
Sockets
Lecture 08.01

https://src-code.simons-rock.edu/git/mbarsky/socket_demo.git

Inter-process communication

• Wait for exit status (report when done)
• Only short integer status

• Pipe (always open for communication)
• Only between related processes

• Signals (send when you want, handle or ignore)
• Just a poke

Inter-process communication

• Wait for exit status (report when done)
• Pipe (always open for communication)
• Signals (send when you want, handle or ignore)
• Sockets (open connection with the world)

Sockets

• We want two unrelated processes to talk with each other:

• Created by different shells

• Created by different users

• Running on different machines

• Sockets are communication points on the same or different
computers to exchange data

• Sockets are supported by Unix, Windows, Mac, and many
other operating systems

• Now they are also supported by all modern browsers

Sockets use file descriptors to talk

• Every I/O action is done by writing or reading to/from a
stream using file descriptor

• To a programmer, a socket looks and behaves much like a
low-level file descriptor: has read(), write(), close()

• Sockets are full-duplex (2 way) – as if opening a stream for
both reading and writing

• The only difference – how we set up the socket

If 2 processes are unrelated – we
need a protocol for communication

• What to say

• In what context

• When

Communication protocols

• TCP protocol – how to transfer and receive byte streams

• IP protocol – how to locate and connect to a machine on the
internet

• HTTP protocol establishes rules of communication between
browser and web server

• Application-level protocols: FTP, SMTP, and POP3

Socket protocols

• The two most common socket protocols:

• TCP (Transmission Control Protocol)

• UDP (User Datagram Protocol)

Stream sockets (TCP)

• Message delivery is guaranteed. If delivery is
impossible, the sender receives an error indicator

• If you send three items "A, B, C", they will arrive in
the same order − "A, B, C"

• Data records do not have any boundaries

Datagram sockets (UDP)

• Order is not guaranteed

• Connectionless: you don't need to have an open
connection as in Stream Sockets − you build a packet
with the destination information and send it out

• Delivery is not guaranteed

Server

• A server is a program that performs some functions on
request from a client

• Server serves as a major switch in the phone company

• It is responsible for taking incoming calls from clients and
then creating personal connection between a pair of file
descriptors: one in the client and one in the server process

0

1

2

3

4

How does it work

Server

Entry point
Client 1

0

1

2

Contacts server
process, asks for
connection

0

1

2

3

4 Socket end for C1

How does it work

Server

Entry point

Client 1

0

1

2

3 Socket end

Connection
established,
can talk now

0

1

2

3

4 Socket end for C1

How does it work

Server

Entry point

Client 1

0

1

2

3 Socket end

Client 2

0

1

2

0

1

2

3

4 Socket end for C1

5 Socket end for C2

How does it work

Server

Entry point

Client 1

0

1

2

3 Socket end
Client 2

0

1

2

3 Socket end

Connection
established,
can talk now

0

1

2

3

4 Socket end for C1

5 Socket end for C2

How does it work

Server

Entry point

Client 1

0

1

2

3 Socket end

Client 2

0

1

2

3 Socket end

Client 3

0

1

2

ETC.

Unix domain socket
server

code in server.c

Data communications endpoints for exchanging data between
processes executing on the same Unix host system

Unix domain sockets

server process

Finds server
through path in

file system:
/tmp/something

Data Stream

0 …

1 …

2 …

3 entry_fd

Data Stream

0 …

1 …

2 …

client process

Full-duplex communication between two unrelated processes through
Unix inode

Unix domain sockets

server process

Our own buffer

Data Stream

0 …

1 …

2 …

3 entry_fd

4 client1_fd

Data Stream

0 …

1 …

2 …

3 my_socket_fd

client process

Full-duplex communication between two unrelated processes through
Unix inode

int serv_fd;

if ((serv_fd = socket(AF_UNIX, SOCK_STREAM, 0)) < 0) {

perror (“socket”);

exit (1);

}

Define socket
(like installing a phone socket)

socket() call does not specify where data will be
coming from, nor where it will be going to –it just
creates the socket prototype of a certain type and
assigns it to the file descriptor - serv_fd

Socket type –
Unix socket

Protocol type –
TCP

Protocol id –
can be multiple
protocols, but
here only one

1
2 3

Assign address to socket
(like assigning phone number)
• Socket descriptor prototype from the call to socket needs to

be assigned an address

• For Unix sockets this address is a file of a special type in a
file system

• Different processes can access these “files” as file system
inodes, so two processes can establish communication

Define server socket address

struct sockaddr_un server_addr;

memset(&server_addr, '\0', sizeof (server_addr));

server_addr.sun_family = AF_UNIX;

strcpy(server_addr.sun_path, "/tmp/something");

unlink(server_addr.sun_path);

Declare variable of type
sockaddr_un

Clear all bytes
to zero

Setup address family

Set file name
through which
server can be
contacted

Delete file with this name if already
exists

3 steps of socket server setup:
BLA
1. Bind

2. Listen

3. Accept

1. Bind

• Bind socket to a connection resource - in this case the socket
inode (a new kind of "special file") – to create an entry point

struct sockaddr_un serv_addr; //all set up – see above

if (bind(serv_fd, (struct sockaddr *)&serv_addr, sizeof (serv_addr)))
{

perror("bind");
return(1);

}

fd returned
from socket()

1

Address to bind
to and its size

2

Returns zero on success

Some sort of “polymorphism”

• Because bind is designed to work with all kinds of sockets, and
the size of the addresses may be different, the second argument
of bind() is of a general type struct sockaddr*

• We need to cast our Unix socket address of type sockaddr_un to
this general type

• Third parameter tells how much space to consider for reading an
actual address from a given memory location (different types of
address structs have different length)

struct sockaddr_un serv_addr; //all set up above

bind(serv_fd, (struct sockaddr *)&serv_addr, sizeof (serv_addr)) ;

2. Listen

• Listen — wait for incoming connections

• Also specifies the length of the queue for connections which have
not yet been "accepted“

• It is not a limit on the number of people you can talk to - it's just
how many can do a connect() before you accept() them

if (listen(serv_fd, 5)) {

perror("listen");

return(1);

}

Backlog for
incoming
connections

1
fd returned
from socket()

2

3. Accept

• Accept processes client requests (usually in a loop)

• It returns a new socket file descriptor for talking to that particular
client

struct sockaddr_un client _addr;

int len = sizeof (client_addr);

if ((client_fd = accept(serv_fd, (struct sockaddr *)&client_addr,
&len)) < 0) {

perror("accept");
return(1);

}

1
fd returned
from socket()

2

Address of a client and the
length of this address

Client address is recorded into
variable client_addr
• When accept() returns, the client_addr variable will be filled with the

remote side's struct sockaddr_un, and len will be set to its length

• The new file descriptor client_fd is created, and is ready for sending and
receiving data for this particular client

struct sockaddr_un client _addr;

int len = sizeof (client_addr);

if ((client_fd = accept(serv_fd, (struct sockaddr *)&client_addr, &len)) < 0) {

perror("accept");

return(1);

}

Read data from a client: example

char buf[BUF_SIZE+1];

if ((len = read(client_fd, buf, BUF_SIZE))) < 0) {

perror("read");

return(1);

}

// The read is raw bytes. This turns it into a C string.

buf[BUF_SIZE] = '\0';

printf("The other side said: %s\n", buf);

Write data to a client: example

//echo data back

if (write(client_fd, buf, strlen(buf)) != strlen(buf)) {

perror("write");

return(1);

}

Close

• Closing the client_fd makes the other side see that the
connection is closed

close(client_fd);

• Unix domain socket binding is reclaimed upon process exit,
but the inode is not. You have to explicitly unlink (delete) it

close(server_fd);

unlink("/tmp/something");

• If you run the server, you can connect to it in a
different terminal using a general client program
netcat (nc):

nc –U /tmp/something

• You can see all open unix sockets using netstat:

netstat –lxp

• You can see that socket in Unix sockets is a ‘file’:

ls -l /tmp/something

Unix domain socket
client
code in client.c

Client program: socket setup

• Create a socket interface of type Unix domain socket:

if ((fd = socket(AF_UNIX, SOCK_STREAM, 0)) < 0) {

perror("socket");

return(1);

}

Client has only one file descriptor used to connect to a
remote process and if successfully connected – this will be
the fd of the communication

Connect to known address

• The client does connect(), the server does accept()

• Fill-in fields of server address – to which to connect:

struct sockaddr_un serv_addr;

memset(&serv_addr, '\0', sizeof (serv_addr));

serv_addr.sun_family = AF_UNIX;

strcpy (serv_addr.sun_path, "/tmp/something");

if (connect(fd, (struct sockaddr *)&serv_addr, sizeof (serv_addr)))
{

perror("connect");

return(1);

}

Descriptor created with socket()

Now client can write and read

if ((len = write(fd, "Hello", 5)) != 5) {

perror("write");

return(1);

}

if ((len = read(fd, buf, MAX_LINE)) < 0) {

perror("write");

return(1);

}

buf[MAX_LINE] = '\0';

