Internet Sockets:
Challenges

Lecture 08.02

nc --recv-only 127.0.0.1 30000

advise server.c

New challenge:
Inter-operability

* How to ensure proper network communication between
heterogeneous machines and operating systems?

1. Number representation
2. End of message — new line

3. TCP stream boundaries

Challenge 1: Endianness

Intra-Lilliputian quarrel over the practice of breaking eggs

Traditionally, Lilliputians broke boiled eggs on the larger end

A few generations ago, an Emperor of Lilliput, the Present
Emperor's great-grandfather, had decreed that all eggs be broken
on the smaller end after his son cut himself breaking the egg on
the larger end

The differences between Big-Endians (those who broke their eggs
at the larger end) and Little-Endians had given rise to "six
rebellions... wherein one Emperor lost his life, and another his
crown”

The Lilliputian religion says an egg should be broken on the
convenient end, which is now interpreted by the Lilliputians as the
smaller end

Gulliver's Travels by Jonathan Swift

https://en.wikipedia.org/wiki/Gulliver's_Travels
https://en.wikipedia.org/wiki/Jonathan_Swift

Numbers can be big-endian or
ittle-endian

e Each byte consists of 8 bits
* Bytes are the same for all architectures:
00000010 is number 2, 00000001 is number 1

e For multi-byte numbers:
00000010 00000001

* Big endian: left-to-right ~ —) ocoocoi0 00000001
2°+29=513
* Little-endian: right-to-left (—— 0000001 00000010

28 + 21=258

Byte order for multi-byte numbers

32-bit integer 32-bit integer
Memory | DAOBOCOD | 0AOBOCOD Memary
. T 1

r.':-l:u'l!nL - J = n:.DD
a+1:]0B| < = a+1:0C
n'+2:-DC - - n+2:.DE
a+3: 0D - = 043 0A

— Big-endian L ittle-endian B

* Intel is little-endian, and Sparc is big-endian

* The standard network byte order is big-endian; a "little-
endian" machine must swap bytes in integers when copying
them to and from network transmission buffers

Finding endianness of your
machine

Sample code in my_endian.c

Converting to network byte order

* To communicate between machines with unknown or
different “endian-ness” we need to convert numbers to
network byte order (big-endian) before we send them.

* There are functions provided to do this:
unsigned long htonl (unsigned long)
unsigned short htons (unsigned short)
unsigned long ntohl (unsigned long)
unsigned short ntohs (unsigned short)

Differences in data representation

e Different computer architectures use different conventions
to represent data formats (byte order, size of integer and
long, padding structures)

* To exchange data between heterogeneous systems over
network — need to put data into agreed-upon format
(marshalling protocols)

* Asimpler approach: send data as text, as a sequence of
bytes

Streaming bytes

* TCP sockets (streaming sockets) transmit data in packets

* If sender stops before typing the next character its previous
bytes are already sent

* The message arrives in chunks

 How to signal the end of message in a streaming scenario?

With a new line!

Challenge 2. new line

* Different operating systems have different newline
"conventions":

The ASCII standard: use single byte number 10 ("control-J",
or "line feed" or "LF“)

Unix: byte 10 as a "newline character”, and we get it in Cin
Unix by typing "\n“

MS-DOS and successors: a two-byte sequence to separate
lines: byte 13 and byte 10 ("control-M" and "control-J“)
"Control-M" is also known as "carriage return” or "CR".
Together, this two byte sequence is called "CRLF " (" \r\n")

Some other operating systems have other newline
conventions

Newline problem for sending data
over the network

* In the case of transmitting text, the ASCII standard gives us
standard byte values for just about everything except

newlines
* So we need to adopt a newline standard for network text
transmission

Network new line convention

 The network newline convention is CRLF. That is, a newline
is represented by the two bytes (in order) which we could
call CR and LF, or control-M and control-J, or 13 and 10, or
\015 and \012.

Network new line:
\r\n rather than just \n

Challenge 3. Partial reads

* In TCP protocol, a single message arrives as a sequence of
packets

* If we want to reconstruct the original message lines, we
need to parse one line of a message, and keep the
beginning of the next line in buffer

* For this, we keep one pointer for each buffer, to keep track
of data length

char buf [BUFFER_SIZE];

int inbuf;

Parsing partial reads into lines of
text: 1/3 inpuf

char *after = buf + inbuf; P room R
inbuf
int room = BUFFER_SIZE - inbuf; inbu
int nbytes; [
P nbytes

Read next piece of data (of size room)
from fd into a computed place in buffer

if ((nbytes = read(fd, after, room)) > 0) {
inbuf += nbytes; //advance inbuf pointer

Parsing partial reads into lines of
text: 2/3 inbuf

if ((nbytes = read(fd, after, room)) > 0)

A

A

{

network new line

Process data in buffer to find a new line
int where = find_network_newline (buf, inbuf);

if (where >=0) { i dat ta i
dlta contains new line —
buf[where] = '\0'; buf[where+1] = '\0'; make a C string and

do_command(buf); process it

Parsing partial reads into lines of
text: 3/3 inbuf

)
if ((nbytes = read(fd, after, room)) > (9_, 5
{ where
[< >
inbuf inbuf - where
if (where >=0) { _l
where+=2; // skip over \r\n
inbuf -= where; Move remaining data to

memmove (buf, buf + where, inbuf); the beginning of the
buffer for next read

