Math 290-Number Theory for Teachers Problem of the Day #11 Due Wednesday, February 19, 2014

We call an element a of U_m a generator if every element of U_m can be expressed as a power of a. For example, 3 is a generator for U_7 since $3^1 = 3$, $3^2 = 2$, $3^3 = 6$, $3^4 = 4$, $3^5 = 5$, $3^6 = 1$ (all mod 7), so we get all the elements of U_7 , 1, 2, 3, 4, 5, and 6, as powers of 3.

- **1.** Look at U_3 , U_4 , U_5 , U_6 , U_7 , U_8 , U_9 , U_{11} , U_{12} , U_{13} . Which of these have a generator? Any conjectures?
- **2.** For elements that are not generators, what do you notice about their *orders*? (The order of an element a in U_m is the smallest natural number n such that $a^n \equiv 1 \mod m$.)