MATH 191 FUNDAMENTALS OF MATHEMATICS II 9.4 Solving Equations and 9.5 Strip Diagrams April 23, 2014

We saw before that equations can be	or	What
we mean when we say we want to		is we
want to		
that		

Example:

In elementary school, students might see equations like

 $3+5=\Box+2$

Note: At this point, it is important that students have not been conditioned to think that the equals sign means "calculate the answer" because they might fill in the blank like:

Instead, remind students that the equals sign means:

Visually (or concretely, with manipulatives), we can think of equations as a	
where each side of the equation corresponds to	. This
could be a good way to introduce students to solving equations.	

We can solve equations by $_$	
For example, when we see	

2x = 6 or $2 \times \Box = 6$

we can think:

The solution is:

Another example is:

To solve more complicated equations, we use ______. However, these strategies are based on the reasoning we did before.

Solving Equations with Algebra

When we solve equations using algebra, we can change the equation into a new one by

Using	te	change the expression on either side of the equation
into an		
For example:		
	or	the
to both sides of the e	equation.	
For example:		
	or	both sides of the equation
 by		, so long as that number is

If we do any of these three things to our equation, we get a ______ with

_____. Why?

We can think about these operations algebraically and visually using a balance scale. Example: Solve x + 3 + 3x = 5 + 2x + 2.

Solving Algebra Word Problems with Strip Diagrams

We can use strip diagrams to solve word problems without ______. However, we can also use strip diagrams to support the algebraic approach.

Example: After making four equal payments, Lisa still owes \$400 on her \$1300 TV. How much was each payment?

Strip diagram:

Strip diagram to support algebra:

Algebra alone:

Use a strip diagram and algebra to solve the following problem:

Markus took $\frac{1}{3}$ of the money out of his bank account last week and put \$200 back in his account this week. He has \$500 in his account now. How much did Markus have in his account to start with?

Strip diagram:

Algebra: