
Searching for a pattern.

Knuth-Morris-Pratt

Lecture 2.

Motivation

“In a very real sense, molecular biology is all

about sequences. It tries to reduce complex

biochemical phenomena to interaction

between defined sequences”
G. Von Heijne. Sequence analysis in molecular biology: treasure

trove or trivial pursuit. Academic press, 1987

Examples

 Finding the overlaps during the sequence

assembly

 Finding STS – Sequence Tagged Sites –

unique sequences used to map the positions

of the fragments in the genome

 Finding EST – Expressed Sequence Tags –

STSs of protein-coding DNA – to locate

genes inside the entire sequenced genome

Useful definitions

 A string S of length N is an ordered list of N elements written
contiguously from left to right

 The elements are called symbols or characters

 S[i…j] is a contiguous substring of S starting at position i and
ending at position j of S

 S[1…j] is a prefix of S starting at position 1 and ending at position
j

 S[i…N] is a suffix of S starting at position i and running till the last
character of S

 S[i…j] is an empty string if i>j

 A proper substring, prefix, suffix of S is respectively a substring,
prefix, suffix that is neither the entire string S nor the empty string

Pattern matching problem

 Given a string P (of length M) called the
pattern and a longer string T (of length N)
called the text, find all occurrences, if any, of
pattern P in text T

Naïve method – time complexity

 Naïve method is to compare the characters of

the pattern starting from each of N positions

of the text

 In the worst case, it requires O(MN) character

comparisons, exactly M(N-M+1), for example,

for T=aaaaaaaaaa (N=10) and P=aaa (M=3)

there are 24 character comparisons

Naïve method – time complexity

 In the worst case, we start from each position i of T (there are N such

positions), and for each such position check, in the worst case, all M

characters of P

 A standard fetching time from sequential RAM is 358 MB values per

second (ref).

 If we have 10 random sets of sequenced fragments from the 3 GB-

length human genome, then we need to search the text of a total size

3*1010, which can be sequentially accessed with approximately 3*108

values per second. We will spend 100 seconds on a linear time

algorithm, but for the worst case we need to multiply it by the value of

M, which can be as large as 800.

 Grep search program (based on a linear-time algorithm), for example,

requires about 2 minutes when searching for a string of length 10 in a 3

GB text (on an average desktop machine).

 We want the pattern search algorithm to perform in a linear time

http://cacm.acm.org/magazines/2009/8/34493-the-pathologies-of-big-data/fulltext

Our dream goal: each character of T is

accessed only once

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

tt citci

t citci Less than M

characters remain

Is this algorithm correct?

Incorrect algorithm

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

tt citci

t citci Less than M

characters remain

No, we have missed an occurrence of P starting at position 4

t citci

Knuth-Morris-Pratt (KMP) idea

 When we have aligned the prefix of P with k

characters of T, we know what characters are

in T up to the current position (they are equal

to those of the prefix P[1…k] of P)

 From this information we can deduce the

place where to start the next comparison

KMP intuition

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

tt citci

We have aligned 6 characters

The next occurrence of a pattern has to start

with tic and we know that the last characters of a

match were tic, since the suffix of P starting at

position 4 is equal to a prefix of P of length 3

KMP intuition

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

tt citci

Therefore we can set a start of the next comparison to 3 positions backwards from the current position

(red cell), and we don’t need to compare the first 3 characters of P again, since we know that they

match

Thus, we can continue the comparison from the next character of P (and T)

t citci

KMP intuition – overlap function for P

In order to know where to position the start of the next comparison, we need

to know the values of an overlap function for P, namely:

For each position j in P, the maximal length of a substring which is at the

same time a proper prefix of P and the proper suffix of substring P[1, j].

Before we start the search, we need to compute an overlap function for P –

we need to preprocess pattern P

t citci

654321

citcit

KMP intuition – overlap function for P

For j=1, OF=0 (t is not a proper suffix of a substring t, but the entire t)

t citci

654321

cct

0

KMP intuition – overlap function for P

For j=2, OF=0 (the only proper suffix of ti, the suffix i, does not have any

overlap with the prefix t of ti)

t citci

654321

cct

00

i

i

KMP intuition – overlap function for P

For j=3, OF=0 (suffixes ic, c do not have an overlap)

t citci

654321

cct

000

i

KMP intuition – overlap function for P

For j=4, OF=1 (t is a proper suffix of a substring tict, and the prefix of P)

t citci

654321

cct

1000

i tt

KMP intuition – overlap function for P

For j=5, OF=2 (ti is a proper suffix of a substring ticti, and the prefix of P)

t citci

654321

cct

21000

i tct i

KMP intuition – overlap function for P

For j=6, OF=3 (tic is a proper suffix of a substring tictic, and the prefix of P)

t citci

654321

cct

321000

i

c

i
tct i c

Assume, for now, that the OF values for P are computed

KMP search

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

Report 1

321000

j=7

Consult OF(6)=3 it tells how many positions backward

from i the next comparison starts: k=i-OF(j-1)

i=7

KMP search

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

321000 No need to compare these 3 characters, we

know that they match – we just compared them

KMP search

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

321000

Report 4

Consult OF(6)=3 it tells how many positions backward

from i the next comparison starts: k=i-OF(j)+1

i=10

j=7

KMP search

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

321000 Continue comparing T[10] and P[4]

KMP search

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

321000
T[11] and P[5] do not match. Consult OF(4)=1. next potential

match can start at i-OF(j)=10, and the first character is already

matched

j=5

i=11

KMP search

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

321000 Here we only matched till the position j=2, the value OF(1)=0,

therefore we are not shifting the start of the comparison backwards

but starting from the next i=12 etc…

j=2

i=11

KMP search

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

54321

citcit

321000 If T would be larger, we continue in a similar manner,

never accessing the characters of T more than twice

KMP – from an intuition to the algorithm

We need 3 pointers (3 only for

clarity, could work with 2):

•pointer i will point to the

current character of text T of

length N

•pointer j will point to the

current character of pattern P

of length M

•pointer k will point to the start

of a current comparison in T

in the beginning i=1, j=1, k=1

i:=1 j:=1 k:=1

KMP - from an intuition to the algorithm

if we have enough symbols in T to

match P starting from position k, then

we continue to compare the

corresponding characters of P and T

i:=1 j:=1 k:=1

while: N-k>=M

KMP - from an intuition to the algorithm

we continue matching symbols of P

while they match or until we reached

the end of P

i:=1 j:=1 k:=1

while: N-k>=M

while: j ≤ M and T[i]=P[j]

i:=i+1

j:=j+1

KMP - from an intuition to the algorithm

If we reached the end of P, we found

our match starting at position k of T
i:=1 j:=1k:=1

while: N-k>=M

while: j ≤ M and T[i]=P[j]

i:=i+1

 j:=j+1

if j>M then output k

KMP - from an intuition to the algorithm

Now we need to find where to start the

next comparison

if there was an overlap OL(j-1), then

• set the start of a new comparison

(k) that many steps backwards

from the current position in T as

the value OL(j-1)

• set j to the position OL(j-1)+1 in T

(we know that the previous

characters match)

• i remains unchanged, since now

we are going to compare it with the

symbol at a different position of P

i:=1 j:=1 k:=1

while: N-k>=M

while: j ≤ M and T[i]=P[j]

i:=i+1

j:=j+1

if j>M then output k

if OF(j-1)>0

k:=i-OF(j-1)

j:=OF(j-1)+1

KMP - from an intuition to the algorithm

if the value of an overlap function is

zero (do not need to check backwards),

then

•advance i to the next position

•set start of a comparison k to i

•set j to 1

i:=1 j:=1 k:=1

while: N-k>=M

while: j ≤ M and T[i]=P[j]

i:=i+1

 j:=j+1

if j>M then output k

if OF(j-1)>0

k:=i-OF(j-1)

j:=OF(j-1)+1

else

k:=i

j:=1

KMP - from an intuition to the algorithm

If fully matched - need to advance i

i:=1 j:=1 k:=1

while: N-k>=M

while: j ≤ M and T[i]=P[j]

i:=i+1

j:=j+1

if j>M then output k

if OF(j-1)>0

else

k:=i-OF(j-1)

j:=OF(j-1)+1

if i=k then

i:=i+1

k:=i

j:=1

KMP algorithm time complexity

 The number of character comparisons in KMP

algorithm is at most 2N

 Divide the algorithm into compare/shift phases, where a

single phase consists of the comparisons done between 2

successive shifts. During 2 consecutive shifts, at most 2

comparisons are done for each character of T.

 Since pattern is never shifted left, the total number of

character comparisons is bounded by N+s, where s is the

total number of shifts. But s<N, since after N shifts the right

end of P is certainly to the right of the right end of T, so the

total number of comparisons done is bounded by 2N

A worst-case example – iterations 1,2

1 1 1 1 1

a a a a b a a a a a

a a a a a

We have aligned pattern P, by performing so far 1 character comparison for

each of 5 characters of P

Now we need to restart the comparison from the position 2 of T

1 1 1 1 2

a a a a b a a a a a

a a a a a

A worst-case example – iteration 3

1 1 1 1 2

a a a a b a a a a a

a a a a a

We have compared character b of T already 2 times

Next we start by aligning pattern starting at position 3 of T

1 1 1 1 3

a a a a b a a a a a

a a a a a

A worst-case example – iteration 4

1 1 1 1 4

a a a a b a a a a a

a a a a a

A worst-case example – iteration 5

1 1 1 1 5

a a a a b a a a a a

a a a a a

For now, we have compared character b of T 5 times (as the length of the

pattern), but during this comparison we have shifted the left end of P 5

positions forward. Since we did not compare anymore any character to

the left from b, we did in total not more than 5*2 comparisons in order to

process the 5 first characters of T.

This is true in general: the total number of character comparisons in KMP

is bounded by 2N

References

 http://en.wikipedia.org/wiki/Knuth-Morris-

Pratt_algorithm

 http://www.ics.uci.edu/~eppstein/161/960227.

html

 Dan Gusfield. Algorithms on strings, trees,

and sequences. Computer science and

computational biology. Cambridge University

press, 1999.

http://en.wikipedia.org/wiki/Knuth-Morris-Pratt_algorithm
http://en.wikipedia.org/wiki/Knuth-Morris-Pratt_algorithm
http://en.wikipedia.org/wiki/Knuth-Morris-Pratt_algorithm
http://en.wikipedia.org/wiki/Knuth-Morris-Pratt_algorithm
http://en.wikipedia.org/wiki/Knuth-Morris-Pratt_algorithm
http://www.ics.uci.edu/~eppstein/161/960227.html
http://www.ics.uci.edu/~eppstein/161/960227.html

