
FM-index
Lecture 7

Reading: http://alexbowe.com/fm-index/

http://alexbowe.com/fm-index/

Recap: principles of indexing

• In order to perform efficient search for anything, the
collection of keys to be searched should be sorted

• Suppose you want find out if string cob occurs as a substring
of string cocoa.

• Because our cocoa is very small, it is easy to see that cob is
not a part of cocoa

• Now imagine that our dataset consists of a much longer but
still single non-divided sequence of characters:
cocoacoacoacoacoacoa... up to 3,000,000,000 characters

• You want to know whether the cob substring is somewhere
in this dataset

Very long strings: DNA sequences

• That reflects the typical situation with DNA
sequence databases, where each sequence can be
prohibitively long.

• If scanning and checking the entire dataset is out of
question, you need to come up with some sort of
a cocoa index.

• So let's treat cocoa as a very long string, and see
how we can index this string so we can then
perform search for pattern P in the most efficient
way.

Suffix Array
Review

Suffix: reminder

• The suffix of a given string is a substring starting at
some position and running till the end of the string.

• For example, -coa is a suffix of cocoa starting at
position 2 (our position count starts at 0).

String data

0 1 2 3 4

c o c o a

Suffix array: definition

• Take all suffixes of the input string, and sort them
alphabetically (lexicographically).

• Then record a start position of each sorted suffix -
and you obtain a suffix array SA.

String data

0 1 2 3 4 5

c o c o a $

Indexing cocoa database with
suffix arrays
• First, let's add a terminal character $ with a beautiful name

sentinel at the end of our cocoa: cocoa$.

• By convention, $ is lexicographically the smallest symbol in
the alphabet

String data

0 1 2 3 4 5

c o c o a $

Suffix array of cocoa$

• The collection of sorted suffixes becomes:

Suffix array (SA) index

Row Sorted suffixes SA (start positions)

0 $ 5

1 a$ 4

2 coa$ 2

3 cocoa$ 0

4 oa$ 3

5 ocoa$ 1

Only the last column is called a suffix array

Query in log N time

• If the entire size of the database is N characters (N=6 for
cocoa$), we can now search for any query substring in time
O(log N)*, using a binary search through these sorted
suffixes.

• The space for this index is linear in N, because we store only
start positions - one per character.

• Note that we need to ensure that we can easily access the
original string at any random position, so we can compare
our query pattern to the actual string.

More precisely: O((log N +k) M), where M is the size of the pattern and k is the
number of occurrences, but we assume that M << N, and ignore that, and to find k
occurrences you cannot go lower than k

Better idea:
Burrows-Wheeler Transform

The Burrows Wheeler Transform also indexes all substrings of
a single string database, but in a different rather ingenious
way.

Burrows-Wheeler
Matrix

Circular strings

• We are back to our cocoa$ dataset.

• First let's make our string circular: cocoa$cocoa$...

• That means that after we reach sentinel $, we start
from the beginning of the never-ending string

• From this circular cocoa$, let's create N different
permuted strings of length N starting at each of N
possible positions: cocoa$, ocoa$c, coaco, oacoc,
a$coco, $cocoa.

• Next, let's sort these strings lexicographically

Sorted circular permutations

Circular strings sorted

Row
Sorted circular
strings

Sorted suffixes

0 $cocoa $

1 a$coco a$

2 coa$co coa$

3 cocoa$ cocoa$

4 oa$coc oa$

5 ocoa$c ocoa$

String data

0 1 2 3 4 5

c o c o a $

Sorted circular permutations

• Note that the order of these sorted
circular strings, with regard to their start
positions, is exactly the same as in the
suffix array

• Why? Because after we added the
unique sentinel symbol at the end
of cocoa, there cannot be two circular
strings with the same lexicographical
rank (our sorted list has no ties).

• That means that the order of circular
strings is uniquely determined by the
part which comes before and includes
sentinel $.

• But this is exactly the order of the
suffixes - suffixes run up-to and including
the sentinel!

Circular strings sorted

Row
Sorted
circular
strings

Sorted
suffixes

0 $cocoa $

1 a$coco a$

2 coa$co coa$

3 cocoa$ cocoa$

4 oa$coc oa$

5 ocoa$c ocoa$

Burrows-Wheeler Matrix

Burrows-Wheeler Matrix

Row F 1 2 3 4 L

0 $ c o c o a

1 a $ c o c o

2 c o a $ c o

3 c o c o a $

4 o a $ c o c

5 o c o a $ c

F and L
• Now the fun part begins.

• We concentrate only on the table of sorted circular strings,
and in particular on its first and last columns: F and L:

Burrows-Wheeler Matrix

Row F 1 2 3 4 L

0 $ c o c o a

1 a $ c o c o

2 c o a $ c o

3 c o c o a $

4 o a $ c o c

5 o c o a $ c

Burrows-Wheeler
Transform

Burrows-Wheeler Transform
(BWT)
• In the Last column of the Burrows-Wheeler Matrix (BWM)

we see the characters preceding each sorted suffix in the
suffix array, except that we made our cocoa$ circular and
thus before character at position zero there is the sentinel
(going around).

• The last column L of the BWM is the famous Burrows-
Wheeler Transform (BWT).

• If we only store this last column, it occupies space not larger
than the original string

• It often occupies much less space because the characters in
BWT tend to be grouped into runs of equal characters, and
as such the BWT string can be "compressed"

BWT is a self-index

Burrows-Wheeler Matrix

Row F 1 2 3 4 L

0 $ c o c o a

1 a $ c o c o

2 c o a $ c o

3 c o c o a $

4 o a $ c o c

5 o c o a $ c

If we store only the permuted string of BWT (column L),
we do not actually need our original string anymore,
because we can always reconstruct the original string
from the BWT string.

Reminder
• The sequence of characters in the last row L of the Burrows-

Wheeler Matrix represents a Burrows-Wheeler Transform
(BWT) of the original cocoa$.

• On the other hand, this is nothing else but the sequence of
characters preceding sorted suffixes in the suffix array.

Ranking characters
• Let's give each character in the first column F a rank: c with

rank 1, c with rank 2 etc., in the order in which they appear
in the first column of BWM.

• Obviously, each character of the alphabet appears
consecutively in the first column, because it represents the
first letter of lexicographically sorted suffixes.

As we mentioned before, there are no ties in the sorting of circular strings
permuted from cocoa$, due to the unique sentinel added at the end, so
the rank attached to each character of cocoa$ is unique.

Characters with ranks

Burrows-Wheeler Matrix

Row F 1 2 3 4 L

0 $1 c o c o a1

1 a1 $ c o c o1

2 c1 o a $ c o2

3 c2 o c o a $1

4 o1 a $ c o c1

5 o2 c o a $ c2

Correspondence of ranks
in F and L
If we rank characters
in the order in which
they appear in the last
column L, we notice
that the ranked
characters of L
correspond exactly to
the ranked characters
of F

Burrows-Wheeler Matrix

Row F 1 2 3 4 L

0 $1 c o c o a1

1 a1 $ c o c o1

2 c1 o a $ c o2

3 c2 o c o a $1

4 o1 a $ c o c1

5 o2 c o a $ c2

For example, c2 in L is the character before suffix ocoa$, and in fact
c2 in row 3 of column F is the first character of suffix cocoa$.

Correspondence of ranks
in F and L
• The ranked characters in F and L columns always refer to the

same characters of the original string.

• Why? Because F corresponds to the first letter of the
alphabetically sorted suffixes, and L corresponds to the
characters preceding alphabetically sorted suffixes, so if we
have for example two c-s (not necessarily sequential) in L they
in fact correspond to sorted suffixes c1... and c2... and thus the
ranks for each letter in F and L are in exactly the same order.

LF mapping

• We stated that having only BWT (column L) we can
reconstruct the original string.

• All we need for this is the BWT string itself with ranked
characters and the LF-mapping table

• LF table tells, for each letter of the alphabet, the interval for
all sorted suffixes which start with this letter (consecutive
intervals in column F).

That is why it is called LF-mapping - because it maps ranks in
the Last column to the ranks in the First column.

LF mapping table

LF-mapping table

All suffixes
starting with:

are at positions
(in suffix array):

$ [0-0]

a [1-1]

c [2-3]

o [4-5]

Reconstruction of the original string:
1/6 - backwards, starting with row 0

• We reconstruct the original string backwards.

• We know that the first in the SA of sorted
suffixes is always the sentinel character $, so we
trivially conclude that the last character of the
original string is $ (as if we did not add it
ourselves).

• So for now we know that our original string
is xxxxx$.

BWT

Row L

0 a1

1 o1

2 o2

3 $1

4 c1

5 c2

Reconstruction of the original
string: 2/6
• Which letter is before $?

We look at row 0 of
column L and discover that
before $ it was a1.

• In what row of the suffix
array is the first a? It is in
row 1, according to
the LF table.

• So our partly recovered
original string
becomes xxxxa$, and in
search for the next
(preceding) letter we jump
to row 1 of column L.

BWT

Row L

0 a1

1 o1

2 o2

3 $1

4 c1

5 c2

LF-mapping table

Interval of
all suffixes
starting
with:

begins at
position
(in suffix
array):

$ 0

a 1

c 2

o 4

Reconstruction of the original
string: 3/6
• Here, in row 1 of column L,

we see that the previous
letter was o1.

• The LF-table tells us
that o1 (the first among
all o-s) is the starting
character of the suffix in
row 4.

• We update our recovering
string to xxxoa$, and jump
to row 4.

BWT

Row L

0 a1

1 o1

2 o2

3 $1

4 c1

5 c2

LF-mapping table

Interval of
all suffixes
starting
with:

begins at
position
(in suffix
array):

$ 0

a 1

c 2

o 4

Reconstruction of the original
string: 4/6
• From here we jump to c1

and our recovering string
becomes xxcoa$.

• c1 corresponds to the
suffix in row 2, according
to the LF-table, so our next
stop is in row 2 of column
L.

BWT

Row L

0 a1

1 o1

2 o2

3 $1

4 c1

5 c2

LF-mapping table

Interval of
all suffixes
starting
with:

begins at
position
(in suffix
array):

$ 0

a 1

c 2

o 4

Reconstruction of the original
string: 5/6
• Here we see the sign: go

to o2.

• We determine that o2 is in
row 5 (we adding 1 to the
start interval of all
letters o in the LF-table).

• Our growing string
becomes xocoa$, and we
go to row 5.

BWT

Row L

0 a1

1 o1

2 o2

3 $1

4 c1

5 c2

LF-mapping table

Interval of
all suffixes
starting
with:

begins at
position
(in suffix
array):

$ 0

a 1

c 2

o 4

Reconstruction of the original
string: 6/6
• In row 5 we see the hint:

go to c2, which is in row 3
according to the LF-table.

• Our string becomes the
perfect cocoa$, and the
sentinel in row 3 of column
L signifies that the tour is
over.

BWT

Row L

0 a1

1 o1

2 o2

3 $1

4 c1

5 c2

LF-mapping table

Interval of
all suffixes
starting
with:

begins at
position
(in suffix
array):

$ 0

a 1

c 2

o 4

Summary

• It means that having only a BWT string and a small LF-table,
we do not need to store the original string anymore, as it
can always be easily reconstructed whenever needed

• In a similar spirit we can use BWT for pattern search

That makes it an index.

FM-index

In 2005 Paolo Ferragina and Giovanni Manzini proposed to use
the BWT with LF-table as an index for pattern search, and called
the new structure the FM-index.

FM-index consists of 2 tables

BWT (only L-column)

Row F L SA

0 $1 a1 5

1 a1 o1 4

2 c1 o2 2

3 c2 $1 0

4 o1 c1 3

5 o2 c2 1

LF-mapping table

Interval of
all suffixes
starting
with:

begins at
position
(in suffix
array):

$ 0

a 1

c 2

o 4

Existence query with FM index:
1/4
• Let's search for pattern oco.

• As in case of reconstructing the
original string, the search
proceeds backwards.

• First, we find an interval of all
suffixes which start with o, to
locate query string xxo.

• This is easy: we know it from
the LF-table: it tells us that
these are suffixes in rows [4-5]
of the suffix array.

BWT (only L-column)

Row L SA

0 a1 5

1 o1 4

2 o2 2

3 $1 0

4 c1 3

5 c2 1

LF-mapping
table

All
chars

begin
at

$ 0

a 1

c 2

o 4

Existence query with FM index:
2/4
• Among these suffixes, we

want to know which ones are
preceded with c.

• We scan rows 4-5 of the L-
column, and see that both
suffixes are preceded with c -
with c1 to c2.

• So where is the interval in
the SA that corresponds to
[c1 - c2]?

• It is interval [2-3] according
to the LF-table.

BWT (only L-column)

Row L SA

0 a1 5

1 o1 4

2 o2 2

3 $1 0

4 c1 3

5 c2 1

LF-mapping
table

All
chars

begin
at

$ 0

a 1

c 2

o 4

Existence query with FM index:
3/4
• So we successfully located all

suffixes that start with co,
resolving by this two last
characters of the query: xco

• Among all suffixes that begin
with co, which ones are
preceded with o?

• There is only one such suffix,
and the preceding character
is o2.

• Where is o2 located?

BWT (only L-column)

Row L SA

0 a1 5

1 o1 4

2 o2 2

3 $1 0

4 c1 3

5 c2 1

LF-mapping
table

All
chars

begin
at

$ 0

a 1

c 2

o 4

Existence query with FM index:
4/4
• It is located at row 5 of the

suffix array, because,
according to the LF-table, all
o-suffixes start in row 4, and
o2 suffix is the second one,
that is in row 5.

• We successfully located the
entire query pattern oco: all
the suffixes that start with
oco are in the row 5 of the
suffix array.

BWT (only L-column)

Row L SA

0 a1 5

1 o1 4

2 o2 2

3 $1 0

4 c1 3

5 c2 1

LF-mapping
table

All
chars

begin
at

$ 0

a 1

c 2

o 4

Position queries

• By using only a transformed input string and a small LF
table, we could answer an existence query: yes, our dataset
contains substring oco.

• The amazing thing is that we found the answer using the
BWT string alone without scanning the entire input string
and without reconstructing the original string.

• In order to find at which position(s) the query occurs, we
need to look at the value of the suffix array in row 5.

• This value points to the position 1 in the original string, and
thus pattern oco occurs at position 1 in the cocoa$ dataset.

Self-exercise

• To make it stick, try now
to locate, following the
same logic, pattern coc.

BWT (only L-column)

Row L SA

0 a1 5

1 o1 4

2 o2 2

3 $1 0

4 c1 3

5 c2 1

LF-mapping
table

All
chars

begin
at

$ 0

a 1

c 2

o 4

When the substring query does
not exist: example
• What happens if we search for pattern aoa.

• All suffixes that start with a are in row 1.

• Among these (there is only one in this tiny dataset), there is
one suffix that is preceded by o, and it refers to o1.

• Going to row 4 for o1, we are looking for all suffixes
preceded by a.

• And there are no such suffixes!

• That means that pattern aoa is not present in our dataset.

Complications

• When we located an interval in the middle of the
search, we need to know the smallest and the
biggest rank of the next (preceding) query
character.

• If this interval is very large (and it is mostly the
case), how do we find the required ranks quickly?

FM-index:
Optimal search

Efficiency

• So far our search was exciting, but not terribly efficient:
each time we found the suffixes in the required interval, we
had to scan this interval in the L column to find the desired
ranked letters for the next interval.

• The example with cocoa$ database was tiny, but imagine
that we need to scan intervals of millions characters at each
step of the search algorithm.

Optimal search

• To make search for pattern P of length |P| to be completed
in exactly |P| steps we need to elaborate a little bit more on
our index.

• Note that searching in |P| steps is optimal: in order to
search for pattern of length |P| we have at least to read the
entire pattern, which takes |P| steps anyway.

• To achieve this optimal result, we enhance our index with
more information.

Enhancement

• For each row, instead of storing in column L characters with
ranks, we store several columns of ranks - one column for
each letter of the alphabet.

• In each cell of this column we store the number of times
that this particular character has been seen in column L
before the position specified by the row number.

• This is nothing else but the highest rank of each character
seen so far.

Extended FM-index

Extended index

Row F L
rank
$

rank
a

rank
c

rank
o

SA

0 $1 a1 0 1 0 0 5

1 a1 o1 0 1 0 1 4

2 c1 o2 0 1 0 2 2

3 c2 $1 1 1 0 2 0

4 o1 c1 1 1 1 2 3

5 o2 c2 1 1 2 2 1

LF-mapping
table

All
chars

begin
at

$ 0

a 1

c 2

o 4

Optimal search in 3 steps

• Now, let's perform the search for oco again.

• Because this pattern has length |P|=3, we want to
perform the entire search procedure in three steps.

• Our goal is to obtain a consecutive interval in the
suffix array for all suffixes that start with oco.

LF-mapping
table

All
chars

begin
at

$ 0

a 1

c 2

o 4

Optimal search: initialization

• To initialize, we
consider the entire
interval [0,5] as a
starting interval.
• start s=0,

• end e=N=5

• As before, we
search backwards.

Extended index

Row
rank
$

rank
a

rank
c

rank
o

SA

0 0 1 0 0 5

1 0 1 0 1 4

2 0 1 0 2 2

3 1 1 0 2 0

4 1 1 1 2 3

5 1 1 2 2 1

LF-mapping
table

All
chars

begin
at

$ 0

a 1

c 2

o 4

Optimal search: step 1/3
• In the interval [s,e] we search for

suffixes that start with o.

In row s=0 the rank (at pos s=0, of o) = 0

In row e = 5 rank (at pos e=5, of o) = 2

• If the rank is zero, then this means
that all preceding o’s in this interval
start directly from the first position of
o’s in the LF-table: position 4

• The end of the interval is:

LF(o) + rank (at pos e=5, of o) -1 = 5

• The new interval becomes: s=4, e=5.

• Result so far: [4,5].

Extended index

Row
rank
$

rank
a

rank
c

rank
o

SA

0 0 1 0 0 5

1 0 1 0 1 4

2 0 1 0 2 2

3 1 1 0 2 0

4 1 1 1 2 3

5 1 1 2 2 1

LF-mapping
table

All
chars

begin
at

$ 0

a 1

c 2

o 4

Optimal search: step 2/3
• In the interval [4,5] what

are the suffixes that have a
letter c before o?

• To answer this, we look at
rank (at pos s=4, of c) and
rank (at pos e=5, of c):

rank(4, c) = 1

rank (5, c) = 2

• That means that the
preceding c’s are between
the first and the second c
in the suffix array.

Extended index

Row
rank
$

rank
a

rank
c

rank
o

SA

0 0 1 0 0 5

1 0 1 0 1 4

2 0 1 0 2 2

3 1 1 0 2 0

4 1 1 1 2 3

5 1 1 2 2 1

LF-mapping
table

All
chars

begin
at

$ 0

a 1

c 2

o 4

Optimal search: step 2/3

• The start and end of a
new interval is
computed by:

s = LF (c) + rank(4,c) - 1 =
2 + 1 -1=2

e = LF (c) + rank (5,c) - 1=
2 + 2 - 1=3

• And the narrowed
interval after step 2
becomes: [2, 3].

Extended index

Row
rank
$

rank
a

rank
c

rank
o

SA

0 0 1 0 0 5

1 0 1 0 1 4

2 0 1 0 2 2

3 1 1 0 2 0

4 1 1 1 2 3

5 1 1 2 2 1

LF-mapping
table

All
chars

begin
at

$ 0

a 1

c 2

o 4

Optimal search: step 3/3

• In the interval [2,3] what are the
suffixes that are preceded by o?

• The rank of o at position 2 is 2,
and the rank of o at position 3 is
2, so the new values of start and
end become:

s = LF (o) + rank(2,o) -1

= 4 +2 -1 = 5

e = LF (o) + rank (3,o) - 1

= 4 + 2 -1 = 5

• Our final interval is [5,5].

Extended index

Row
rank
$

rank
a

rank
c

rank
o

SA

0 0 1 0 0 5

1 0 1 0 1 4

2 0 1 0 2 2

3 1 1 0 2 0

4 1 1 1 2 3

5 1 1 2 2 1

General formula for the next
interval
• To compute the next start position for the interval of all suffixes starting

with character c from the current start row s:

c_rank = rank (c in row s)

if c_rank > 0 c_rank = c_rank -1

next_s = LF (c) + c_rank

• To compute the next end position for the interval of all suffixes starting
with character c from the current end row e:

c_rank = rank (c in row e)

if c_rank = 0: pattern does not occur in the input string

else: c_rank = c_rank -1

next_e = LF (c) + c_rank

This is an amazing result: not only we can compress
our input string, but we can search for pattern P in
optimal time O(|P|), without decompression.

