
Internet Sockets:
Challenges

Lecture 08.02

nc --recv-only 127.0.0.1 30000

advise_server.c

New challenge:
Inter-operability
• How to ensure proper network communication between

heterogeneous machines and operating systems?

1. Number representation

2. End of message – new line

3. TCP stream boundaries

Challenge 1: Endianness

• Traditionally, Lilliputians broke boiled eggs on the larger end

• A few generations ago, an Emperor of Lilliput, the Present
Emperor's great-grandfather, had decreed that all eggs be broken
on the smaller end after his son cut himself breaking the egg on
the larger end

• The differences between Big-Endians (those who broke their eggs
at the larger end) and Little-Endians had given rise to "six
rebellions... wherein one Emperor lost his life, and another his
crown“

• The Lilliputian religion says an egg should be broken on the
convenient end, which is now interpreted by the Lilliputians as the
smaller end

Intra-Lilliputian quarrel over the practice of breaking eggs

Gulliver's Travels by Jonathan Swift

https://en.wikipedia.org/wiki/Gulliver's_Travels
https://en.wikipedia.org/wiki/Jonathan_Swift

Numbers can be big-endian or
little-endian
• Each byte consists of 8 bits

• Bytes are the same for all architectures:

00000010 is number 2, 00000001 is number 1

• For multi-byte numbers:

• Big endian: left-to-right
29 + 20 = 513

• Little-endian: right-to-left
28 + 21 = 258

00000010 00000001

00000010 00000001

00000001 00000010

Byte order for multi-byte numbers

• Intel is little-endian, and Sparc is big-endian

• The standard network byte order is big-endian; a "little-
endian" machine must swap bytes in integers when copying
them to and from network transmission buffers

Finding endianness of your
machine
Sample code in my_endian.c

Converting to network byte order

• To communicate between machines with unknown or
different “endian-ness” we need to convert numbers to
network byte order (big-endian) before we send them.

• There are functions provided to do this:
unsigned long htonl(unsigned long)

unsigned short htons(unsigned short)

unsigned long ntohl(unsigned long)

unsigned short ntohs(unsigned short)

Differences in data representation

• Different computer architectures use different conventions
to represent data formats (byte order, size of integer and
long, padding structures)

• To exchange data between heterogeneous systems over
network – need to put data into agreed-upon format
(marshalling protocols)

• A simpler approach: send data as text, as a sequence of
bytes

Streaming bytes

• TCP sockets (streaming sockets) transmit data in packets

• If sender stops before typing the next character its previous
bytes are already sent

• The message arrives in chunks

• How to signal the end of message in a streaming scenario?

With a new line!

Challenge 2. new line

• Different operating systems have different newline
"conventions":

• The ASCII standard: use single byte number 10 ("control-J",
or "line feed" or "LF“)

• Unix: byte 10 as a "newline character", and we get it in C in
Unix by typing "\n“

• MS-DOS and successors: a two-byte sequence to separate
lines: byte 13 and byte 10 ("control-M" and "control-J“)
"Control-M" is also known as "carriage return" or "CR".
Together, this two byte sequence is called "CRLF " (" \r\n")

• Some other operating systems have other newline
conventions

Newline problem for sending data
over the network
• In the case of transmitting text, the ASCII standard gives us

standard byte values for just about everything except
newlines

• So we need to adopt a newline standard for network text
transmission

Network new line convention

• The network newline convention is CRLF. That is, a newline
is represented by the two bytes (in order) which we could
call CR and LF, or control-M and control-J, or 13 and 10, or
\015 and \012.

Network new line:

\r\n rather than just \n

Challenge 3. Partial reads

• In TCP protocol, a single message arrives as a sequence of
packets

• If we want to reconstruct the original message lines, we
need to parse one line of a message, and keep the
beginning of the next line in buffer

• For this, we keep one pointer for each buffer, to keep track
of data length

char buf [BUFFER_SIZE];

int inbuf;

Parsing partial reads into lines of
text: 1/3
char *after = buf + inbuf;

int room = BUFFER_SIZE - inbuf;

int nbytes;

if ((nbytes = read(fd, after, room)) > 0) {

inbuf += nbytes; //advance inbuf pointer

Read next piece of data (of size room)
from fd into a computed place in buffer

inbuf

room
inbuf

nbytes

Parsing partial reads into lines of
text: 2/3

if ((nbytes = read(fd, after, room)) > 0)

{

…

int where = find_network_newline (buf, inbuf);

if (where >= 0) {

buf[where] = '\0'; buf[where+1] = '\0';

do_command(buf);

}

}

Process data in buffer to find a new line

inbuf

If data contains new line –
make a C string and
process it

network new line

Parsing partial reads into lines of
text: 3/3

if ((nbytes = read(fd, after, room)) > 0)

{

…

if (where >= 0) {

…

where+=2; // skip over \r\n

inbuf -= where;

memmove (buf, buf + where, inbuf);

}

}

inbuf

Move remaining data to
the beginning of the
buffer for next read

where

inbuf - whereinbuf

