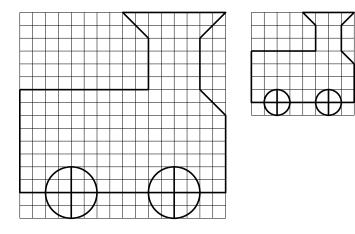
Math 191 Fundamentals of Mathematics II 14.5: Similarity April 2, 2014

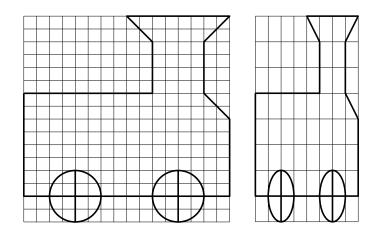
We saw that two shapes were	if they are	
If two objects are	,	but they are not necessarily
	, we say they are	
This means that objects are	one is a	
of the other.		
Caution: Students might think that "simil	ar" means	This is th
definition, but	not the mathematical	definition. For example, the
night think the following shapes are similar	because	
More formally, we say that two objects are _		if
on one object to		
where is some number k such that the		

This number k is called the _____.

For example:



On the other hand:



Problems Involving Similarity

We have ______ methods for solving problems involving similarity. Consider the following problem:

Problem: An architect builds a scale model of the building he has been commissioned to design to show his clients. The scale model is 16 inches wide and 10 inches tall. If the actual building is going to be 200 feet (2400 inches) wide, how tall will the building be?

Method 1: _____

Since the scale model and actual building are, v	we know that there is a
so that every distance on the actual building is	the corresponding
distance on the scale model. Therefore, the width of the actual building is	

and the height of the actual building is

But we also know that

 \mathbf{SO}

Method 2:	

Since the scale model is	and	, it is
times		·
The actual building should be	times	

_____also because

Therefore, it should be

Method 3: _____

We can calculate the _____ both as

and

Therefore,

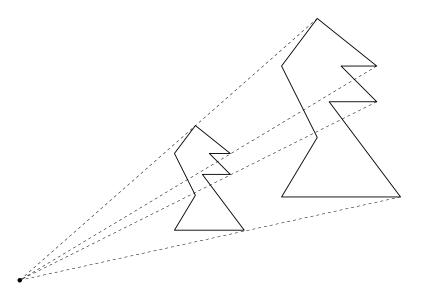
So if we let h stand for the height of the building, we get

This tells us that

Testing for Similarity Two shapes might look like they are similar when they are not. We need ways of testing to be sure.

Method 1: _____

A ______ is a transformation of the plane that transforms shapes into _______. A dilation _______ and with _______ is the transformation that takes each _______ A to the point A' that lies on the _______ from _____ through ______ and whose distance from P is _______ the distance between A and P.

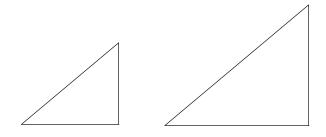


Dilations scale ______ distance in the plane by the ______ (not just distances between points and P). Therefore, two shapes are similar if one is ______ _____ a dilation of the other.

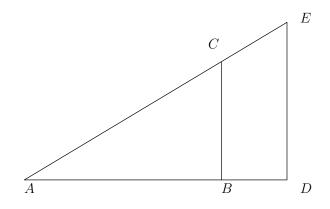
An important property of dilations: Dilations ______.

Method 2:	Criterion for
Similarity	

Two triangles are ______ exactly when the two triangles have ______



Example: Use similarity to find the length of DE.



Applications to Distances

We can use the idea of similarity to help us estimate distances.

Method 1: _____

Hold your thumb out in front of you with your as	rm	
Close	and compare the height of your thumb with an	
Sa	ay your thumb is	
tall, the object in the distance is	tall, and your arm is	
long. Can you tell how far away the object is?		

Method 2: Finding Heights using _____

Suppose you go outside and hold a yardstick perpendicular to the ground, and it casts a 2-foot shadow. Can you use this information to measure the height of a flagpole if you can see its entire shadow?

Additional information needed:

Then, using the fact that the sun's rays are essentially parallel when they reach the earth, we know that the ______ of the sun's rays with the top of the yardstick is ______ as

Suppose we measure the flagpole's shadow to be 14 feet long.