
Linked lists
Lecture 03.05

• Linked lists - recursive structs linked through
pointers

• Motivation: flexible storage

Linked lists

Outline

• Navigating the list

• Dynamic allocation

• Inserting new nodes

• Detecting memory leaks

Storing sequence in order: array

data data data data

Pointer to (address of)
the first element of an
array: A [0]

A[0] A[1] A[2] A[3]

Array of
structs

typedef struct island {

char *name;

int population;

} Island;

Recursive struct

typedef struct island {

char *name;

int population;

struct island * next;

} Island;

A

B

C

D

Have to
use name,
not alias

Two ways for storing a sequence
of values

data data data data

Pointer to (address of)
the first element of an
array: A [0]

A[0] A[1] A[2] A[3]

link to next node

data

List node

head
link to next node

data

List node

link to next node

data

List node

Pointer to the
first node Linked list

Array

Array of structs: non-flexible
storage
typedef struct island {

char * name;

int population;

}Island;

Island one = {"Happy",1000};

Island two = {"Empty",0};

Island three = {"Dense",1000000};

Island * tour [3];

tour[0] = &one;

tour[1] = &two;

tour[2] = &three;

Island four = {"Sad", 1, NULL};
Insertion in the
middle is very

inefficient

Linked list of structs: more flexible

typedef struct island {

char * name;

int population;

struct island * next;

}Island;

Island * head = &one;

one.next = &two;

two.next = &three;

four.next = two.next;

two.next = &four;
Island four = {"Sad", 1, NULL};

Insertion in the
middle in 2

operations, without
shifting other values

Linked list vs. array: summary
Linked list Array

Not limited in size Limited in size. Need to re-allocate

memory to grow

Insertion or deletion of a

node is performed by

updating links

Insertion or deletion of an element

may require to move multiple

elements

Access to an indexed

position requires

sequential scan from the

head of the list

Access to an indexed position is

performed by adding an index to an

address of the first element of an

array: constant-time random access

Memory overhead to store

links

Traversing the list

next: node B

data: 2

head: pointer
to node A

next: node C

data: 3

next: nothing

data: 4

node A node B node C

1. Head is all we need to know
2. We follow the sequence by following the links
3. We stop when there is no link to the next node

Example: printing the list

void print_tour (Island * head) {

Island * current = head;

while (current != NULL) {

print_island (current);

current = current->next;

}

}

Removing the first element

next: node B

data: 2

head: points
to node B

next: node C

data: 3

next: nothing

data: 4

node A node B node C

temp: points
to node A 1. Copy a link to node A to

destroy it later
2. Set head to point to

nodeA->next (node B)
3. Destroy node A

Adding a new node at the
beginning of the list

next: node B

data: 2

head: points
to node A

next: node C

data: 3

next: nothing

data: 4

node A node B node C

next: nothing

data: 1

node D
1. Create new node D
2. Chain it into the list by

setting its next link to the
old first node, pointed to by
head

3. Update the head of the list:
it is now pointing to node D

List nodes dynamically allocated
on the heap
Island * new_island (char * name) {

Island * i = malloc (sizeof(Island)*1);

i->name = name;

return i;

}

Building list dynamically

while (fgets(buffer, MAX_LINE, stdin)!=NULL){

buffer [strcspn (buffer, "\r\n")] = '\0';

Island * i = new_island (buffer);

if (head != NULL) { //push on top of the list

i->next = head;

}

head = i;

}

Is there a problem with this code?

while (fgets(buffer, MAX_LINE, stdin)!=NULL){

buffer [strcspn (buffer, "\r\n")] = '\0';

Island * i = new_island (buffer);

if (head != NULL) { //push on top of the list

i->next = head;

}

head = i;

} What is printed?

Is there a problem with this code?

while (fgets(buffer, MAX_LINE, stdin)!=NULL){

buffer [strcspn (buffer, "\r\n")] = '\0';

Island * i = new_island (buffer);

if (head != NULL) { //push on top of the list

i->next = head;

}

head = i;

} Why do all islands
have the same

name?

Char pointer needs dynamic
allocation too!
Island * new_island (char * name) {

if (name == NULL)

return NULL;

Island * i = malloc (sizeof(Island)*1);

size_t len = strlen (name);

i->name = malloc (len +1);

strcpy (i->name, name);

return i;

}

Adding at the end of the list
without traversing the list
Island * head = NULL;

Island * tail = NULL;

//add at the end of the list

if (head == NULL) {

head = i;

tail = i;

}

tail->next = i;

tail=i;

Keep the pointer to
the last list node

Valgrind

• From http://valgrind.org/

“Valgrind is an instrumentation framework for building dynamic
analysis tools. There are Valgrind tools that can automatically
detect many memory management and threading bugs, and profile
your programs in detail. You can also use Valgrind to build new
tools.”

• Memcheck is part of valgrind and it checks for the following
errors:
• Use of uninitialized memory
• Reading/writing memory after it has been freed
• Reading/writing off the end of malloc’d blocks
• Memory leaks
• Doubly freed memory

http://valgrind.org/

Using Valgrind Memcheck

Code should be compiled using gcc with -g option –to
generate line numbers in memcheck output

gcc –g myprogram.c

valgrind --tool=memcheck ./a.out

Run valgrind
valgrind --leak-check=full --show-leak-kinds=all --track-origins=yes ./a.out

Free dynamically allocated lists

void free_islands (Island *head) {

Island *temp;

Island *node = head; //start at the head.

while (node != NULL) { //traverse entire list.

temp = node; //save node pointer.

node = node->next; //advance to next.

free (temp->name); //free char *

free (temp); // free the current node

}

head = NULL; //finally release the head pointer

}

Run valgrind again

calloc()

• calloc() is just like malloc(), except that

• it clears the memory to zero for you

• it takes two parameters instead of one

p = malloc (10 * sizeof(int));

p = calloc (10, sizeof(int));

Replace malloc with calloc

Island * new_island (char * name) {

Island * i = (Island *) calloc (1, sizeof(Island));

size_t len = strlen (name);

i->name = (char *) calloc (len +1, sizeof (char));

strcpy (i->name, name);

return i;

}

Run valgrind again: no errors now

Our goal

Rules for avoiding memory leaks
• To avoid accidental access to uninitialized memory - always use
memset along with malloc, or always use calloc

• When writing values to memory block, make sure you cross-check the
number of bytes available and number of bytes being written

• Before re-assigning the pointers, make sure no memory locations will
become orphaned

• When freeing struct (which in turn contains the pointer to dynamically
allocated memory location), first traverse to the child memory location
and start freeing from there, traversing back to the parent node

• Always properly handle return values of functions returning references
to dynamically allocated memory – responsibility to free is on the caller!

• Have a corresponding free to every malloc

See examples at: https://www.ibm.com/developerworks/aix/library/au-toughgame/

http://www.cplusplus.com/reference/cstring/memset/
https://www.ibm.com/developerworks/aix/library/au-toughgame/

