
The magic of suffix
trees

Lecture 3

Pattern matching problem -
continued

KMP is an optimal linear-time algorithm for the
patter-matching problem
It works in a situation when the pattern is fixed and
the text is streaming – the text is not known before
the search starts
The different setting:

text T is known first and it is kept fixed for some time
the new patterns are constantly arriving
the search for each pattern should be done as quick as
possible

Suffix trees
Suffix tree of T exposes the internal structure of this
text
Assuming that the text is re-written in a form of the
suffix tree, the pattern matching problem can be
performed in time O(M+k), where M is the length of
a pattern, and k is the number of occurrences. The
search time does not depend on the length of T
In addition, suffix trees provide optimal (linear-time)
solutions to numerous complex problems other than
the pattern matching problem

Tree branch with suffixes

r
1

ca cao

T=cacao

Tree branch with suffixes

r
1

ca cao

2

a cao

T=cacao

Tree branch with suffixes

r
1

ca cao

2

3

a caoo

T=cacao

While adding a new suffix,
we follow the path of
matches from the root,
and create a new branch
only when the next
character of a suffix does
not match

Tree branch with suffixes

r
1

ca cao

2

3
4

a cao
oo

T=cacao

Tree branch with suffixes

r
1

ca cao

2

3
4 5

a cao o

oo

T=cacao

Suffix tree terminology

r
1

ca cao

2

3
4 5

a cao o

oo

T=cacao

root

internal node

leaf

edge label

Search for pattern ca

r
1

ca cao

2

3
4 5

a cao o

oo

T=cacao

Suffix tree - definition
A suffix tree for string T (of length N) is a
rooted directed tree with the following
properties:

N leaves, numbered 1 to N.
Each internal node has at least two children.
No two edges out of a node have edge-labels
beginning with the same character.
For any leaf i, the concatenation of the edge-
labels on the path from root to leaf i spells out
the suffix T[i..N] of T.

Full-text indexing

All different substrings of T can be found in
the suffix tree following the path from the root
Build a tree for T=bananas

Another suffix tree

R

4 5 16

ve

e

neves

sevenevesneves

s e v e n e v e s

1 2 3 4 5 6 7 8 9

3 7

ve

neves s

2

neves s

8

s

Another suffix tree

R

4 5 16

ve

e

neves

sevenevesneves

s e v e n e v e s
1 2 3 4 5 6 7 8 9

3 7

ve

neves s

2

neves s

8

s

What suffix is missing?

Another suffix tree

R

4 5 16

ve

e

neves

sevenevesneves

s e v e n e v e s
1 2 3 4 5 6 7 8 9

3 7

ve

neves s

2

neves s

8

s

Where is the leaf for T[9…9]=s?

What if we search for pattern P=s?

Proper suffix tree

R

4 5 16

ve

e

neves$ eveneves$

neves$

s e v e n e v e s $
1 2 3 4 5 6 7 8 9 1

0

3 7

ve

neves$ s$

2

neves$ s$

8

s$

The sentinel $ does not occur in T

s

9

$

Search for P=eve

R

4 5 16

ve

e

neves$ eveneves$

neves$

s e v e n e v e s $

1 2 3 4 5 6 7 8 9 1
0

3 7

ve

neves$ s$

2

neves$ s$

8

s$

Search in time O(M+k)

s

9

$

Search for P=ne

R

4 5 16

ve

e

neves$ eveneves$
ne

ves$

s e v e n e v e s $

1 2 3 4 5 6 7 8 9 1
0

3 7

ve

neves$ s$

2

neves$ s$

8

s$

Search in time O(M+k)

s

9

$

Space
T=abcde

r

1

abcde

2 3 4 5

bcde

ede

cde

This tree occupies quadratic space

1+2+3+….N=O(N2)

Trick – re-label the edges

R

4 5 16

ve

e

neves$ eveneves$

neves$

s e v e n e v e s $
1 2 3 4 5 6 7 8 9 1

0

3 7

ve

neves$ s$

2

neves$ s$

8

s$

s->1-1

9

$

Trick – re-label the edges

R

4 5 16

ve

e->2-2

neves$ eveneves$

neves$

s e v e n e v e s $
1 2 3 4 5 6 7 8 9 1

0

3 7

ve

neves$ s$

2

neves$ s$

8

s$

1-1

9

$

Trick – re-label the edges

R

4 5 16

3-4

2-2

neves$ eveneves->2-10

neves$

s e v e n e v e s $
1 2 3 4 5 6 7 8 9 1

0

3 7

ve

neves$ s$

2

neves$ s$

8

s$

1-1

9

$

Linear space

R

4 5 16

3-4

2-2

5-10 2-10

5-10

s e v e n e v e s $

1 2 3 4 5 6 7 8 9 1
0

3 7

3-4

5-10 9-10

2

5-10 9-10

8

9-10

1-1

9

10-10

The total number of leaves is N, the total number of internal nodes is O(N)

With a constant storage space per node – the suffix tree can be stored in
linear space

Search

R

4 5 16

3-4

2-2

5-10 2-10

5-10

s e v e n e v e s $

1 2 3 4 5 6 7 8 9 1
0

3 7

3-4

5-10 9-10

2

5-10 9-10

8

9-10

1-1

9

10-10

In order to find an outgoing edge which starts with e, we check which of T[2],
T[5], T[1] or T[3] is e.

The search is as efficient as before, assuming a constant time access to each
character of T

Summary of the search

If we have preprocessed the text T into its
suffix tree, we can answer a Boolean query of
an occurrence of a pattern of length M by
performing only M steps, independently of the
length of the text T
In order to report all k occurrences of a
pattern, the traversal of a corresponding
subtree is performed in O(k) steps

References

http://marknelson.us/1996/08/01/suffix-trees/
http://en.wikipedia.org/wiki/Suffix_tree
http://www.allisons.org/ll/AlgDS/Tree/Suffix/

http://marknelson.us/1996/08/01/suffix-trees/
http://en.wikipedia.org/wiki/Suffix_tree

	The magic of suffix trees
	Pattern matching problem - continued
	Suffix trees
	Tree branch with suffixes
	Tree branch with suffixes
	Tree branch with suffixes
	Tree branch with suffixes
	Tree branch with suffixes
	Suffix tree terminology
	Search for pattern ca
	Suffix tree - definition
	Full-text indexing
	Another suffix tree
	Another suffix tree
	Another suffix tree
	Proper suffix tree
	Search for P=eve
	Search for P=ne
	Space
	Trick – re-label the edges
	Trick – re-label the edges
	Trick – re-label the edges
	Linear space
	Search
	Summary of the search
	References

