
Inter-process communication

• Wait for exit status (report when done)
• Pipe (always open for communication)
• Signals (send when you want, handle or ignore)
• Sockets (open connection with the world)

File descriptors
Lecture 06.01

Operating system:

•Keeps track of a running program (pid), its child
processes, access to processor time

•Allocates different memory segments

•Keeps track of all data streams (Input/Output)

File descriptor table

Data Stream

0 The keyboard

1 The screen

2 The screen

3 Database connection

The process might
also have other
open streams

0

1

2

Redirection just replaces data
streams in file descriptor table
• ./my_prog < stories.txt >out.txt 2>log.txt

Data Stream

0 The keyboard File stories.txt

1 The screen File out.txt

2 The screen File log.txt

fileno() tells you the descriptor of
an open file
• Every time you open a file, the operating system registers a

new item in the descriptor table:

FILE *my_file = fopen("guitar.mp3", "rb");
int descriptor = fileno(my_file);

Data Stream

0 The keyboard

1 The screen

2 The screen

3 Database connection

4 File guitar.mp3

This will return 4

We can do redirection inside the
same process by rewriting descriptor
table
dup2(4, 3); //returns -1 on failure

Data Stream

0 The keyboard

1 The screen

2 The screen

3 File guitar.mp3

4 File guitar.mp3

Silently closes Database connection

Example: redirect standard
output to a file
FILE *f = fopen("stories.txt", "w");

dup2 (fileno(f), 1);

Using file descriptors
(very low level I/O)
int output_fd = open (f_name, O_WRONLY|O_CREAT);

write (output_fd, buffer, buffer_size_bytes);

int input_fd = open (f_name, O_RDONLY);

read (input_fd, buffer, buffer_size_bytes);

write (1, buffer, buffer_size_bytes);

read (0, buffer, buffer_size_bytes);

Address of a

memory block

Writes to stdout

Reads from stdin

pipe() opens two data streams

• The pipe(fds) system call

creates two connected

streams and adds them to

the table

• Whatever is written into one

stream can be read from the

other

Data Stream

0 The keyboard

1 The screen

2 The screen

3 Read end of a pipe

4 Write-end of a pipe

Recording file descriptors

• When pipe() creates the two lines in the descriptor table, it
will store their file descriptors in a two-element array:

int fd[2];

if (pipe(fd) == -1) {

error("Can't create the pipe");

}

fd[1] = 4 writes to the pipe
fd[0] = 3 reads from it

Data Stream

0 The keyboard

1 The screen

2 The screen

3 Read end of a pipe

4 Write-end of a pipe

Pipe is a buffer in a kernel space

• Every read from a pipe copies from kernel space to user space

• Every write to a pipe copies from user space to kernel space

user process

fd [0] fd [1]

user process

fd [0] fd [1]

pipe

kernel

Pipe and fork
(still not very useful)

parent

fd [0] fd [1]

pipe

kernel

child

fd [0] fd [1]

fork

Pipe and fork

parent

fd [1]

pipe

kernel

child

fd [0]

fork

Now two processes can communicate!

Half-duplex communication

• Pipes become useful by exploiting the fact that file
descriptors are inherited through fork.

1. pipe(fds)

2. fork()

3. parent: close(fds[0])

4. child: close(fds[1])

5. parent can transfer data to child with write(fds[1], ...)

6. child can receive data from parent with read(fds[0], ...)

(exchange 0 and 1 for child to parent data transfer)

Piped commands are parents and
children
ls | wc -l

• Whenever you pipe commands together on the command line, you are
actually connecting them together as parent and child processes

• In the above example, the wc -l command is the parent of the ls

1. The shell creates the parent process

2. The parent process forks the ls in a child process

3. The parent connects the output of the child with the input of the
parent using a pipe

4. The child process execs the ls

5. The parent process execs the wc -l command

Example: implementing ls | wc -l

int pfds[2];

pipe(pfds);

if (!fork()) {

dup2(pfds[1],1); /* make stdout same as pfds[1] */

close(pfds[0]); /* we don't need this */

execlp ("ls", "ls", NULL);

} else {

dup2(pfds[0],0); /* make stdin same as pfds[0] */

close(pfds[1]); /* we don't need this */

execlp ("wc", "wc", "-l", NULL);

}

child

parent

Pipes: summary

• The byte stream written to one end of the pipe can be read
from the other

• Once created, pipes are referenced by file descriptor
handles

• Pipes are accessible only by related processes

• No identifier is used to rendez-vous on pipes, they are
requested directly to the kernel

• Pipes are process-persistent: they disappear when related
processes terminate

What does this program do?
int main(void) {

int n, fd [2] ;

pid_t pid ;

char line [MAXLINE] ;

pid = fork ();

pipe (fd) ;

i f (pid > 0) { /* parent */

close (fd [0]) ;

write (fd [1] , " Hello , World ! \n" , 14) ;

} else { /* child */

close (fd [1]) ;

n = read (fd [0] , line , MAXLINE) ;

write (STDOUT_FILENO, line , n) ;

}

exit (EXIT_SUCCESS) ; }

Is there something wrong with it?
int main(void) {

int n, fd [2] ;

pid_t pid ;

char line [MAXLINE] ;

pid = fork ();

pipe (fd) ;

i f (pid > 0) { /* parent */

close (fd [0]) ;

write (fd [1] , " Hello , World ! \n" , 14) ;

} else { /* child */

close (fd [1]) ;

n = read (fd [0] , line , MAXLINE) ;

write (STDOUT_FILENO, line , n) ;

}

exit (EXIT_SUCCESS) ; }

Full-duplex communication with
pipes
• Once more: pipes are half-duplex: one pipe can be used to

transfer data in one direction only - either from parent to
child or from child to parent

• To do full-duplex communication with pipes (i.e. transfer
data in both directions), 2 pipe calls before fork are needed

Full-duplex pipe recipe

1. pipe(p2c)

2. pipe(c2p)

3. fork()

4. parent: close(p2c[0]); close(c2p[1])

5. child: close(p2c[1]); close(c2p[0])

6. parent -> child: write(p2c[1], ...)

7. child -> parent: write(c2p[1], ...)

Exercise

• We wrote a program that forked one child for each
command line argument. The child computes the length of
the command line argument and exits with that integer as
the return value. The parent sums these return codes and
reports the total length of all the command line arguments
together.

• Now, we will do the same program except that each child
will communicate the length to the parent through a pipe.

Define 2D array of ints to store
argc file descriptors

int fds[argc][2];

We will use this array starting from

index 1 - for simplicity

Loop through command-line
arguments starting from 1

for (int i=1; i<argc; i++) {
//create pipe i
pipe (fds[i]);

//fork a new child process
int result = fork();

In a child process at iteration i

//close reading end of pipe i
close (fds[i][0]);

//work on the i-th argument
int len = strlen (argv[i]);

//write result to the pipe
write(fds[i][1], &len, sizeof(int));

Cleaner version of a child

//close reading end of pipe i
close (fds[i][0]);

// Before we forked, parent had opened the reading ends to
all previously forked children; so close those.

for (int j=1; j< i; j++)
close (fds[j][0]);

Exit child process to avoid fork in
the next iteration

close(fds[i][0]);

for (int j=1; j< i; j++)
close (fds[j][0]);

int len = strlen(argv[i]);

write(fds[i][1], &len, sizeof(int));
close(fds[i][1]);
exit(0);

In the parent process

// close the end of the pipe that we don't need
close(fds[i][1]);

After the for loop: parent reads
from all pipe buffers

int res;
for (int i = 1; i < argc ; i++) {

read(fds[i][0], &res, sizeof(int));
sum += res;

}

Inter-process communication

• Wait for exit status (report when done)
• Pipe (always open for communication)
• Signals (send when you want, handle or ignore)
• Sockets (open connection with the world)

