account_name = "Monica and Ryan";
UPDATE accounts

SET balance = balance — 50
WHERE

account_name = "Monica and Ryan";
COMMIT;

Failure — constraint violated

Transaction should have ACID

e Atomicity: Whole transaction or none is done.

e Consistency: Database constraints preserved. Transaction,
executed completely, takes database from one consistent
state to another

* |solation: It appears to the user as if only one process
executes at a time.

* That is, even though actions of several transactions
might be interleaved, the net effect is identical to
executing all transactions one after another in some
serial order.

* Durability: Effects of a process survive a crash.

