
Primer: conditional probabilities

Lecture 11.1



Mathematical predictions

• We can ‘predict’ where the spacecraft will be at noon in 2 
months from now

• We cannot predict where you will be tomorrow at noon

• But, based on numerous observations, we can estimate the 
probability  



Bayesian beliefs

• How do we judge that something is 
true?

• Can mathematics help make 
judgments more accurate?

• Bayes: our believes should be 
updated as new evidences become 
available



Bayes’ method

• There are 2 events: A and not A (B) which you believe occur with 
probabilities P(A) and P(B). Estimation P(A):P(B) represents odds 
of A vs. B. 

• Collect evidence data E.

• Re-estimate P(A|E):P(B|E) and update your beliefs.



Example (fictitious): hit-and-run

• 75 blue cabs (B) and 15 green cabs (G)

• P(B):P(G)=5:1

• At night: hit-and-run episode

• Witness: “I saw a green cab”: XG

• Witness is tested at night conditions: 
identifies correct color 4 times out of 5

• Question: what is more probable: 

B or G

?
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Adopted from: The numbers behind NUMB3RS: solving crime with mathematics by Devlin and Lorden.
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Probability

• Basic element: random variable 
e.g., Car is one of <blue, blue(green)>

Weather is one of <sunny,rainy,cloudy,snow>

• Both Car and Weather are discrete random variables
• Domain values must be 

• exhaustive (blue and green – are all the cabs)
• mutually exclusive (green is always not blue, there are no cars which are half green, half blue)

• Elementary propositions are constructed by the assignment of a 
value to a random variable: 
e.g., Car = blue, 

Weather = sunny



Conditional probability

• P(A|B) – probability of event A given that event B has 
happened

• In our case we want to compare:

• the car was G given a witness testimony XG: P(G|XG)

• vs.

• the car was B given a witness testimony XG: P(B|XG)



Prior probability and distribution

• Prior or unconditional probability associated with a proposition is 
the degree of belief accorded to it in the absence of any other 
information.

e.g., 

P(Car = blue) = 0.83 (or abbrev.  P(blue) = 0.83) 
P(Weather = sunny) = 0.7 (or abbrev.  P(sunny) = 0.7)

• Probability distribution gives probabilities of all possible value 
assignments:

P(Weather = sunny) = 0.7
P(Weather = rain) = 0.2
P(Weather = cloudy) = 0.08
P(Weather = snow) = 0.02

- Sums up to 1.0



Two random events (not independent) 
happen at the same time – P(A and B)

1.0

P(A)

P(B|A) P(A and B)

P(¬B|A) P(A and ¬B)

P(¬A)

P(B|¬A) P(¬A and B)

P(¬B|¬A) P(¬A and ¬ B)
Possible event combinations  when we 
know the outcome of event A: 
P(B|A)=1/12 and P(A)=1/2 

1.0

P(B)

P(A|B) P(A and B)

P(¬A|B) P(¬A and B)

P(¬B)

P(A|¬B) P(A and ¬B)

P(¬A|¬B) P(¬A and ¬ B)

B
A

Possible event combinations  when we 
know the outcome of event B: 
P(A|B)=1/4 and P(B)=1/6 

B
A

But in both cases P(A and B) is the same: orange area in the diagram  



Intuition for Bayes’s theorem

1.0

P(A)

P(B|A) P(A and B)

P(¬B|A) P(A and ¬B)

P(¬A)

P(B|¬A) P(¬A and B)

P(¬B|¬A) P(¬A and ¬ B)

1.0

P(B)

P(A|B) P(A and B)

P(¬A|B) P(¬A and B)

P(¬B)

P(A|¬B) P(A and ¬B)

P(¬A|¬B) P(¬A and ¬ B)

P(A and B)=P(A)*P(B|A)

P(A and B)=P(B)*P(A|B)

P(A and B)=P(A)*P(B|A)=P(B)*P(A|B)

P(¬A and B)=P(¬A)*P(B|¬A)=P(B)*P(¬A|B)



Bayes’ theorem

1.0

P(A)

P(B|A) P(A and B)

P(¬B|A) P(A and ¬B)

P(¬A)

P(B|¬A) P(¬A and B)

P(¬B|¬A) P(¬A and ¬ B)

1.0

P(B)

P(A|B) P(A and B)

P(¬A|B) P(¬A and B)

P(¬B)

P(A|¬B) P(A and ¬B)

P(¬A|¬B) P(¬A and ¬ B)

P(A and B)=P(A)*P(B|A)

P(A and B)=P(B)*P(A|B)

P(A)*P(B|A)=P(B)*P(A|B)

P(¬A)*P(B|¬A)=P(B)*P(¬A|B)



In other words:

1.0

P(A)

P(B|A) P(A and B)

P(¬B|A) P(A and ¬B)

P(¬A)

P(B|¬A) P(¬A and B)

P(¬B|¬A) P(¬A and ¬ B)

1.0

P(B)

P(A|B) P(A and B)

P(¬A|B) P(¬A and B)

P(¬B)

P(A|¬B) P(A and ¬B)

P(¬A|¬B) P(¬A and ¬ B)

P(A and B)=P(A)*P(B|A)

P(A and B)=P(B)*P(A|B)

P(A|B)=P(A)*P(B|A)/P(B)

P(¬A|B)=P(¬A)*P(B|¬A)/P(B)



Bayes’ Rule for updating beliefs

• We want to compare P(A|B) and P (¬A|B), i.e. given evidence B 
what probability is higher: that A occurred or that ¬A occurred? 

• We know P(A) and P(¬A) – prior probabilities

• We know P(B|A) and P(B|¬A)

• From Bayes’ theorem:

P(A|B) = P(A)*P(B|A) / P(B)

P(¬A|B) = P(¬A)*P(B|¬A) / P(B)

P(A|B)=P(A)*P(B|A)/P(B)

P(¬A|B)=P(¬A)*P(B|¬A)/P(B)



Back to hit-and-run

• What is more probable: B or G ?

• All cabs were on the streets: 

• Prior probabilities: P(B) =5/6,  P(G) = 1/6 

• The eyewitness test has shown:

• P(XG | G)= 4/5  (correctly identified)

• P(XG | B)= 1/5  (incorrectly identified)

15

15

15

15

15

15

P(G|XG) = P(G)*P(XG|G) / P(XG)

P(¬G|XG) = P(¬G)*P(XG|¬G)/P(XG)

Bayes rule



Hit-and-run: solution

• P(B) =5/6,  P(G) = 1/6 

• P(XG | G)= 4/5,  P(XG | B)= 1/5  

• Probability that car was green given the evidence XG:

• P(G|XG)= P(G)* P(XG|G) /P(XG) = [1/6 * 4/5] / P(XG) =4/30P(XG)   

• //- 4 parts of 30P(XG)

• Probability that car was blue given the evidence XG:

• P(B|XG) = P(B)* P(XG|B) /P(XG) = [5/6 * 1/5] /P(XG) =6/30P(XG)  

• //- 6 parts of 30P(XG)

• 6:4 odds that the car was B!

The probabilistic conclusion reached without knowing P(XG) 
– the probability of an actual event



Probabilistic predictions

• Given the evidence (data),  

can we certainly derive 

the diagnostic rule: 

if Toothache=true then Cavity=true ?

• This rule isn’t right always.  
• Not all patients with toothache have cavities - some of them have 

gum disease, an abscess, etc.

• We could try an inverted rule:

if Cavity=true then Toothache=true

• But this rule isn’t necessarily right either - not all cavities cause pain.

Name Toothache … Cavity

Smith true … true

Mike true … true

Mary false … true

Quincy true … false

… … … …



Certainty and Probability

• The connection between toothaches and cavities is not a certain logical predicate in 
either direction.

• However, we can provide a probability that given an evidence (toothache) the 
patient has cavity. 

• For this we need to know:
• Prior probability of having cavity: how many times dentist patients had cavities: P(cavity)

• The number of times that the evidence (toothache) was observed among all cavity 
patients: P(toothache|cavity)



Bayes' Rule 
for diagnostic probability

Bayes' rule: 

• Useful for assessing diagnostic probability from symptomatic probability as:

• P(Cause|Symptom) = P(Symptom|Cause) P(Cause) / P(Symptom)

• Bayes’s rule is useful in practice because there are many cases where we do have good 
probability estimates for these three numbers and need to compute the fourth.

P(A|B)=P(A)*P(B|A)/P(B)



Bayes rule application. Example 1

HEADACHE

FLU

P(H)=1/10
P(F)=1/40
P(H|F)=1/2

P(F|H) =?



Bayes rule application. Example 1

HEADACHE

FLU

P(H)=1/10
P(F)=1/40
P(H|F)=1/2

P(F|H) =P(H|F)P(F)/P(H)
=1/2*1/40 *10=1/8



Bayes rule application. Example 2

Someone draws an envelope at random and offers to sell it to you.
How much should you pay?
The probability to win is 1:1. Pay no more than 50c.

WIN envelope LOSE envelope

$1.00



Variant: before deciding, you are allowed to see one bead 
drawn from the envelope.
Suppose it’s black: How much should you pay?
Suppose it’s red: How much should you pay?

WIN envelope LOSE envelope

$1.00

Bayes rule application. Example 2



Variant: before deciding, you are allowed to see one bead 
drawn from the envelope.
Suppose it’s black: How much should you pay?
P(W|b)=P(b|W)P(W)/P(b) =(1/2*1/2)/P(b)=1/4 *1/P(b)
P(L|b)=P(b|L)P(L)/P(b)=(2/3*1/2)/P(b) = 1/3 * 1/P(b)
Probability to win is now 3:4 – pay not more than $(3/7) 

Suppose it’s red: How much should you pay? – the same logic

WIN envelope LOSE envelope

$1.00

Bayes rule application. Example 2



Log-odds ratio

• Note, that we do not have to know P(b) in order to make 
predictions: we just find the ratio of 2 mutually exclusive 
probabilities 

P(W|b)=P(b|W)P(W)/P(b)
P(L|b)=P(b|L)P(L)/P(b)

• Instead of finding ratio, find its log:

P(W|b)=P(b|W)P(W)/P(b)
P(L|b)=P(b|L)P(L)/P(b)

If positive, then winning is more probable, if negative – loosing is 
more probable

log


