MATH 290-NUMBER THEORY FOR TEACHERS PROBLEM OF THE DAY #6 DUE WEDNESDAY, JANUARY 29, 2014

We define \mathbb{Z}_m to be the set of numbers $\{0, 1, 2, \dots, m-1\}$ with the structure of "wrapping around." Thus, m = 0, m + 1 = 1, etc. in this system. Also, -1 = m - 1, -2 = m - 2 and so on.

We write $a \equiv b \mod m$ if $a = b \mod \mathbb{Z}_m$ and say that a and b are *congruent* modulo (or mod) m.

1. Look at \mathbb{Z}_5 , \mathbb{Z}_6 and \mathbb{Z}_7 . Find the following (or state that you can't) in \mathbb{Z}_5 , \mathbb{Z}_6 and \mathbb{Z}_7 .

$$-1, 100, 3+4, 3\cdot 4, \frac{1}{2}, \frac{1}{5}, \sqrt{-1}$$

(Note: What is $\frac{1}{2}$? It's the number x such that 2x = 1. What is $\sqrt{-1}$? It's the number (or numbers) x such that $x^2 = -1$.)

2. Try computing $15 \cdot 8 \mod 6$ and $(15 \mod 6) \cdot (8 \mod 6)$. What can you say about "modding out" and arithmetic operations?