Probabilistic approaches. Hidden Markov Models

Lecture 11

The honest and the dishonest casino

Choose L with $P(L)=0.01$

$$
P(F)=\underset{\text { Prior probabilities - before we see any evidence (sequence) }}{0.99} P(L)=0.01
$$

Bayes theorem and the model comparison

- Pick a die at random - and roll
- We get 3 consecutive sixes
- Is the die loaded? What is the probability?
- We want to know $\mathrm{P}(\mathrm{L} \mid 3$ sixes)
- From Bayes theorem:
$P(L \mid 3$ sixes $)=P(3 \text { sixes } \mid L)^{*} P(L) / P(3$ sixes $)$ $P(F \mid 3$ sixes $)=P(3 \text { sixes } \mid F)^{*} P(F) / P(3$ sixes $)$

The sequence was generated either by fair or by loaded die $P(3$ sixes $)=P(3$ sixes $\mid F) * P(F)+P(3$ sixes $\mid L) * P(L)=0.0058$

- $P(L \mid 3$ sixes $)=\left(0.5 * 0.5^{*} 0.5^{*} 0.01\right) / 0.0058=0.215$
- $\mathrm{P}(\mathrm{F} \mid 3$ sixes $)=(1 / 6)^{*}(1 / 6)^{*}(1 / 6)^{*} 0.99 / 0.0058=0.785$

What are the odds?

- $P(W 1 \mid$ evidence $)=P($ evidence $\mid W 1) * P(W 1) / P($ evidence $)$
- $P(W 2 \mid$ evidence $)=P($ evidence $\mid W 2) * P(W 2) / P($ evidence $)$
- To compare P (W1|evidence) vs P (W2|evidence) :

P (W1|evidence) / P (W2|evidence)

- Or to avoid underflow:
$\log (P$ (W1|evidence) / P (W2|evidence))
- Log odds ratio $=\log [\mathrm{P}($ evidence $\mid \mathrm{W} 1) * \mathrm{P}(\mathrm{W} 1) / \mathrm{P}($ evidence $\mid \mathrm{W} 2) * \mathrm{P}(\mathrm{W} 2)]$
- If >0 - first is more likely, if <0 - second is more likely

If two models are equally likely, we can use the conditional probabilities for discrimination

We can just compare $\mathrm{P}(\mathrm{M} \mid \mathrm{L})$ and $\mathrm{P}(\mathrm{M} \mid \mathrm{F})$

We can use conditional probabilities for discrimination

$P(M \mid L)=0.5^{*} 0.5^{*} 0.5^{*} 0.1^{*} 0.5^{*} 0.1=0.000625=6.25^{*} 10^{-4}$
$P(M \mid F)=0.17^{*} 0.17^{*} 0.17^{*} 0.17^{*} 0.17^{*} 0.17=0.000024=2.4 * 10^{-5}$

How confident we are that this sequence was produced by a loaded die? $\mathrm{P}(\mathrm{M}$ and model L)/ P(M and model F)=25.89 Or log $[P(M$ I model $L) / P(M \mid F)]=1.4$

The occasionally dishonest casino

Sequence generated by a model of an occasionally dishonest casino

Markov chains: recap

- The system can be in a finite number of states
- Transition from state to state is not predetermined, but rather is specified in terms of probabilities
- The transition probabilities depend only on the immediate history
- The process of transitions from state to state is called a Markov process or a Markov chain

States can also behave probabilistically

- While in a particular state, system emits a symbol m_{k} from a finite alphabet with the probability $e_{i}\left(m_{k}\right)$, called an emission probability of symbol m_{k} in state W_{i}
- If we construct the schedule of observation times, and at each point in time record the symbols emitted by a system along with the state, we obtain 2 sequences:
- the sequence of emitted symbols which is called an observed sequence M
- the sequence of states π which is called a path through system states

Terminology

Transition probabilities

Terminology

Emission probabilities

Transition and emission diagram

$\mathrm{a}_{\mathrm{FF}}=0.83 \sim \mathrm{a}_{\triangle \perp}=0.40$			
$e_{F}(1)=0.17$		$e_{L}(1)=0.10$	${ }^{\text {L }}$
$\mathrm{e}_{\mathrm{F}}(2)=0.17$	$\mathrm{a}_{\mathrm{FL}}=0.17$	$\mathrm{e}_{\mathrm{L}}(2)=0.10$	-
$\int e_{F}(3)=0.17$		$\mathrm{e}_{\mathrm{L}}(3)=0.10$	$\sqrt{ }$
$\mathrm{e}_{\mathrm{F}}(4)=0.17$	$\mathrm{a}_{\mathrm{LF}}=0.60$	$e_{L}(4)=0.10$	
$\mathrm{e}_{F}(5)=0.17$		$e_{L}(5)=0.10$	
$e_{F}(6)=0.17$		$\mathrm{e}_{\mathrm{L}}(6)=0.50$	
State F (fair die)		te L (loaded	die)

Tabular parameters

Emission probabilities
The state transition matrix

	F	L
F	0.83	0.17
L	0.60	0.40

	F	L
1	0.17	0.10
2	0.17	0.10
3	0.17	0.10
4	0.17	0.10
5	0.17	0.10
6	0.17	0.50

States are unknown (hidden)

3 types of questions to HMM

1. Given a sequence of N observations, what is the probability of obtaining this sequence given a particular state path (Sequence probability)
2. Given a sequence of N observations, what is the most probable sequence of the underlying states (Most probable path)
3. Given a sequence of N observations, what is the probability that the i-th observation was produced when the system was in state Wj

Question 1

Given a sequence and a path, what is the sequence probability?

- The probability $\mathrm{P}(\mathrm{M} \mid \pi)$ is the conditional probability that sequence M was generated while system was moving from state to state according to π

The probability that the sequence was generated following a path π

- Pick a path π
- Calculate a joint probability of π and M

	F	L
1	0.17	0.10
2	0.17	0.10
3	0.17	0.10
4	0.17	0.10
5	0.17	0.10
6	0.17	0.50

	F	L
F	0.83	0.17
L	0.60	0.40

$P(M$ and $\pi)=0.17$ * 0.83 * 0.17 * 0.17 * 0.50 * 0.60 * $0.50=0.0006$

- Note that this is not $P(\pi \mid M)$

The probability that the sequence was generated following a path π when π is unknown (hidden)

- Pick a path π
- Calculate a joint probability of π and M

- Repeat for each possible path and choose a path which maximizes $P(\pi$ and $M)$.
- Total 2^{N} calculations (for 2 states and sequence of length N)

Question 2

Given only a sequence of observations, what is the most probable path?

Viterbi algorithm: dynamic programming

Dynamic programming. Initialization - the probability of choosing a die for the first time

- Add to the system a start state and parameters - the probabilities of choosing a fair or a loaded die in the beginning of a game

State F (fair die)
State L (loaded die)

Dynamic programming. Initialization

The graph of a process.

Dynamic programming. Recursion

We are looking for a path which maximizes the probability of sequence M

Dynamic programming. Recursion

If we know the best paths ending at states L and F in position 4, we can choose max between them and terminate the program

Dynamic programming. Recursion

This can be repeated for each combination of a position in a sequence of observations and one of 2 states

Note: the probabilities are multiplied, not added up

Viterbi algorithm. Demo 1

We have reached position $\mathrm{i}=1$ with the probability $0.9^{*} 0.17$ of

	F^{\prime}	L
1	0.17	0.10
2	0.17	0.10
3	0.17	0.10
4	0.17	0.10
5	0.17	0.10
6	0.17	0.50
	F	L
F	0.83	0.17
L	0.60	0.40
0	0.90	0.10

Viterbi algorithm. Demo 2

We can reach position $\mathrm{i}=2$ (F -state) with the probability $0.15^{*} 0.83^{*} 0.17$ or with probability $0.01^{*} 0.6^{*} 0.10$. We chose the max

	F^{\prime}	L
1	0.17	0.10
2	0.17	0.10
3	0.17	0.10
4	0.17	0.10
5	0.17	0.10
6	0.17	0.50
	F	L
F	0.83	0.17
L	0.60	0.40
0	0.90	0.10

The L-state in position $\mathrm{i}=2$ can be reached with probability $0.01^{*} 0.40^{*} 0.10$ or $0.15^{*} 0.17^{*} 0.10=0.0026$. The second is larger so we choose it.

Viterbi algorithm. Demo 3

We can reach position $\mathrm{i}=3$ (F -state) with the probability $0.02^{*} 0.83^{*} 0.17=0.0028$ or with probability $0.0026^{*} 0.4^{*} 0.17=0.00018$. We chose the max between these

	F^{\prime}	L
1	0.17	0.10
2	0.17	0.10
3	0.17	0.10
4	0.17	0.10
5	0.17	0.10
6	0.17	0.50
	F	L
F	0.83	0.17
L	0.60	0.40
0	0.90	0.10

The L-state in position $\mathrm{i}=3$ can be reached with probability $0.02^{*} 0.17^{*} 0.50=0.0017$ or $0.0026^{*} 0.4^{*} 0.5=0.0017$. We chose the second - arbitrarily

Viterbi algorithm. Demo 4

We can reach position $\mathrm{i}=4$ (F -state) with the probability $0.0028^{*} 0.83^{*} 0.17=0.0004$ or with probability

	F	L
1	0.17	0.10
2	0.17	0.10
3	0.17	0.10
4	0.17	0.10
5	0.17	0.10
6	0.17	0.50
	F	L
F	0.83	0.17
L	0.60	0.40
0	0.90	0.10

The L-state in position $\mathrm{i}=4$ can be reached with probability $0.0017^{*} 0.40^{*} 0.50=0.00034$ or $0.0028^{*} 0.17^{*} 0.5=0.00024$. We chose the max: $0.0017^{*} 0.40^{*} 0.50=0.00034$

Viterbi algorithm. Demo - end

Evidently, it is not enough to have 2 sixes in a row in order to be able to spot the loaded die.

Viterbi algorithm. Log-values

$$
\begin{aligned}
& P\left(\pi_{F, 1}\right)=a_{0 F}{ }^{*} e_{F}(M[1]) \quad P\left(\pi_{L, 1}\right)=a_{0 L}{ }^{*} e_{L}(M[1]) \\
& P\left(\pi_{F, i+1}\right)=\max \left\{P\left(\pi_{F, j}\right)^{*} a_{F F}, P\left(\pi_{L, 1}\right)^{*} a_{L F}\right\}^{*} e_{F}(M[i+1]) \\
& P\left(\pi_{L, i+1}\right)=\max \left\{P\left(\pi_{L, i}\right)^{*} a_{L L}, P\left(\pi_{F, i}\right)^{*} a_{F L}\right\}^{*} e_{L}(M[i+1]) \\
& P\left(\pi^{*}\right)=\max \left\{P\left(\pi_{F, N}\right), P\left(\pi_{L, N}\right)\right\}
\end{aligned}
$$

In order to avoid the underflow errors, in practice log is used instead of the actual probabilities

$$
\begin{aligned}
& P\left(\pi_{F, 1}\right)=\log a_{0 F}+\log e_{F}(M[1]) \quad P\left(\pi_{L, 1}\right)=\log a_{0 L}+\log e_{L}(M[1]) \\
& P\left(\pi_{F, i+1}\right)=\max \left\{P\left(\pi_{F, i}\right)+\log a_{F F}, P\left(\pi_{L, 1}\right)+\log a_{L F}\right\}+\log e_{F}(M[i+1]) \\
& P\left(\pi_{L, i+1}\right)=\max \left\{P\left(\pi_{L, i}\right)+\log a_{L L}, P\left(\pi_{F, i}\right)+\log a_{F L}\right\}+\log e_{L}(M[i+1]) \\
& P\left(\pi^{*}\right)=\max \left\{P\left(\pi_{F, N}\right), P\left(\pi_{L, N}\right)\right\}
\end{aligned}
$$

How good is the prediction

Rolls	315116246446644245311321631164152133625144543631656626566666
Die	FFFPFFLLLLLCLLLLLLLL
Viterbi	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFPFFFFFFFFFFEPFFFFLL
Rolls	65116645313265124563666463163665316232645523626666662515 ros.
Die	LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLFPFFFPFFF
Viterbi	LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLL
Rolls	2225554416665656356432436413151346514635341112641462
Die	FFFFFFFFLLLLLLILLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFPFRREP
Viterbi	
Rolls	
Die	LLLLLLLLFFFFFFPFFFFFFFFFFFFFFPFFFFFFFFPFFFFFFFFFFFFFFPFFFFFFFF
Viterbi	LLLLLLLLLLLLFFFFFFFFFFFFFFFP9PFFFFFFFFFFFFFFFFFFFFFF3FFFFFFFFFF
Rolls	233121625364414432335163243633665562466662632666612355245242
Die	FFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF
Viterbi	FFFFPFFFFFFFFFFFFFFPFFFFFFFPFPFFLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF

Overall, an underlying hidden pathway explains the given sequence well - the path explanation obtained with Viterbi is good

Already we can answer:

- What is the probability that a given sequence of observations came from a particular HMM
- Where in the sequence the model has probably changed

Exercise 1. Markov models

- In Vancouver, if it rains today, then it rains tomorrow 3 times out of 5 . If it is sunny today, it is also sunny tomorrow 1 time out of 3 . Build a Markov model for the weather in Vancouver.

Exercise 2. Discrimination by probability

- Markov models for the honest and for the dishonest casino are presented below:

$$
\begin{aligned}
& e(\text { Heads })=1 / 2 \\
& e(\text { Tails })=1 / 2
\end{aligned}
$$

Fair coin

$$
\begin{aligned}
& \mathrm{e}(\text { Heads })=3 / 4 \\
& \mathrm{e}(\text { Tails })=1 / 4
\end{aligned}
$$

Biased coin

Given that is is equally probable to choose F or L, find out which coin has most probably produced the following sequence of observations:

Exercise 2. Is the coin biased?

- For sequence M of length N with k heads:
$P(M \mid$ fair coin $)=\Pi_{n}(1 / 2){ }^{*} P(F) / P(M) \sim 1 / 2^{N}$
$P(M \mid$ biased coin $)=\Pi_{k}(3 / 4) * \Pi_{N-k}(1 / 4)^{*} P(B) / P(M) \sim 3^{k} / 4^{k *} 1 / 4^{N-k}$
- For this simple example, we can compute how many heads out of N are needed to conclude that the coin is biased:
- when $\mathrm{P}(\mathrm{M}$ and fair coin) < P (M and biased coin) ?

```
1/2 N}<\mp@subsup{3}{}{\textrm{k}}/\mp@subsup{4}{}{\textrm{N}
1<3
2N}<\mp@subsup{3}{}{k
Nlog2<klog3
k> (log2/log3)*N
k > 0.63 N
```


Exercise 3.

- Using the Viterbi algorithm, find the most probable path of states for the following sequence given the HMM which produced this sequence.

Observed sequence: HTTHHH

Building a Hidden Markov Model

- 2 parts:
- Model topology: what states there are and how are they connected
- The assignment of parameter values: the transition and emission probabilities

Parameter estimation

- We are given a set of training sequences
- 2 cases:
- When the states in the training sequences are known
$\mathrm{a}_{\text {from }, \mathrm{to}}=$ count $_{\text {from }, \mathrm{to}} / \Sigma_{\mathrm{x}}$ count $_{\text {from }, \mathrm{x}}$
$\mathrm{e}_{\text {state } i}\left(\right.$ symbol $\left._{\mathrm{j}}\right)=$ count $_{\text {state } i}\left(\right.$ symbol $\left._{\mathrm{j}}\right) / \Sigma_{\mathrm{y}}\left(\right.$ symbol $_{\mathrm{y}}^{\mathrm{y}}$ state $\left._{\mathrm{i}}\right)$
- When the states are unknown
- Viterbi training

Parameter estimation when the states are

 known - example| X | 1 | 2 | 6 | 6 | 1 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| π | F | L | F | F | L | L | L |

$$
\mathrm{e}_{\mathrm{F}}(3)=0 ?
$$

To avoid this, use pseudocounts
$e_{F}(1)=(1+1) /(3+6), 1$ is a pseudocount, 6 is the number of different symbols
eF(1)=2/9
$\mathrm{e}_{\mathrm{F}}(2)=1 /(3+6)=1 / 9$
$\mathrm{e}_{\mathrm{F}}(3)=1 /(3+6)=1 / 9$
$\mathrm{e}_{\mathrm{F}}(4)=1 /(3+6)=1 / 9$
$\mathrm{e}_{\mathrm{F}}(5)=1 /(3+6)=1 / 9$
$\mathrm{e}_{\mathrm{F}}(6)=(2+1) /(3+6)=3 / 9$

$$
\begin{aligned}
& a_{F, L}=2 / 3 \\
& a_{F, F}=1 / 3 \\
& a_{L, F}=1 / 3 \\
& a_{L, L}=2 / 3
\end{aligned}
$$

Or with pseudocounts

$$
\begin{aligned}
& a_{F, L}=(2+1) /(3+2)=3 / 5 \\
& a_{F, F}=(1+1) /(3+2)=2 / 5 \\
& a_{L, F}=(1+1) /(3+2)=2 / 5 \\
& a_{L, L}=(2+1) /(3+2)=3 / 5
\end{aligned}
$$

Viterbi training for parameter estimation

- Pick a set of random parameters
- Repeat
- Find the most probable path of states according to this set of parameters
- This path partitions the sequences into partitions according to the states
- Calculate new set of parameters, now from the known states
- Until the path does not change anymore

Viterbi training

- The assignment of paths is a discrete process, thus the algorithm converges precisely
- When there is no path change, the parameters will not change either, because they are determined completely by the paths
- The algorithm maximizes the probability P (observed data| Θ, $\left.\pi^{*}\right)$
and not $P($ observed data $\mid \Theta)$ which we ideally want

Parameter estimation illustration 1

The parameters estimated for 300 random rolls and an iterative process started from randomly selected parameters

Parameter estimation illustration 2

The parameters estimated for 30000 random rolls and an iterative process started from randomly selected parameters

HMM applications

- Robot planning + sensing when there's uncertainty
- Speech Recognition/Understanding
- Consumer decision modeling
- Economics \& Finance
- Human Genome Project

Classic example: Speech recognition

- Signal \rightarrow words
- Observable is signal
- Hidden state is part of word
- Formulation:
-What is the most probable word given this signal?

UTTERLY GROSS SIMPLIFICATION

In practice: many levels of inference; not only HMM

Human daily activities recognition from wearable sensor signals

Bio-application 1. Gene finding

CpG islands

- C nucleotide followed by G is easily methylated
- Methylated C easily becomes T
- The methylation is suppressed in important regulatory regions - around promoters (starting sites of transcription)
- Thus, an overall low frequency of C->G di-nucleotide is significantly increased in the gene promoter regions

Biological questions

- Given a short stretch of DNA sequence, determine whether it came from a CpG island or not
- Given a long un-annotated DNA sequence, find CpG islands in it

Transition probability estimation: from real DNA sequences

From 48 known CpG islands of a total length 60,000 nucleotides, and from regular DNA stretches:

+	A	C	G	T
A	0.18	0.27	0.43	0.12
C	0.17	0.37	0.27	0.19
G	0.16	0.34	0.38	0.12
T	0.08	0.36	0.38	0.18

the transition probabilities for each pair of nucleotides were estimated (expected 0.25 if at random)

-	A	C	G	T
A	0.30	0.20	0.29	0.21
C	0.32	0.30	0.08	0.30
G	0.25	0.25	0.30	0.20
T	0.18	0.24	0.29	0.29

Markov model for DNA sequence

Am I in the CpG island?

To use these (+) and (-) models for discrimination for a given sequence we calculate the log-odds ratio:

- If this value is positive, we are in the CpG island, if not, we are not

Model efficiency: results of tests on another set of labeled DNA sequences

Finding CpG islands - HMM

- HMM: the essential difference from a simple Markov chain is that there is no one-to-one correspondence between the states and the symbols
- By looking at a single symbol, there is no way to tell whether it came from state $\mathrm{C}+$ or C -

Computing Log-odds Ratios

 in a sliding window

- Consider a sliding window of the outcome sequence
- Find the log-odds for this short window

Disadvantages:

- the length of CpG-island is not known in advance
- different windows may classify the same position differently

The most probable path through the sequence of states

The most probable path for sequence CGCG

v		C	G	C	G
\mathcal{B}	1	0	0	0	0
$\mathrm{~A}_{+}$	0	0	0	0	0
C_{+}	0	$\mathbf{0 . 1 3}$	0	$\mathbf{0 . 0 1 2}$	0
G_{+}	0	0	$\mathbf{0 . 0 3 4}$	0	$\mathbf{0 . 0 0 3 2}$
$\mathrm{~T}_{+}$	0	0	0	0	0
$\mathrm{~A}_{-}$	0	0	0	0	0
C_{-}	0	0.13	0	0.0026	0
G_{-}	0	0	0.010	0	0.00021
$\mathrm{~T}_{-}$	0	0	0	0	0

When we apply the Viterbi algorithm to a long un-annotated DNA sequence, the states will switch between + and -, giving suggested boundaries for CpG islands

Bio-application 2.
Aligning a given sequence to a family of sequences
Profile HMM

Multiple Alignments and Protein Family Classification

- Multiple alignment of a protein family shows variations in conservation along the length of a protein
- Example: after aligning many globin proteins, the biologists recognized that the helices region in globins are more conserved than others.

Histone H1 (residues 120-180)
HUMAN KKASKPKKAASKAPTKKPKATPVKKAKKKLAATPKKAKKPKTVKAKPVKASKPKKAKPVK
MOUSE KKAAKPKKAASKAPSKKPKATPVKKAKKKPAATPKKAKKPKVVKVKPVKASKPKKAKTVK
RAT KKAAKPKKAASKAPSKKPKATPVKKAKKKPAATPKKAKKPKIVKVKPVKASKPKKAKPVK
COW KKAAKPKKAASKAPSKKPKATPVKKAKKKPAATPKKTKKPKTVKAKPVKASKPKKTKPVK CHIMP KKASKPKKAASKAPTKKPKATPVKKAKKKLAATPKKAKKPKTVKAKPVKASKPKKAKPVK

NON-CONSERVED
AMINO ACIDS

Finding Distant Members of a Protein Family

- A distant cousin of functionally related sequences in a protein family may have weak pairwise similarities with each member of the family and thus fail significance test
- However, they may have weak similarities with many members of the family
- The goal is to align a sequence to all members of the family at once.
- Family of related proteins can be represented by their multiple alignment and the corresponding profile.

Profile Representation of Protein Families

For example, aligned DNA sequences can be represented by a $4 \cdot n$ profile matrix reflecting the frequencies of nucleotides in every aligned position.

$$
\begin{array}{c|rrrrrrrr}
\mathbf{A} & .72 & .14 & 0 & 0 & .72 & .72 & 0 & 0 \\
\mathbf{T} & .14 & .72 & 0 & 0 & 0 & .14 & .14 & .86 \\
\mathbf{G} & .14 & .14 & .86 & .44 & 0 & .14 & 0 & 0 \\
\mathbf{C} & 0 & 0 & .14 & .56 & .28 & 0 & .86 & .14
\end{array}
$$

Protein family can be represented by a $20 \cdot n$ profile representing frequencies of amino acids.

Multiple alignment and symbol probabilities

The DNA-binding helix-turn-helix motif of the CAP family

What are Profile HMMs?

- A Profile HMM is a probabilistic representation of a multiple alignment
- A given multiple alignment (of a protein family) is used to build a profile HMM
- This model then may be used to find and score less obvious potential matches of new protein sequences

Building a profile HMM

- Assign each column (sequence position) to a Match state in HMM. Add Insertion and Deletion state.
- Estimate the emission probabilities according to amino acid counts in column from the multiple alignment. Different positions in the protein will have different emission probabilities.
- Estimate the transition probabilities between Match, Deletion and Insertion states
- The HMM model gets trained to derive the optimal parameters

States of Profile HMM

- Match states $M_{1} \ldots M_{n}$ (plus begin/end states)
- Insertion states $I_{0} I_{1} \ldots I_{n}$
- Deletion states $D_{1} \ldots D_{n}$

Aligning new sequence to a profile

- HMMs can be used for aligning a sequence against a profile representing protein family
- A $20 \cdot n$ profile P corresponds to n sequentially linked match states M_{1}, \ldots, M_{n} in the profile HMM of P

Emission Probabilities in Profile HMM

- Probability of emitting a symbol a at an insertion state l_{j} :

$$
e_{l j}(a)=p(a)
$$

where $p(a)$ is the frequency of the occurrence of the symbol a in all the sequences.
10
ARSA MOUSE 409 SDPACHA-ANRLTAHEPPLLYDLSQDPGENYNVLESIEGVSPEA 451

Paths in Edit Graph and Profile HMM

A path through an edit graph and the corresponding path through a profile HMM

Most used tool: PFAM

- Pfam decribes protein domains
- Each protein domain family in Pfam has:
- Seed alignment: manually verified multiple alignment of a representative set of sequences.
- HMM built from the seed alignment for further database searches.
- Full alignment generated automatically from the HMM
- The distinction between seed and full alignments facilitates Pfam updates.
- Seed alignments are stable resources.
- HMM profiles and full alignments can be updated with newly found amino acid sequences

