Primer: conditional probabilities

Lecture 11.1



Mathematical predictions

 We can ‘predict’ where the spacecraft will be at noon in 2
months from now

 We cannot predict where you will be tomorrow at noon

 But, based on numerous observations, we can estimate the
probability



Bayesian beliefs

* How do we judge that something is
true?

* Can mathematics help make
judgments more accurate?

* Bayes: our believes should be
updated as new evidences become

available




Bayes’ method

* There are 2 events: A and not A (B) which you believe occur with
probabilities P(A) and P(B). Estimation P(A):P(B) represents odds
of A vs. B.

* Collect evidence data E.
* Re-estimate P(A|E):P(B|E) and update your beliefs.



Example (fictitious): hit-and-run

* 75 blue cabs (B) and 15 green cabs (G)
* P(B):P(G)=5:1

At night: hit-and-run episode
* Witness: “l saw a green cab”:

» Witness is tested at night conditions:
identifies correct color 4 times out of 5

* Question: what is more probable:

B or
?

Adopted from: The numbers behind NUMB3RS: solving crime with mathematics by Devlin and Lorden.



Probability

* Basic element: random variable
e.g., Caris one of <blue, —blue(green)>
Weather is one of <sunny,rainy,cloudy,snow>

e Both Car and Weather are discrete random variables
e Domain values must be

* exhaustive (blue and green — are all the cabs)
* mutually exclusive (green is always not blue, there are no cars which are half green, half blue)

* Elementary propositions are constructed by the assignment of a
value to a random variable:

e.g., Car = —blue,
Weather = sunny



Conditional probability

* P(A|B) — probability of event A given that event B has
happened

* In our case we want to compare:

* the car was G given a witness testimony X;: P(G| X)
*VS.

* the car was B given a witness testimony X;: P(B|X;)



Prior probability and distribution

* Prior or unconditional probability associated with a proposition is
the degree of belief accorded to it in the absence of any other
information.

e.g.,
P(Car = blue) =0.83 (or abbrev. P(blue) =0.83)
P(Weather = sunny) =0.7 (or abbrev. P(sunny) =0.7)

* Probability distribution gives probabilities of all possible value
assignments:

P(Weather = sunny) = 0.7
P(Weather =rain) = 0.2
P(Weather = cloudy) = 0.08
P(Weather = snow) = 0.02
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Two random events (not independent)
happen at the same time — P(A and B)
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Possible event combinations when we
know the outcome of event A:
P(B|A)=1/12 and P(A)=1/2

C B

Possible event combinations when we
know the outcome of event B:
P(A|B)=1/4 and P(B)=1/6

But in both cases P(A and B) is the same: orange area in the diagram



Intuition for Bayes’s theorem
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Bayes’ theorem
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In other words:
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Bayes’ Rule for updating beliefs

P(A|B)=P(A)*P(B|A)/P(B)
P(-A|B)=P(-A)*P(B|-A)/P(B)

* We want to compare P(A|B) and P (-A|B), i.e. given evidence B
what probability is higher: that A occurred or that -A occurred?

* We know P(A) and P(-A) — prior probabilities
* We know P(B|A) and P(B|-A)

* From Bayes’ theorem:
P(A[B) = P(A)*P(B|A) / P(B)
P(-A|B) = P(-A)*P(B|-A) / P(B)



Back to hit-and-run

 What is more probable: Bor G ?

e All cabs were on the streets:
* Prior probabilities: P(B) =5/6, P(G) =1/6

* The eyewitness test has shown:
*P(X.| G)=4/5 (correctly identified)
* P(X. | B)=1/5 (incorrectly identified)

P(G|X;) = P(G)*P(X5|G) / P(Xs)
P(=G|Xg) = P(-G)*P(X5|~G)/P(X5)

Bayes rule



Hit-and-run: solution

* P(B) =5/6, P(G)=1/6
* P(X; | G)=4/5, P(X; | B)=1/5

* Probability that car was green given the evidence Xg:
¢ P(G |XG)= P(G)* P(XG | G) /P(XG) = [1/6 * 4/5] / P(XG) =4/3OP(XG)
. //- 4 parts of 30P(X;)

* Probability that car was blue given the evidence X:
* P(B|X;) = P(B)* P(X;|B) /P(Xs) = [5/6 * 1/5] /P(Xs)  =6/30P(Xg)
. //- 6 parts of 30P(X;)

* 6:4 odds that the car was B!

The probabilistic conclusion reached without knowing P(X)
— the probability of an actual event



Probabilistic predictions

* Given the evidence (data),

can we certainly derive

the diagnostic rule:

if Toothache=true then Cavity=true ?

e This rule isn’t right always.

Name | Toothache Cavity
Smith true true
Mike true true
Mary false true
Quincy | true false

* Not all patients with toothache have cavities - some of them have

gum disease, an abscess, etc.

* We could try an inverted rule:
if Cavity=true then Toothache=true

 But this rule isn’t necessarily right either - not all cavities cause pain.




Certainty and Probability

* The connection between toothaches and cavities is not a certain logical predicate in
either direction.

* However, we can provide a probability that given an evidence (toothache) the
patient has cavity.

* For this we need to know:
* Prior probability of having cavity: how many times dentist patients had cavities: P(cavity)

* The number of times that the evidence (toothache) was observed among all cavity
patients: P(toothache| cavity)



Bayes' Rule
for diagnostic probability

Bayes' rule:

P(A|B)=P(A)*P(B|A)/P(B)

» Useful for assessing diagnostic probability from symptomatic probability as:
e P(Cause|Symptom) = P(Symptom |Cause) P(Cause) / P(Symptom)

* Bayes’s rule is useful in practice because there are many cases where we do have good
probability estimates for these three numbers and need to compute the fourth.



Bayes rule application. Example 1

P(H)=1/10

P(F)=1/40
P(H|F)=1/2

P(F|H) =?




Bayes rule application. Example 1

P(H)=1/10
P(F)=1/40
P(H|F)=1/2

P(F[H) =P(H|F)P(F)/P(H)
=1/2*1/40 *10=1/8

F




Bavyes rule application. Example 2

WIN envelope LOSE envelope

Someone draws an envelope at random and offers to sell it to you.
How much should you pay?
The probability to win is 1:1. Pay no more than 50c.



Bavyes rule application. Example 2

WIN envelope LOSE envelope

Variant: before deciding, you are allowed to see one bead
drawn from the envelope.

Suppose it’s black: How much should you pay?

Suppose it’s red: How much should you pay?



Bavyes rule application. Example 2

WIN envelope LOSE envelope

Variant: before deciding, you are allowed to see one bead
drawn from the envelope.

Suppose it’s black: How much should you pay?
P(W|Db)=P(b|W)P(W)/P(b) =(1/2*1/2)/P(b)=1/4 *1/P(b)
P(L|b)=P(b|L)P(L)/P(b)=(2/3*1/2)/P(b) = 1/3 * 1/P(b)
Probability to win is now 3:4 — pay not more than $(3/7)

Suppose it’s red: How much should you pay? — the same logic



Log-odds ratio

* Note, that we do not have to know P(b) in order to make
predictions: we just find the ratio of 2 mutually exclusive
probabilities

P(W|b)=P(b|W)P(W)/P(b)

P(L|b)=P(b|L)P(L)/P(b)
* Instead of finding ratio, find its log:

P(W|b)=P(b|W)P(W)/P(b)
P(L|b)=P(b|L)P(L)/P(b)

log

If positive, then winning is more probable, if negative — loosing is
more probable



