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The honest and the dishonest  casino

1/6 1/10

1/2

Choose L with P(L) = 0.01

P(F) = 0.99 P(L) = 0.01

Prior probabilities – before we see any evidence (sequence)



Bayes theorem and the model comparison

• Pick a die at random - and roll

• We get 3 consecutive sixes

• Is the die loaded? What is the probability?

• We want to know P(L|3 sixes)

• From Bayes theorem:

P(L|3 sixes) = P(3 sixes|L)*P(L)/P(3 sixes)

P(F|3 sixes) = P(3 sixes|F)*P(F)/P(3 sixes)

P(3 sixes) = P(3 sixes|F)*P(F) + P(3 sixes|L) *P(L) = 0.0058

• P (L|3 sixes) = ( 0.5*0.5*0.5 * 0.01) /0.0058 = 0.215

• P(F|3 sixes) = (1/6)*(1/6)*(1/6)*0.99 / 0.0058 = 0.785

The sequence was generated either by fair or by loaded die



What are the odds?

• P (W1|evidence) = P(evidence|W1)*P(W1)/P(evidence)

• P (W2|evidence) = P(evidence|W2)*P(W2)/P(evidence)

• To compare P (W1|evidence)  vs P (W2|evidence) :

P (W1|evidence) / P (W2|evidence)

• Or to avoid underflow:

log (P (W1|evidence) / P (W2|evidence))

• Log odds ratio = log  [P(evidence|W1)*P(W1)/ P(evidence|W2)*P(W2)]

• If > 0 – first is more likely, if < 0 – second is more likely



If two models are equally likely, we can use the 
conditional  probabilities for discrimination

We can just compare P(M | L) and P(M | F)

L

F

Sequence M



We can use conditional probabilities for
discrimination

F L

1 0.17 0.10

2 0.17 0.10

3 0.17 0.10

4 0.17 0.10

5 0.17 0.10

6 0.17 0.50

P(M | L)=0.5*0.5*0.5*0.1*0.5*0.1=0.000625 = 6.25*10-4

P(M | F)=0.17*0.17*0.17*0.17*0.17*0.17=0.000024 = 2.4 *10-5

How confident we are that this sequence was produced by a loaded die?  P(M and 

model L)/ P(M and model F)=25.89

Or log [P(M I model L)/ P(M | F)]=1.4

OR

L

F

M

Log-odds ratio



The occasionally dishonest casino

P=1/6 P=1/10

P=1/2

P=1/6

P=3/5



Sequence generated by a model of an 
occasionally dishonest casino



Markov chains: recap

• The system can be in a finite number of states

• Transition from state to state is not predetermined, but 
rather is specified in terms of probabilities

• The transition probabilities depend only on the immediate 
history

• The process of transitions from state to state is called a 
Markov process or a Markov chain



• While in a particular state, system emits a symbol mk from a 
finite alphabet with the probability ei(mk),  called an 
emission probability of symbol mk in state  Wi

• If we construct the schedule of observation times, and at each 
point in time record the symbols emitted  by a system along 
with the state, we obtain 2 sequences: 

• the sequence of emitted symbols which is called an 
observed sequence M

• the  sequence of states π which is called a path through  
system states

States can also behave probabilistically



Terminology

P=1/6 P=1/10

P=1/2

P=1/6

P=3/5

P=5/6 P=2/5

Transition probabilities



Terminology

P=1/6 P=1/10

P=1/2

P=1/6

P=3/5

P=5/6 P=2/5

Emission probabilities



Transition and emission diagram

eF(1)=0.17

eF(2)=0.17

eF(3)=0.17

eF(4)=0.17

eF(5)=0.17

eF(6)=0.17

eL(1)=0.10

eL(2)=0.10

eL(3)=0.10

eL(4)=0.10

eL(5)=0.10

eL(6)=0.50

State F (fair die) State L (loaded die)

aFF=0.83 aLL=0.40

aFL=0.17

aLF=0.60



Tabular parameters

F L

F 0.83 0.17

L 0.60 0.40

F L

1 0.17 0.10

2 0.17 0.10

3 0.17 0.10

4 0.17 0.10

5 0.17 0.10

6 0.17 0.50

The state transition

matrix

Emission probabilities



Hidden Markov Model (HMM)

States are unknown (hidden)



3 types of questions to HMM

1. Given a sequence of N observations, what is the 
probability of obtaining this sequence given a particular 
state path (Sequence probability)

2. Given a sequence of N observations, what is  the most 
probable sequence of the  underlying states (Most 
probable path)

3. Given a sequence of N observations, what is  the probability 
that the i-th observation was  produced when the system 
was in state Wj



Question 1

Given a sequence and a path, what is the 
sequence probability?

• The probability P(M| π) is the conditional  probability that 
sequence M was generated  while system was moving from 
state to state  according to π



A suggested path

P(M and π)=0.17 * 0.83 * 0.17 * 0.17 * 0.50 * 0.60 * 0.50=0.0006

• Note that this is not P(π | M) 

• Pick a path π

• Calculate a joint probability of π and M

The probability that the sequence was 
generated following a path π

F L

F 0.83 0.17

L 0.60 0.40

LF

1 0.17 0.10

2 0.17 0.10

3 0.17 0.10

4 0.17 0.10

5 0.17 0.10

6 0.17 0.50



A suggested path

P(M and π)=0.17 * 0.83 * 0.17 * 0.17 * 0.50 * 0.60 * 0.50=0.0006

• Repeat for each possible path and choose a  path which maximizes

P(π and M). 

• Total 2N calculations (for 2 states and sequence of length N)

• Pick a path π

• Calculate a joint probability of π and M

The probability that the sequence was generated 
following a path π when π is unknown (hidden) 

F L

F 0.83 0.17

L 0.60 0.40

LF

1 0.17 0.10

2 0.17 0.10

3 0.17 0.10

4 0.17 0.10

5 0.17 0.10

6 0.17 0.50



Question 2

Given only a sequence of observations, what is 
the most probable path?

Viterbi algorithm: dynamic programming



Dynamic programming. Initialization – the 
probability of choosing a die for the first time

• Add to the system a start state and parameters – the probabilities 
of  choosing a fair or a loaded die in the beginning of a game

eF(1)=0.17

eF(2)=0.17

eF(3)=0.17

eF(4)=0.17

eF(5)=0.17

Fe (6)=0.17

eL(1)=0.10

eL(2)=0.10

eL(3)=0.10

eL(4)=0.10

eL(5)=0.10

Le (6)=0.50

State F (fair die) State L (loaded die)

aFF=0.83 aLL=0.40

aFL=0.17

aLF=0.60

Start

a0F=0.9

a0L=0.1



Start

Dynamic programming.  
Initialization

P(πF,1)=a0F*eF(M[1])

P(πL,1)=a0L*eL(M[1])

The graph of a process.



Dynamic programming.  
Recursion

Start

We are looking for a path which maximizes the  probability of sequence M



Dynamic programming.  
Recursion

Start

If we know the best paths ending at states L and F in position 4, we can  

choose max between them and terminate the program

End

Choose max  

(cost (NF),

cost (NL))



Dynamic programming. Recursion

Start

This can be repeated for each combination of a position in a sequence of  

observations and one of 2 states

End

P(πF,i+1)=max {P(πF,i)*aFF, P(πL,i)*aLF } * eF(M[i+1])

P(πL,i+1)=max {P(πL,i)*aLL, P(πF,i)*aFL} * eL (M[i+1])  

P(π*)=max {P(πF,N), P(πL,N)}

Note: the probabilities are multiplied, not added up



Start
End

We have reached position i=1 with the probability 0.9*0.17 of  

going to the F state and emitting 3, and with probability  

0.1*0.10 of going to the L-state and emitting 3. There are no  

other possibilities

0.15

0.01

LF

1 0.17 0.10

2 0.17 0.10

3 0.17 0.10

4 0.17 0.10

5 0.17 0.10

6 0.17 0.50

F L

F 0.83 0.17

L 0.60 0.40

0 0.90 0.10

Viterbi algorithm. Demo 1



Viterbi algorithm. Demo 2

Start
End

We can reach position i=2 (F-state) with the probability  

0.15*0.83*0.17 or with probability 0.01*0.6*0.10. We chose the max  

between these two: 0.15*0.83*0.17=0.002

The L-state in position i=2 can be reached with probability  

0.01*0.40*0.10 or 0.15*0.17*0.10=0.0026. The second is larger so  

we choose it.

0.01

0.15 0.02

0.0026

LF

1 0.17 0.10

2 0.17 0.10

3 0.17 0.10

4 0.17 0.10

5 0.17 0.10

6 0.17 0.50

F L

F 0.83 0.17

L 0.60 0.40

0 0.90 0.10



Viterbi algorithm. Demo 3

Start
End

We can reach position i=3 (F-state) with the probability  

0.02*0.83*0.17=0.0028 or with probability  

0.0026*0.4*0.17=0.00018. We chose the max between these  

two: 0.02*0.83*0.17=0.0028

The L-state in position i=3 can be reached with probability  

0.02*0.17*0.50=0.0017 or 0. 0026*0.4*0.5=0.0017. We chose the

second - arbitrarily

0.02

0.0026

0.0028

0.0017

LF

1 0.17 0.10

2 0.17 0.10

3 0.17 0.10

4 0.17 0.10

5 0.17 0.10

6 0.17 0.50

F L

F 0.83 0.17

L 0.60 0.40

0 0.90 0.10

0.15

0.01



W  

0

0.0017*0.6*0.17=0.00017. We chose the max between these two:  

0.0028*0.83*0.17=0.0004

The L-state in position i=4 can be reached with probability  

0.0017*0.40*0.50=0.00034 or 0.0028*0.17*0.5 =0.00024. We

chose the max: 0.0017*0.40*0.50=0.00034

Viterbi algorithm. Demo 4

0.0028 0.0004

F L

1 0.17 0.10

Start 0.0017 0.0003
End 2 0.17 0.10

3 0.17 0.10

4 0.17 0.10

5 0.17 0.10

6 0.17 0.50

F L

F 0.83 0.17

e can reach position i=4 (F-state) with the probability L 0.60 0.40

.0028*0.83*0.17=0.0004 or with probability 0 0.90 0.10

End

0.02

0.0026

0.15

0.01



Viterbi algorithm. Demo - end

Start
End

LF

1 0.17 0.10

2 0.17 0.10

3 0.17 0.10

4 0.17 0.10

5 0.17 0.10

6 0.17 0.50

F L

F 0.83 0.17

L 0.60 0.40

0 0.90 0.10

Choose max: 0.0004. So, the most probable sequence of states:  

FFFF

Evidently, it is not enough to have 2 sixes in a row in order to be able to spot the  

loaded die.

0.0004

0.0003



Viterbi algorithm. Log-values

P(πF,1)=a0F*eF(M[1]) P(πL,1)= a0L*eL(M[1])

P(πF,i+1)=max { P(πF,i)*aFF, P(πL,I)*aLF }* eF(M[i+1])

P(πL,i+1)=max {P(πL,i)*aLL, P(πF,i)*aFL} *eL (M[i+1])  

P(π*)=max {P(πF,N), P(πL,N)}

In order to avoid the underflow errors, in practice  

log is used instead of the actual probabilities

P(πF,1)=log a0F+ log eF(M[1]) P(πL,1)= log a0L+ log eL(M[1])

P(πF,i+1)=max {P(πF,i)+ log aFF, P(πL,I)+ log aLF }+ log eF(M[i+1])

P(πL,i+1)=max {P(πL,i)+ log aLL, P(πF,i)+ log aFL} + log eL (M[i+1])

P(π*)=max {P(πF,N), P(πL,N)}



How good is the prediction

delay

Missing  

short  

stretches

Overall, an underlying hidden pathway explains the given  sequence well 

– the path explanation obtained with Viterbi is good



Already we can answer:

• What is the probability that a given sequence  of 

observations came from a particular HMM

• Where in the sequence the model has probably

changed



Exercise 1. Markov models

• In Vancouver, if it rains today, then it rains  tomorrow 3 

times out of 5. If it is sunny today,  it is also sunny 

tomorrow 1 time out of 3.  Build a Markov model for the 

weather in Vancouver.



Exercise 2. Discrimination by  probability

• Markov models for the honest and for the dishonest casino 
are  presented below:

e(Heads)=1/2

e(Tails)=1/2

e(Heads)=3/4

e(Tails)=1/4

Fair coin Biased coin

Given that is is equally probable to choose F or L, find out which 
coin has most probably produced the following sequence of
observations:

HHHTTHT



Exercise 2. Is the coin biased?

• For sequence M of length N with k heads:

P(M | fair coin)=Πn(1/2) * P(F)/P(M)~1/2N

P (M | biased coin)= Πk(3/4) *ΠN-k(1/4)*P(B)/P(M)~3k/4k*1/4N-k

• For this simple example, we can compute how many 

heads out of N are needed to conclude that the coin is 

biased:

• when  P(M and fair coin) < P (M and biased coin) ?

1/2N<3k/4N

1<3k/2N

2N <3k

Nlog2<klog3  
k > (log2/log3)*N 
k > 0.63 N



Exercise 3.

• Using the Viterbi algorithm, find the most probable  

path of states for the following sequence given the  

HMM which produced this sequence.

e(Heads)=1/2  

e(Tails)=1/2

e(Heads)=3/4  

e(Tails)=1/4

Fair coin Biased coin

1/5 S 4/5

Observed sequence: HTTHHH

3/4

1/4 1/2

1/2



Building a Hidden Markov Model

• 2 parts:

• Model topology: what states there are and how  

are they connected

• The assignment of parameter values: the  

transition and emission probabilities



Parameter estimation

• We are given a set of training sequences

• 2 cases:

• When the states in the training sequences are known

afrom,to=countfrom,to/Σxcountfrom,x

estate i(symbol j)=countstate i(symbol j)/Σy(symbol y|statei)

• When the states are unknown

• Viterbi training



Parameter estimation when the  states are 
known - example

X 1 2 6 6 1 1 2

 F L F F L L L

aF,L=2/3

aF,F=1/3

aL,F=1/3

aL,L=2/3

eF(3)=0 ?

To avoid this, use pseudocounts

eF(1)=(1+1)/(3+6), 1 is a pseudocount, 6  

is the number of different symbols

eF(1)=2/9  

eF(2)=1/(3+6)=1/9  

eF(3)=1/(3+6)=1/9  

eF(4)=1/(3+6)=1/9  

eF(5)=1/(3+6)=1/9  

eF(6)=(2+1)/(3+6)=3/9

aF,L=(2+1)/(3+2)=3/5

aF,F=(1+1)/(3+2)=2/5

aL,F=(1+1)/(3+2)=2/5

aL,L=(2+1)/(3+2)=3/5

Or with pseudocounts



Viterbi training for parameter  estimation

• Pick a set of random parameters

• Repeat 

• Find the most probable path of states according to this 
set of parameters

• This path partitions the sequences into partitions 
according to the states

• Calculate new set of parameters, now from the  
known states

• Until the path does not change  anymore



Viterbi training

• The assignment of paths is a discrete process, thus the 
algorithm converges precisely

• When there is no path change, the parameters will not 
change either, because they are determined completely by 
the paths

• The algorithm maximizes the probability P(observed  data| Θ,
π*)

and not P(observed data | Θ) which we ideally want



Parameter estimation –
illustration 1

0.19eF(1)=0.17

eF(2)=0.17 0.19

0.23eF(3)=0.17

eF(4)=0.17 0.08

0.23

0.08

eL(1)=0.10 0.07

eL(2)=0.10 0.10

eL(3)=0.10 0.10

eL(4)=0.10 0.17

eF(5)=0.17

eF(6)=0.17

FAIR

eL(5)=0.10 0.05

eL(6)=0.50 0.52

LOADED

aFF=0.95 0.73 aLL=0.9 0.71

aFL=0.05 0.27

LFa =0.1 0.29

The parameters estimated for 300 random rolls and an iterative  

process started from randomly selected parameters



Parameter estimation –
illustration 2

0.17eF(1)=0.17

eF(2)=0.17 0.19

0.17eF(3)=0.17

eF(4)=0.17 0.17

0.17

0.15

eL(1)=0.10 0.10

eL(2)=0.10 0.11

eL(3)=0.10 0.10

eL(4)=0.10 0.11

eF(5)=0.17

eF(6)=0.17

FAIR

eL(5)=0.10 0.10

eL(6)=0.50 0.48

LOADED

aFF=0.95 0.93 aLL=0.9 0.88

aFL=0.05 0.07

LFa =0.1 0.12

The parameters estimated for 30 000 random rolls and an  

iterative process started from randomly selected parameters



HMM applications

• Robot planning + sensing when there’s uncertainty

• Speech Recognition/Understanding

• Consumer decision modeling

• Economics & Finance

• Human Genome Project

• …



Classic example: Speech recognition

• Signal → words
• Observable is signal
• Hidden state is part of word

• Formulation:
• What is the most probable word given this signal?

UTTERLY GROSS SIMPLIFICATION

In practice: many levels of inference; not only HMM



Human daily activities recognition from 
wearable sensor signals

Eat

Bus

walk

aAB

aBB

aAA

aCB

aBA aBC

aCC

Ot-1 Ot+1

Ot

bA(Ot-1)

bB(Ot)

bC(Ot+1)



Bio-application 1. Gene finding



CpG islands

• C nucleotide followed by G is easily  methylated

• Methylated C easily becomes T

• The methylation is suppressed in important  regulatory 
regions – around promoters  (starting sites of 
transcription)

• Thus, an overall low frequency of C->G di-nucleotide is 
significantly increased in the gene promoter regions



Biological questions

• Given a short stretch of DNA sequence, determine whether it 
came from a CpG island or not

• Given a long un-annotated DNA sequence,  find CpG 
islands in it



Transition probability estimation: 
from real DNA sequences

From 48 known CpG islands 
of a  total length 60,000  
nucleotides, and from 
regular DNA stretches:

the  transition probabilities 
for  each pair of nucleotides  
were estimated (expected
0.25 if at random)

+ A C G T

A 0.18 0.27 0.43 0.12

C 0.17 0.37 0.27 0.19

G 0.16 0.34 0.38 0.12

T 0.08 0.36 0.38 0.18

- A C G T

A 0.30 0.20 0.29 0.21

C 0.32 0.30 0.08 0.30

G 0.25 0.25 0.30 0.20

T 0.18 0.24 0.29 0.29

afrom,to=countfrom,to/Σxcountfrom,x



Markov model for DNA  
sequence



Am I in the CpG island?

To use these (+) and (-) models for discrimination for a given sequence 
we  calculate the log-odds ratio:

• Score(M)=log [ P(M|given model +)/P(M|given model -)]

• If this value is positive, we are in the CpG island, if not, we are not

Model efficiency: results of tests on another set of labeled DNA sequences

Not a 
CpG 
island

CpG 
island

Log-odds 
scores



Finding CpG islands - HMM

• HMM: the essential difference from a simple Markov chain is 
that there is no one-to-one correspondence between the 
states and the symbols

• By looking at a single symbol, there is no way to tell 
whether it  came from state C+ or C-



Computing Log-odds Ratios 
in a sliding window

x1x2x3x4x5x6x7x8…xn

• Consider a sliding window of the outcome sequence 

• Find the log-odds for this short window

0

Fair die most likely used 
(non CpG island)

Biased die most likely 
used (CpG island)

Disadvantages:
• the length of CpG-island is not known in advance
• different windows may classify the same position differently



The most probable path through  the 
sequence of states

The most probable path for sequence CGCG

When we apply the Viterbi algorithm to a long un-annotated DNA  

sequence, the states will switch between + and -, giving suggested  

boundaries for CpG islands



Bio-application 2. 
Aligning a given sequence to a 
family of sequences
Profile HMM



Multiple Alignments and Protein Family 
Classification

• Multiple alignment of a protein family shows variations in 
conservation along the length of a protein

• Example: after aligning many globin proteins, the biologists 
recognized that the helices region in globins are more 
conserved than others.



Finding Distant Members of a Protein 
Family

• A distant cousin of functionally related sequences in a protein 

family may have weak pairwise similarities with each member of 

the family and thus fail significance test

• However, they may have weak similarities with many members 

of the family 

• The goal is to align a sequence to all members of the family at 

once.

• Family of related proteins can be represented by their multiple 

alignment and the corresponding profile.



Profile Representation of Protein Families

For example, aligned DNA sequences can be represented by  a 

4 ·n profile matrix reflecting the frequencies 

of nucleotides in every aligned position.

Protein family can be represented by a 20·n profile representing 
frequencies of amino acids.



Multiple alignment and symbol probabilities



What are Profile HMMs?

• A Profile HMM is a probabilistic representation of a multiple 
alignment

• A given multiple alignment (of a protein family) is used to build 
a profile HMM

• This model then may be used to find and score less obvious 
potential matches of new protein sequences



Building a profile HMM

• Assign each column (sequence position) to a Match state in HMM. Add Insertion and 
Deletion state. 

• Estimate the emission probabilities according to amino acid counts in column from 
the multiple alignment. Different positions in the protein will have different emission 
probabilities.

• Estimate the transition probabilities between Match, Deletion and Insertion states

• The HMM model gets trained to derive the optimal parameters



States of Profile HMM

• Match states    M1…Mn (plus begin/end states) 

• Insertion states I0I1…In

• Deletion states D1…Dn



Aligning new sequence to a profile

• HMMs can be used for aligning a sequence against a profile 
representing protein family

• A 20·n profile P corresponds to n sequentially linked match states 
M1,…,Mn in the profile HMM of P



Emission Probabilities in Profile HMM

• Probability of emitting a symbol a at an insertion state Ij:

eIj(a) = p(a)

where p(a) is the frequency of the occurrence of the 
symbol a in all the sequences.



Paths in Edit Graph and Profile HMM

A path through an edit graph and the corresponding path 
through a profile HMM



Most used tool: PFAM

• Pfam decribes protein domains

• Each protein domain family in Pfam has:

- Seed alignment: manually verified multiple alignment of a 
representative set of sequences.

- HMM built from the seed alignment for further database searches.

- Full alignment generated automatically from the  HMM

• The distinction between seed and full alignments facilitates Pfam updates.

- Seed alignments are stable resources.

- HMM profiles and full alignments can be updated with  newly found 
amino acid sequences


