Suffix sorting

Lecture 5.1
 Algorithm based on Larsson fast suffix sorting

Reading:

http://www.larsson.dogma.net/ssrev-tr.pdf

How do we construct the suffix array

- The suffix array can be constructed from the suffix tree
- Why NOT to do it:
- The suffix tree construction algorithms are complex
- We need an intermediate space to store the suffix tree - which may be too big!

Larsson algorithm: intuition

- Sort suffixes by prefix of length 1 character
- Now, in order to sort suffixes by prefix of length 2 , we can look at the results of the previous sorting at position i+1
- Once the suffixes are sorted by prefix of length 2 , we can now produce a suffix order for prefixes of length 4, by looking at the results of the previous step at position $\mathrm{i}+2$
- Once suffixes are sorted by prefix of length 4, we can immediately produce sorting of 8-character prefixes by looking at the results at position i+4
- At each iteration h, we produce total suffix sorting for prefixes of length 2^{h}, and in at most log \mathbf{N} iterations we produce the final ranks for each suffix in the suffix array

Larsson suffix sorting

- Complexity: $\mathrm{O}(\mathrm{N} \log \mathrm{N})$
- Assumption: the entire input string is in memory and all the intermediate ranks are in memory to be read at random position in a constant time

SAMPLE RUN OF THE LARSSON ALGORITHM

pos	c	h	i	h	u	a	h	u	a	\$
i	0	1	2	3	4	5	6	7	8	9

Sort (bucket or merge sort) by the first character of each suffix:
h-order with $\mathrm{h}=1$

	$\$$	a	a	c	h	h	h	i	u	u
SA (Start pos of sorted suffixes)	9	5	8	0	1	3	6	2	4	7
Pos in SA: X	0	1	2	3	4	5	6	7	8	9
rank	0	1	1	3	4	4	4	7	8	8
Group length	1	-2		1	-3			1	-2	

For the next step we need rank (SA[X]+1)

pos	c	h	i	h	u	a	h	u	a	\$
i	0	1	2	3	4	5	6	7	8	9

To resolve equal ranks we look at ranks at position i+1
h-order with $\mathbf{h = 2}$

	$\$$	a	a	c	h	h	h	i	u	u
Start pos	9	5	8	0	1	3	6	2	4	7
Pos in SA: X	0	1	2	3	4	5	6	7	8	9
rank	0	1	1	3	4	4	4	7	8	8
Group length	1	-2		1	-3			1	-2	

Rank 1 for a at position 5 is followed by rank 4, while rank 1 for a at position 8 is followed by rank 0 , so we can resolve ranks for two a's

pos	c	h	i	h	u	a	h	u	a	\$
i	0	1	2	3	4	5	6	7	8	9

To resolve equal ranks we look at ranks at position i+1
h-order with $\mathbf{h = 2}$

	$\$$	a	a	c	h	h	h	i	u	u
Start pos	9	8	5	0	1	3	6	2	4	7
Pos in SA: X	0	1	2	3	4	5	6	7	8	9
rank	0	1	2	3	4	4	4	7	8	8
Group length	1	1	1	1	-3			1	-2	

Rank 1 for a at position 5 is followed by rank 4, while rank 1 for a at position 8 is followed by rank 0 , so we can resolve ranks for two a 's

pos	c	h	i	h	u	a	h	u	a	\$
i	0	1	2	3	4	5	6	7	8	9

To resolve equal ranks we look at ranks at position i+1
h-order with $\mathbf{h = 2}$

	$\$$	a	a	c	h	h	h	i	u	u
Start pos	9	8	5	0	1	3	6	2	4	7
Pos in SA: X	0	1	2	3	4	5	6	7	8	9
rank	0	1	2	3	4	5	5	7	8	8
Group length	1	1	1	1	1	-2	-2	1	-2	

Similarly, we resolve ranks for h1, h3 and h6:
h1 - $(4,7)$, h3 - $(4,8)$, h6 - $(4,8)$
and for $u 4$ and $u 7$:
u4 - $(8,1)$, u7-(8,1$)$

pos	c	h	i	h	u	a	h	u	a	\$
i	0	1	2	3	4	5	6	7	8	9

To resolve equal ranks we look at ranks at position i+1
h-order with h=2

	$\$$	a	a	c	h	h	h	i	u	u
Start pos	9	8	5	0	1	3	6	2	4	7
Pos in SA: X	0	1	2	3	4	5	6	7	8	9
rank	0	1	2	3	4	5	5	7	8	8
Group length	1	1	1	1	1	-2	-2	1	-2	

Because prefixes of length 2 are already sorted, next we look at ranks at position SA[X] +2

pos	c	h	i	h	u	a	h	u	a	\$
i	0	1	2	3	4	5	6	7	8	9

To resolve equal ranks we look at ranks at position i+2
h-order with $h=4$

	$\$$	a	a	c	h	h	h	i	u	u
Start pos	9	8	5	0	1	3	6	2	4	7
Pos in SA: X	0	1	2	3	4	5	6	7	8	9
rank	0	1	2	3	4	5	5	7	8	8
Group length	1	1	1	1	1	-2	-2	1	-2	

To resolve ranks for h3 and h6:
h3 - $(5,2)$, h6 - $(5,1)$

To resolve ranks for $u 4$ and $u 7$:
$u 4-(8,5), u 7-(8,0)$

pos	c	h	i	h	u	a	h	u	a	\$
i	0	1	2	3	4	5	6	7	8	9

To resolve equal ranks we look at ranks at position i+2
h-order with $h=4$

	$\$$	a	a	c	h	h	h	i	u	u
Start pos	9	8	5	0	1	6	3	2	7	4
Pos in SA: X	0	1	2	3	4	5	6	7	8	9
rank	0	1	2	3	4	5	6	7	8	9
Group length	1	1	1	1	1	1	1	1	1	1

To resolve ranks for h 3 and h6:
h3-(5,2), h6 - $(5,1)$
To resolve ranks for $u 4$ and $u 7$:
$u 4-(8,5), u 7-(8,0)$

pos	c	h	i	h	u	a	h	u	a	\$
i	0	1	2	3	4	5	6	7	8	9

All suffixes now have their unique distinct rank: all are sorted

	$\$$	a	a	c	h	h	h	i	u	u
Start pos	9	8	5	0	1	6	3	2	7	4
Pos in SA: X	0	1	2	3	4	5	6	7	8	9
rank	0	1	2	3	4	5	6	7	8	9
Group length	1	1	1	1	1	1	1	1	1	1

Final suffix array

SA	9	8	5	0	1	6	3	2	7	4

c	h	i	h	u	a	h	u	a	$\$$
0	1	2	3	4	5	6	7	8	9

Checking suffix order

SA2	9	8	5	0	1	6	3	2	7	4
	\$	a	a	c	h	h	h	i	u	u
		\$	h	h	i	u	u	h	a	a
			u	...	h	a	a	..	\$	h
			a		...	\$	h			u
			\$				u			..
							...			
SA	9	8	5	0	1	6	3	2	7	4

It works!

