
The magic of suffix 
trees

Lecture 3



Pattern matching problem - 
continued

KMP is an optimal linear-time algorithm for the 
patter-matching problem
It works in a situation when the pattern is fixed and 
the text is streaming – the text is not known before 
the search starts
The different setting:

text T is known first and it is kept fixed for some time
the new patterns are constantly arriving
the search for each pattern should be done as quick as 
possible



Suffix trees
Suffix tree of T exposes the internal structure of this 
text  
Assuming that the text is re-written in a form of the 
suffix tree, the pattern matching problem can be 
performed in time O(M+k), where M is the length of 
a pattern, and k is the number of occurrences. The 
search time does not depend on the length of T
In addition, suffix trees provide optimal (linear-time) 
solutions to numerous complex problems other than 
the pattern matching problem
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While adding a new suffix, 
we follow the path of 
matches from the root, 
and create a new branch 
only when the next 
character of a suffix does 
not match
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Suffix tree terminology
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Search for pattern ca
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Suffix tree - definition
A suffix tree for string T (of length N) is a 
rooted directed tree with the following 
properties:

N leaves, numbered 1 to N. 
Each internal node has at least two children. 
No two edges out of a node have edge-labels 
beginning with the same character.
For any leaf i, the concatenation of the edge-
labels on the path from root to leaf i spells out 
the suffix T[i..N] of T.



Full-text indexing

All different substrings of T can be found in 
the suffix tree following the path from the root
Build a tree for T=bananas
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What suffix is missing?
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Where is the leaf for T[9…9]=s? 

What if we search for pattern P=s?



Proper suffix tree
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Search for P=eve
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Space
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This tree occupies quadratic space

1+2+3+….N=O(N2)



Trick – re-label the edges
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Linear space
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The total number of leaves is N, the total number of internal nodes is O(N)

With a constant storage space per node – the suffix tree can be stored in 
linear space



Search
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In order to find an outgoing edge which starts with e, we check which of T[2], 
T[5], T[1] or T[3] is e.

The search is as efficient as before, assuming a constant time access to each 
character of T



Summary of the search

If we have preprocessed the text T into its 
suffix tree, we can answer a Boolean query of 
an occurrence of a pattern of length M by 
performing only M steps, independently of the 
length of the text T
In order to report all k occurrences of a 
pattern, the traversal of a corresponding 
subtree is performed in O(k) steps
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