
nc -U /home/mbarsky/tmp/something

The problem when you could not connect to unix
sockets server was because of the tmp folder
permissions.

Let’s test it with a changed folder:

Internet Sockets
Lecture 08.03

Internet protocol: 2 layers –
TCP/IP
• TCP breaks data into packets and give each packet a

header:
• sequence number

• checksum

• IP – adds envelope with IP addresses

source address dest. address

bytes ack port

data

Preparing stream of data for
transmission

01100111001001
00100010001111
10100010111

101010001
111010101
100110010
110101111
001011011

101010001
111010101
100110010
110101111
001011011

101010001
111010101
100110010
110101111
001011011

101010001
111010101
100110010
110101111
001011011

IP

TCP

IP IP IP

To
24.197.0.67

To
24.197.0.67

To
24.197.0.67

To
24.197.0.67

TCP: make
packets

put in an
IP envelope
with another
header

Data stream

IP addresses

• The IP host address is used to uniquely identify machines
connected to the Internet

• It is a 32-bit quantity interpreted as 4 8-bit numbers or
octets (IPv4)

• An IP address is usually written in a dotted-decimal notation
of the form N1.N2.N3.N4, where each Ni is a decimal
number between 0 and 255

• Because of the growth of the Internet and the depletion of
available IPv4 addresses, a new version of IP (IPv6), using
128 bits for the IP address, was developed in 1995

Host names are mapped to
unique string names
• Host names in terms of numbers are difficult to remember

and hence they are termed by ordinary names such as
google.com or yahoo.com

• To connect, we need to find out the dotted IP address
corresponding to a given name

• The process of finding out dotted IP address from host
name is known as hostname resolution

• A hostname resolution is done by special software residing
on Domain Name Servers (DNS): they keep the mapping of
IP addresses and the corresponding ordinary names

Name, address, route

• An IP address serves two functions:

• identifies the host, or more specifically its network
interface

• provides the location of the host in the network, and
thus the capability of finding a path (route) to that host

• "A name indicates what we seek. An address indicates
where it is. A route indicates how to get there."

• The header of each IP packet contains the IP address of the
sending host, and that of the destination host

• DNS server resolves the address and finds the route to it on
the network

In C we can get the real numeric
host address with getaddrinfo()

Sample code in showip.c

run
./showip <str_host_name>

To find IP address of your machine:

ifconfig

or another system-specific command- ipconfig for
Windows

To find your hostname:

hostname

Identifying the process on a host
machine with port
• If the client knows the 32-bit Internet address of the host

machine, it can contact that host

• To identify the particular server process running on that host we
define a port number

• New port number should be an integer between 1024 and 65535:

• Port numbers smaller than 1024 are considered well-known
(telnet on port 23, http on port 80, ftp on port 21 etc.)

• You can see port assignments in file /etc/services:

more /etc/services

• In your own application you need to make sure that your port
is not assigned to any other service (Any port number more
than 5000 is a good choice)

Let’s build internet
socket echo server

The same

Bind

Listen

Accept

Sample code in:

server_inet.c
client-inet.c

socket()

• This is the same as before, except it says "INET" instead of
"UNIX"

if ((serv_fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {

perror("socket");

return(1);

}

Defining address and port for
INET server socket
struct sockaddr_in serv_addr;

memset(& serv_addr, '\0', sizeof (serv_addr));

serv_addr.sin_family = AF_INET;

serv_addr.sin_addr.s_addr = INADDR_ANY;

serv_addr.sin_port = htons(12345);

This means that if there
are more than one IP
address for this machine,
use any of them

Note the use of htons (host-to-
network-short) which converts a
given port number to a network
format

1. Bind

• For AF_INET sockets, there is no filesystem token representing
them - only a list of bound ports/IPs kept track of by the kernel

• Looks exactly the same as with Unix domain sockets

struct sockaddr_in serv_addr; //all set up above

if (bind(serv_fd, (struct sockaddr *)&serv_addr, sizeof (serv_addr)))
{

perror("bind");
return(1);

} Returns zero on success

Here we are casting again to struct
sockaddr – so it can compile, but the
address structure itself is quite different

2. Listen

if (listen(serv_fd, 5)) {

perror("listen");

return(1);

}

3. Accept

struct sockaddr_in client _addr;

int len = sizeof (client_addr);

if ((client_fd = accept(serv_fd, (struct sockaddr *)&client_addr,

&len)) < 0) {

perror("accept");

return(1);

}

printf("connection from %s\n", inet_ntoa(r.sin_addr));

• If you terminate your server program, and then start it again, you may
receive the following error message when calling bind():

Can’t bind the port: address already in use.

• When you bind a socket to a port, the operating system will prevent
anything else from rebinding to it for the next 30 seconds or so, and that
includes the program that bound the port in the first place.

• To get around the problem, you need to set an option on the socket
before you bind it:

int reuse = 1;

if (setsockopt(server_fd, SOL_SOCKET, SO_REUSEADDR,

(char *)&reuse, sizeof(int)) == -1)

error("Can't set the 'reuse' option on the socket.");

Can't bind the port: Address already in use

Important: server ports are sticky

• You can connect with general netcat client:

• You can write your own client - client_inet.c:
gcc client_inet.c -o client && ./client

Let’s run echo server and connect
to it from multiple clients

nc -C 127.0.0.1 1234

nc -C src-code.simons-rock.edu 1234

Send \r\n as
line ending

port

IP address
of a server

Domain name
of a server

Internet Stream sockets (TCP):
checklist

Server

• Create a socket: socket()

• Create an address variable and fill in the fields: port number
Make sure to set option REUSE_ADDRESS

• Bind socket to an address: bind()

• Establish a queue for connections and start listening: listen()

• Get a connection from the queue: accept()

Client

• Create a socket: socket()

• Initiate a connection: connect()

Multi-client socket
server: blocking
Blocking server: server_select.c

Blocking

• A blocking call does not return to the next line of your
program until the event you requested has been completed

• Most of system calls in socket programming are blocking:

Server: accept(), read(), write() are blocking

Client: connect(), read(), write() are blocking

Server:
accept() and read() are blocking
while (1) {

if ((clientfd = accept(fd, (struct sockaddr *)&q, &len)) < 0)
error("accept");

if ((len = read(clientfd, buf, MAX_LINE)) < 0)
error("read");

}

While waiting for a new client
to connect – cannot not do
anything else

While waiting for an accepted
client to write something –
cannot accept new clients

Avoiding blocking in complex
programs
• For simple programs, blocking is convenient

• What about more complex programs?

• multiple connections

• simultaneous reads and writes

• simultaneously doing non-networking processing

Ways to handle multiple clients
without blocking
• Forking a child process for each client

• Processing each client in a separate thread (not covered)

• Using poll() (not covered)

• Using select()

Select()

• Problem: from which socket the server should accept
connections or receive messages?

• Solution: select()

• specifies a list of descriptors to check for pending I/O
operations

• blocks until one of the descriptors is ready (or timeout)

• returns which descriptors are ready

Preparing file descriptor sets

• Populate sets of socket file descriptors you are interested in
using macros

• Once you have the set, you pass it into the function as one
of the following parameters:

• readfds if you want to know when there is something to
read from these file descriptors (client contacted server)

• writefds if any of the file descriptors wants to write()
data

• exceptfds if you need to know when an exception (error)
occurs on any of the sockets

• Any of these parameters can be NULL if you're not
interested in those types of events

Example: preparing fd sets

FD_SET(int fd, fd_set *set); Add fd to the set.

FD_CLR(int fd, fd_set *set); Remove fd from the set.

FD_ISSET(int fd, fd_set *set); Return true if fd is in the set.

FD_ZERO(fd_set *set); Clear all entries from the set.

fd_set readfds;

// pretend we’ve have socket fds for two clients at this point: s1 and s2

FD_ZERO(&readfds);

FD_SET(s1, &readfds);

FD_SET(s2, &readfds)

Select: parameters

int select (int n, fd_set *readfds, fd_set *writefds,

fd_set *exceptfds, struct timeval *timeout);

• The first parameter, n is the highest-numbered file
descriptor to check - plus one

• The last parameter timeout tells select() how long to check
these sets for before moving on

• Select returns after the timeout, or when any of the file
descriptors generated an event, whichever is first

Example: select parameters

• Suppose s2 > s1, so we use it for n :

n = s2 + 1;

• Wait until either socket has data ready to be read (with
timeout 10.5 secs)

struct timeval tv;

tv.tv_sec = 10; //seconds

tv.tv_usec = 500000; //microseconds (1,000,000 microseconds in a second)

int rv = select(n, &readfds, NULL, NULL, &tv);

Select return value

• Returns the number of ready descriptors in the set on
success, 0 if the timeout was reached, or -1 on error

• After select() returns, the values in the sets will be changed
to show which are ready for reading or writing, and which
have exceptions

Return value: example

rv = select(n, &readfds, NULL, NULL, &tv);

if (rv == -1) {

perror("select"); // error occurred in select()

} else if (rv == 0) {

printf("Timeout occurred! No data after 10.5 seconds.\n");

} else {

// one or both of the descriptors have data

if (FD_ISSET(s1, &readfds))

read(s1, buf1, sizeof buf1);

if (FD_ISSET(s2, &readfds))

read(s2, buf2, sizeof buf2);

}

Select diagram
readfds - empty

3 4 5

Set fds of interest

serv_fd client2client1

Max fd: 5

Call to select(&)
waits for activity on any of readfds

Select returned 2: activity on 2 fds

3 4 5

3 4 5

New client sent
connect request

Client 2 sent
data to read

while (1) {
fd_set fdlist;
maxfd = serv_fd;
FD_ZERO(&fdlist);
FD_SET(serv_fd, &fdlist);
for (p = client_list; p; p = p->next) {

FD_SET(p->fd, &fdlist);
if (p->fd > maxfd)

maxfd = p->fd;
}

if (select(maxfd + 1, &fdlist, NULL, NULL, &tv) < 0) {
error("select");

} else {
for (p = client_list; p; p = p->next)

if (FD_ISSET(p->fd, &fdlist))
break;

if (p)
handle(p->fd);

if (FD_ISSET(serv_fd, &fdlist))
newconnection(serv_fd);

}
}

Full code for echo server with
select()

Code: server_nonblocking.c

typedef struct client {
int fd;
struct client *next;
struct client *previous;

}Client;

Doubly-linked list to store client fds

Multi-client chat server
Preparation for Assignment 4

Code in folder chat_server

nc -C 127.0.0.1 8888

Commands allowed:
list_users
post to_username message
quit

General program flow

• Setup server socket

• In a loop: call select

• If serv_fd fired:

• newconnection

• add client to list of clients

• ask him for a name

• Set client status to NAME (not allowed to do commands
before identified himself)

• If any of client_fds fired:

• handle

Handling client commands

• Read bytes sent from the client

• If nbytes read > 0:

• parse command and execute

• Else:

• there was activity on this fd but no bytes were sent – the
only possibility is client disconnected

• removeclient

