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Integrity or correctness of data

We would like data to be “accurate” or “correct” at all times

Name

White
Green
Gray

Age

52
3421

1

EMP table



Integrity or consistency constraints

• Predicates that data must satisfy

For example:

- x is key of relation R

- Domain(x) = {Red, Blue, Green}

- no employee should make more than twice the average 
salary



Definition:

• Consistent state: satisfies all constraints

• Consistent DB: DB in consistent state



Integrity constraints may not capture 
“full correctness”

Implicit (business) constraints:

• When salary is updated, 

new salary  >  old salary

• When account record is deleted,

balance = 0



Observation: 
DB cannot be consistent always

Example: a1 + a2 +…. an = TOT (constraint)

Deposit $100 in a2:   a2   a2 + 100

TOT   TOT + 100
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Transaction: collection of actions that 
bring DB from one consistent state to 
another

Consistent DB Consistent DB’T

If T starts with consistent state +  T executes in isolation

T leaves consistent state

Inconsistent DB



Concurrent transactions

• In production environments, it is unlikely that we can limit our 

system to just one user at a time.

• Consequently, it is possible for multiple queries to be 

submitted at approximately the same time.

• If all of the queries were very small (i.e., in terms of time), we 

could probably just execute them serially, on a first-come-first-

served basis.

SERIALLY – ONE AFTER ANOTHER



Queries are executed 
“simultaneously”

• However, many queries are both complex and time 

consuming.

• Executing these queries would make other queries wait a 

long time for a chance to execute.

• Disk usage can be optimized for several queries running in 

parallel

• So, in practice, the DBMS may be running many different 

queries at about the same time.

INTERLEAVING QUERY PROCESSING



Concurrent Transactions

• Unlike operating systems, which support interaction of 
processes, a DMBS needs to keep processes from 
troublesome interactions.

• Even when there is no “failure”, several transactions can 
interact to turn a 
consistent state

into an 
inconsistent state.



• Before withdrawing money, each needs to check if the balance is sufficient

• Initially there is 100$ on the account

Ryan Monica____________________

READ(X, b) 

b=100

READ(X, c) 

c = 100

c - = 50

WRITE (X, c)

b - = 100

WRITE (X, Ryan)

Monica: thinks 
50 $ left

Ryan: thinks 
0 $ left

In fact, the withdrawn amount is 150$

Example: two people - one bank 
account



• Before withdrawing money, each needs to check if the balance is sufficient

• Initially there is 100$ on the account

Ryan Monica____________________

READ(X, b) 

b=100

READ(X, c) 

c = 100

c - = 50

WRITE (X, c)

b - = 100

WRITE (X, b)

The problem is that the reading and writing operations should be 
performed as one transaction, their combination should be atomic

Example: two people - one bank 
account



Transaction

• DBMS groups your SQL statements into transactions.

• The transaction is the atomic unit of execution of database 

operations

• By default, each query or DML statement is a transaction

• User can group multiple SQL statements into a single 

transaction



Transactions with SQL

START TRANSACTION; (BEGIN;)

…SQL statements

COMMIT; (END;)



End of a transaction

• The transaction ends when one of the following occurs:

• A COMMIT or ROLLBACK are issued

• A DDL (CREATE, ALTER, DROP …) or DCL (GRANT, REVOKE) statement 

is issued

• A user properly exits (COMMIT)

• System crashes (ROLLBACK)



COMMIT and ROLLBACK

• The SQL statement COMMIT causes a transaction to 
complete.
• Its database modifications are now permanent in the 

database.

• The SQL statement ROLLBACK also causes the transaction to 
end, but by aborting.
• No effects on the database.

• Failures like division by 0 or a constraint violation can also 
cause rollback, even if the programmer did not request it.



Banking example: DB terminal

BEGIN;

SELECT balance 

FROM accounts 

WHERE

account_name = "Monica and Ryan";

UPDATE accounts 

SET balance = balance – 100

WHERE 

account_name = "Monica and Ryan";

COMMIT;

BEGIN;

SELECT balance 

FROM accounts 

WHERE

account_name = "Monica and Ryan";

UPDATE accounts 

SET balance = balance – 50

WHERE 

account_name = "Monica and Ryan";

COMMIT;

Failure – constraint violated

Assuming we defined a CHECK constraint on balance >=0

Ryan Monica



Transaction should have ACID

• Atomicity: Whole transaction or none is done.

• Consistency: Database constraints preserved. Transaction, 
executed completely, takes database from one consistent
state to another

• Isolation: It appears to the user as if only one process 
executes at a time. 

• That is, even though actions of several transactions 
might be interleaved, the net effect is identical to 
executing all transactions one after another in some 
serial order.

• Durability: Effects of a process survive a crash.


