Suffix sorting

Lecture 5.1

Algorithm based on Larsson fast suffix sorting

Reading:

http://www.larsson.dogma.net/ssrev-tr.pdf

How do we construct the suffix array

- The suffix array can be constructed from the suffix tree
- Why NOT to do it:
 - The suffix tree construction algorithms are complex
 - We need an intermediate space to store the suffix tree – which may be too big!

Larsson algorithm: intuition

- Sort suffixes by prefix of length 1 character
- Now, in order to sort suffixes by prefix of length 2, we can look at the results of the previous sorting at position i+1
- Once the suffixes are sorted by prefix of length 2, we can now produce a suffix order for prefixes of length 4, by looking at the results of the previous step at position i+2
- Once suffixes are sorted by prefix of length 4, we can immediately produce sorting of 8-character prefixes by looking at the results at position i+4
- At each iteration h, we produce total suffix sorting for prefixes of length 2^h, and in at most log N iterations we produce the final ranks for each suffix in the suffix array

Larsson suffix sorting

- Complexity: O(N log N)
- Assumption: the entire input string is in memory and all the intermediate ranks are in memory to be read at random position in a constant time

SAMPLE RUN OF THE LARSSON ALGORITHM

pos	с	h	i	h	u	а	h	u	а	\$
i	0	1	2	3	4	5	6	7	8	9

Sort (bucket or merge sort) by the first character of each suffix: **h-order with h=1**

	\$	а	а	С	h	h	h	i	u	u
SA (Start pos of sorted suffixes)	9	5	8	0	1	3	6	2	4	7
Pos in SA: X	0	1	2	3	4	5	6	7	8	9
rank	0	1	1	3	4	4	4	7	8	8
Group length	1	-2		1	-3			1	-2	

For the next step we need rank (SA[X]+1)

pos	с	h	i	h	u	а	h	u	а	\$
i	0	1	2	3	4	5	6	7	8	9

To resolve equal ranks we look at ranks at position i+1 **h-order with h=2**

	\$	а	а	С	h	h	h	i	u	u
Start pos	9	5	8	0	1	3	6	2	4	7
Pos in SA: X	0	1	2	3	4	5	6	7	8	9
rank	0	1	1	3	4	4	4	7	8	8
Group length	1	-2		1	-3			1	-2	

Rank 1 for a at position 5 is followed by rank 4, while rank 1 for a at position 8 is followed by rank 0, so we can resolve ranks for two a's

pos	с	h	i	h	u	а	h	u	а	\$
i	0	1	2	3	4	5	6	7	8	9

To resolve equal ranks we look at ranks at position i+1 **h-order with h=2**

	\$	а	а	С	h	h	h	i	u	u
Start pos	9	8	5	0	1	3	6	2	4	7
Pos in SA: X	0	1	2	3	4	5	6	7	8	9
rank	0	1	2	3	4	4	4	7	8	8
Group length	1	1	1	1	-3			1	-2	

Rank 1 for *a* at position 5 is followed by rank 4, while rank 1 for *a* at position 8 is followed by rank 0, so we can resolve ranks for two *a*'s

pos	с	h	i	h	u	а	h	u	а	\$
i	0	1	2	3	4	5	6	7	8	9

To resolve equal ranks we look at ranks at position i+1

h-order with h=2

	\$	а	а	С	h	h	h	i	u	u
Start pos	9	8	5	0	1	3	6	2	4	7
Pos in SA: X	0	1	2	3	4	5	6	7	8	9
rank	0	1	2	3	4	5	5	7	8	8
Group length	1	1	1	1	1	-2	-2	1	-2	

Similarly, we resolve ranks for h1, h3 and h6: h1 - (4,7), h3 - (4,8), h6 - (4,8)

and for u4 and u7: u4 – (8,1), u7 – (8,1)

pos	с	h	i	h	u	а	h	u	а	\$
i	0	1	2	3	4	5	6	7	8	9

To resolve equal ranks we look at ranks at position i+1 **h-order with h=2**

	\$	а	а	С	h	h	h	i	u	u
Start pos	9	8	5	0	1	3	6	2	4	7
Pos in SA: X	0	1	2	3	4	5	6	7	8	9
rank	0	1	2	3	4	5	5	7	8	8
Group length	1	1	1	1	1	-2	-2	1	-2	

Because prefixes of length 2 are already sorted, next we look at ranks at position SA[X] + 2

pos	с	h	i	h	u	а	h	u	а	\$
i	0	1	2	3	4	5	6	7	8	9

To resolve equal ranks we look at ranks at position i+2 h-order with h=4

	\$	а	а	С	h	h	h	i	u	u
Start pos	9	8	5	0	1	3	6	2	4	7
Pos in SA: X	0	1	2	3	4	5	6	7	8	9
rank	0	1	2	3	4	5	5	7	8	8
Group length	1	1	1	1	1	-2	-2	1	-2	

To resolve ranks for h3 and h6: h3 - (5,2), h6 - (5,1)

To resolve ranks for u4 and u7: u4 – (8,5), u7 – (8,0)

pos	с	h	i	h	u	а	h	u	а	\$
i	0	1	2	3	4	5	6	7	8	9

To resolve equal ranks we look at ranks at position i+2 h-order with h=4

	\$	а	а	С	h	h	h	i	u	u
Start pos	9	8	5	0	1	6	3	2	7	4
Pos in SA: X	0	1	2	3	4	5	6	7	8	9
rank	0	1	2	3	4	5	6	7	8	9
Group length	1	1	1	1	1	1	1	1	1	1

To resolve ranks for h3 and h6: h3 – (5,2), h6 – (5,1)

To resolve ranks for u4 and u7: u4 – (8,5), u7 – (8,0)

pos	с	h	i	h	u	а	h	u	а	\$
i	0	1	2	3	4	5	6	7	8	9

All suffixes now have their unique distinct rank: all are sorted

	\$	а	а	С	h	h	h	i	u	u
Start pos	9	8	5	0	1	6	3	2	7	4
Pos in SA: X	0	1	2	3	4	5	6	7	8	9
rank	0	1	2	3	4	5	6	7	8	9
Group length	1	1	1	1	1	1	1	1	1	1

Final suffix array

SA	9	8	5	0	1	6	3	2	7	4

С	h	i	h	u	а	h	u	а	\$
0	1	2	3	4	5	6	7	8	9

Checking suffix order

SA2	9	8	5	0	1	6	3	2	7	4
	\$	а	а	С	h	h	h	i	u	u
		\$	h	h	i	u	u	h	а	а
			u		h	а	а		\$	h
			а			\$	h			u
			\$				u			

SA 9 8 5 0 1 6 3 2 7	4
----------------------	---