Searching for a pattern. Knuth-Morris-Pratt

Lecture 2.

Motivation

"In a very real sense, molecular biology is all about sequences. It tries to reduce complex biochemical phenomena to interaction between defined sequences"
G. Von Heijne. Sequence analysis in molecular biology: treasure trove or trivial pursuit. Academic press, 1987

Examples

- Finding the overlaps during the sequence assembly
- Finding STS - Sequence Tagged Sites unique sequences used to map the positions of the fragments in the genome
- Finding EST - Expressed Sequence Tags STSs of protein-coding DNA - to locate genes inside the entire sequenced genome

Useful definitions

- A string S of length N is an ordered list of N elements written contiguously from left to right
- The elements are called symbols or characters
- $S[i \ldots j]$ is a contiguous substring of S starting at position i and ending at position j of S
- $S[1 \ldots j]$ is a prefix of S starting at position 1 and ending at position j
- $S[i \ldots N]$ is a suffix of S starting at position i and running till the last character of S
- $S[i \ldots j]$ is an empty string if $i>j$
- A proper substring, prefix, suffix of S is respectively a substring, prefix, suffix that is neither the entire string S nor the empty string

Pattern matching problem

Given a string P (of length M) called the pattern and a longer string T (of length N) called the text, find all occurrences, if any, of pattern P in text T

Naïve method - time complexity

- Naïve method is to compare the characters of the pattern starting from each of N positions of the text
- In the worst case, it requires $\mathrm{O}(\mathrm{MN})$ character comparisons, exactly $\mathrm{M}(\mathrm{N}-\mathrm{M}+1)$, for example, for $T=$ aaaaaaaaaa ($N=10$) and $P=$ aaa ($M=3$) there are 24 character comparisons

Naïve method - time complexity

- In the worst case, we start from each position i of T (there are N such positions), and for each such position check, in the worst case, all M characters of P
- A standard fetching time from sequential RAM is 358 MB values per second (ref).
- If we have 10 random sets of sequenced fragments from the 3 GB length human genome, then we need to search the text of a total size $3^{*} 10^{10}$, which can be sequentially accessed with approximately $3^{*} 10^{8}$ values per second. We will spend 100 seconds on a linear time algorithm, but for the worst case we need to multiply it by the value of M, which can be as large as 800 .
- Grep search program (based on a linear-time algorithm), for example, requires about 2 minutes when searching for a string of length 10 in a 3 GB text (on an average desktop machine).
- We want the pattern search algorithm to perform in a linear time

Our dream goal: each character of T is accessed only once

Is this algorithm correct?

Incorrect algorithm

No, we have missed an occurrence of P starting at position 4 tictic

Knuth-Morris-Pratt (KMP) idea

- When we have aligned the prefix of P with k characters of T, we know what characters are in T up to the current position (they are equal to those of the prefix $P[1 \ldots k]$ of P)
- From this information we can deduce the place where to start the next comparison

KMP intuition

We have aligned 6 characters
The next occurrence of a pattern has to start with tic and we know that the last characters of a match were tic, since the suffix of P starting at position 4 is equal to a prefix of P of length 3

KMP intuition

Therefore we can set a start of the next comparison to 3 positions backwards from the current position (red cell), and we don't need to compare the first 3 characters of P again, since we know that they match
Thus, we can continue the comparison from the next character of P (and T)

KMP intuition - overlap function for P

In order to know where to position the start of the next comparison, we need to know the values of an overlap function for P, namely:

For each position j in P, the maximal length of a substring which is at the same time a proper prefix of P and the proper suffix of substring $P[1, j]$.

Before we start the search, we need to compute an overlap function for P we need to preprocess pattern P

KMP intuition - overlap function for P

For $\mathrm{j}=1, \mathrm{OF}=0(t$ is not a proper suffix of a substring t, but the entire t)

KMP intuition - overlap function for P

For $\mathrm{j}=2$, $\mathrm{OF}=0$ (the only proper suffix of $t i$, the suffix i, does not have any overlap with the prefix t of t)

KMP intuition - overlap function for P

For $\mathrm{j}=3, \mathrm{OF}=0$ (suffixes $i c, c$ do not have an overlap)

KMP intuition - overlap function for P

For $\mathrm{j}=4, \mathrm{OF}=1$ (t is a proper suffix of a substring tict, and the prefix of P)

KMP intuition - overlap function for P

For $\mathrm{j}=5, \mathrm{OF}=2$ ($t i$ is a proper suffix of a substring ticti, and the prefix of P)

KMP intuition - overlap function for P

For $\mathrm{j}=6, \mathrm{OF}=3$ (tic is a proper suffix of a substring tictic, and the prefix of P)
Assume, for now, that the OF values for P are computed

KMP search

0	0	0	1	2	3

Consult OF(6)=3 it tells how many positions backward from i the next comparison starts: $\mathrm{k}=\mathrm{i}-\mathrm{OF}(\mathrm{j}-1)$

KMP search

0	0	0	1	2	3

No need to compare these 3 characters, we know that they match - we just compared them

KMP search

0	0	0	1	2	3

Consult OF(6)=3 it tells how many positions backward from i the next comparison starts: $k=i-O F(j)+1$

KMP search

0	0	0	1	2	3

Continue comparing $\mathrm{T}[10]$ and $\mathrm{P}[4]$

KMP search

0	0	0	1	2	3

T[11] and P[5] do not match. Consult $\mathrm{OF}(4)=1$. next potential match can start at $\mathrm{i}-\mathrm{OF}(\mathrm{j})=10$, and the first character is already matched

KMP search

0	0	0	1	2	3

Here we only matched till the position $\mathrm{j}=2$, the value $\mathrm{OF}(1)=0$, therefore we are not shifting the start of the comparison backwards but starting from the next $\mathrm{i}=12$ etc...

KMP search

0	0	0	1	2	3

If T would be larger, we continue in a similar manner, never accessing the characters of T more than twice

KMP - from an intuition to the algorithm

We need 3 pointers (3 only for clarity, could work with 2):
-pointer i will point to the current character of text T of length N
-pointer j will point to the current character of pattern P of length M
-pointer k will point to the start of a current comparison in T
in the beginning $i=1, j=1, k=1$

$$
i:=1 j:=1 \mathrm{k}:=1
$$

KMP - from an intuition to the algorithm

if we have enough symbols in T to match P starting from position k , then we continue to compare the corresponding characters of P and T

$$
\begin{aligned}
& \mathrm{i}:=1 \mathrm{j}:=1 \mathrm{k}:=1 \\
& \text { while: } \mathrm{N}-\mathrm{k}>=\mathrm{M}
\end{aligned}
$$

KMP - from an intuition to the algorithm

we continue matching symbols of P while they match or until we reached the end of P

$$
\begin{aligned}
& \mathrm{i}:=1 \mathrm{j}:=1 \mathrm{k}:=1 \\
& \text { while: } \mathrm{N}-\mathrm{k}>=\mathrm{M} \\
& \qquad \begin{aligned}
& \text { while: } \mathrm{j} \leq \mathrm{M} \text { and } T[\mathrm{i}]=P[j] \\
& \mathrm{i}:=\mathrm{i}+1 \\
& j:=j+1
\end{aligned}
\end{aligned}
$$

KMP - from an intuition to the algorithm

If we reached the end of P, we found our match starting at position k of T

$$
\begin{aligned}
& \mathrm{i}:=1 \mathrm{j}:=1 \mathrm{k}:=1 \\
& \text { while: } \mathrm{N}-\mathrm{k}>=\mathrm{M} \\
& \qquad \begin{array}{r}
\text { while: } \mathrm{j} \leq \mathrm{M} \text { and } T[i]=P[j] \\
\qquad \mathrm{i}:=\mathrm{i}+1 \\
\mathrm{j}:=\mathrm{j}+1
\end{array} \\
& \quad \text { if } j>M \text { then output } \mathrm{k}
\end{aligned}
$$

KMP - from an intuition to the algorithm

Now we need to find where to start the next comparison
if there was an overlap $\operatorname{OL}(j-1)$, then

- set the start of a new comparison (k) that many steps backwards from the current position in T as the value $\mathrm{OL}(j-1)$
- set j to the position $\mathrm{OL}(j-1)+1$ in T (we know that the previous characters match)
- i remains unchanged, since now we are going to compare it with the symbol at a different position of P

$$
\begin{aligned}
& \mathrm{i}:=1 \mathrm{j}:=1 \mathrm{k}:=1 \\
& \text { while: } \mathrm{N}-\mathrm{k}>=\mathrm{M} \\
& \qquad \begin{array}{r}
\text { while: } \mathrm{j} \leq \mathrm{M} \text { and } \mathrm{T}[\mathrm{i}]=\mathrm{P}[\mathrm{j}] \\
\mathrm{i}:=\mathrm{i}+1 \\
\mathrm{j}:=\mathrm{j}+1
\end{array} \\
& \text { if } \mathrm{j}>\mathrm{M} \text { then output } \mathrm{k} \\
& \text { if } \mathrm{OF}(\mathrm{j}-1)>0 \\
& \mathrm{k}:=\mathrm{i}-\mathrm{OF}(\mathrm{j}-1) \\
& \mathrm{j}:=\mathrm{OF}(\mathrm{j}-1)+1
\end{aligned}
$$

KMP - from an intuition to the algorithm

if the value of an overlap function is zero (do not need to check backwards), then
-advance i to the next position -set start of a comparison k to i
-set j to 1
$\mathrm{i}:=1 \mathrm{j}:=1 \mathrm{k}:=1$
while: $\mathrm{N}-\mathrm{k}>=\mathrm{M}$
while: $\mathrm{j} \leq \mathrm{M}$ and $\mathrm{T}[\mathrm{i}]=\mathrm{P}[\mathrm{j}]$

$$
\begin{aligned}
& i:=i+1 \\
& j:=j+1
\end{aligned}
$$

if $\mathrm{j}>\mathrm{M}$ then output k
if $O F(j-1)>0$

$$
\begin{aligned}
& \mathrm{k}:=\mathrm{i}-\mathrm{OF}(\mathrm{j}-1) \\
& \mathrm{j}:=\mathrm{OF}(\mathrm{j}-1)+1
\end{aligned}
$$

else

$$
\begin{aligned}
& \mathrm{k}:=\mathrm{i} \\
& \mathrm{j}:=1
\end{aligned}
$$

KMP - from an intuition to the algorithm

If fully matched - need to advance i

$$
i:=1 \mathrm{j}:=1 \mathrm{k}:=1
$$

$$
\text { while: } \mathrm{N}-\mathrm{k}>=\mathrm{M}
$$

while: $\mathrm{j} \leq \mathrm{M}$ and $\mathrm{T}[\mathrm{i}]=P[j]$

$$
\begin{aligned}
& i:=i+1 \\
& j:=j+1
\end{aligned}
$$

if $j>M$ then output k
if $\mathrm{OF}(\mathrm{j}-1)>0$
k:=i-OF(j-1)

$$
\mathrm{j}:=\mathrm{OF}(\mathrm{j}-1)+1
$$

else
if $i=k$ then

$$
i:=i+1
$$

$$
k:=i
$$

$$
j:=1
$$

KMP algorithm time complexity

- The number of character comparisons in KMP algorithm is at most 2 N
- Divide the algorithm into compare/shift phases, where a single phase consists of the comparisons done between 2 successive shifts. During 2 consecutive shifts, at most 2 comparisons are done for each character of T.
- Since pattern is never shifted left, the total number of character comparisons is bounded by $N+s$, where s is the total number of shifts. But $s<N$, since after N shifts the right end of P is certainly to the right of the right end of T, so the total number of comparisons done is bounded by 2 N

A worst-case example - iterations 1,2

1	1	1	1	1					
a	a	a	a	b	a	a	a	a	a
	a	a	a	a	a				

We have aligned pattern P , by performing so far 1 character comparison for each of 5 characters of P
Now we need to restart the comparison from the position 2 of T

1	1	1	1	2					
a	a	a	a	b	a	a	a	a	a
	a	a	a	a	a				

A worst-case example - iteration 3

1	1	1	1	2					
	a	a	a	a	b	a	a	a	a
	a	a	a	a	a				

We have compared character b of T already 2 times Next we start by aligning pattern starting at position 3 of T

1	1	1	1	3					
a	a	a	a	b	a	a	a	a	a
		a	a	a	a	a			

A worst-case example - iteration 4

1	1	1	1	4					
a	a	a	a	b	a	a	a	a	a
			a	a	a	a	a		

A worst-case example - iteration 5

1	1	1	1	5					
a	a	a	a	b	a	a	a	a	a
				a	a	a	a	a	

For now, we have compared character b of T 5 times (as the length of the pattern), but during this comparison we have shifted the left end of $P 5$ positions forward. Since we did not compare anymore any character to the left from b, we did in total not more than $5^{*} 2$ comparisons in order to process the 5 first characters of T .
This is true in general: the total number of character comparisons in KMP is bounded by 2 N

References

- http://en.wikipedia.org/wiki/Knuth-MorrisPratt algorithm
- http://www.ics.uci.edu/~eppstein/161/960227. html
- Dan Gusfield. Algorithms on strings, trees, and sequences. Computer science and computational biology. Cambridge University press, 1999.

