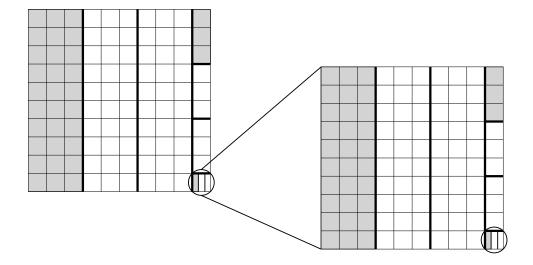
Math 191 Fundamentals of Mathematics II 8.7 Number Systems and 8.6 Rational and Irrational Numbers April 14, 2014

Number Systems Overview


The first numbers we encounter are the	, used to
objects:	
Then we might need to talk about having	of an object, and intro-
luce the concept of	to get the
	with whole numbers and always get whole
number answers, we cannot do the same with	
For example,	is not a whole number. To accommo-
late problems that use these calculations, we expan	nd to the
sn't true for For s not an integer. To accommodate problems, th	nd our answer will always be an integer, but this r example, that use these calculations, we expand to the lat is, all numbers that can be expressed as a
or the	·
Examples:	
There are still some problems we can't solve	e using the rational numbers. For example, the
solutions to	are not rational. To solve these problems,
	the numbers which can be
ovprossed with	

We can use a Venn diagram to show the relationship between these number systems:		
ressing Rational Numbers as Decimals		
ressing Rational Numbers as Decimals Let's look more in-depth at rational numbers, that is	numbers that can be expressed as a	
Let's look more in-depth at rational numbers, that is Note: Even when we express a fraction as a		
Let's look more in-depth at rational numbers, that is Note: Even when we express a fraction as a		
Let's look more in-depth at rational numbers, that is Note: Even when we express a fraction as a	, it is still rational.	
Let's look more in-depth at rational numbers, that is Note: Even when we express a fraction as a	, it is still rational.	
Let's look more in-depth at rational numbers, that is Note: Even when we express a fraction as a	, it is still rational.	
Let's look more in-depth at rational numbers, that is Note: Even when we express a fraction as a	, it is still rational.	
Note: Even when we express a fraction as aExample:	, it is still rational.	
Let's look more in-depth at rational numbers, that is Note: Even when we express a fraction as a Example: To determine how to express a fraction as a decimal, we us	, it is still rational.	

We say a decimal is	if it has a
that	г
repeating part doesn't have to start right after the	decimal place. We write a
over the	to distinguish it.
	if it has only
	its expansion. We can think of these decimals as
repeating, but with the repeating digit being	For example,
or either	This is because, when we do the long division we
	at some point. In this case, the decimal
• get a remainder that	at some earlier point.
This is because, if the denominator is B ,	, the only remainders we can have when dividing
by B are	If we have infinitely
many non-zero remainders, we must	a remainder, and the
decimal expansion	at this point.
A number whose decimal doesn't repeat or	terminate is For
example, 0.12112111211112 is irrational.	

Representing Decimal Representations with Subdivided Squares

Suppose the large square represents 1, and we are trying to see $\frac{1}{3}$.

Writing a Terminating or Repeating Decimal as a Fraction

We can write a terminating deci	imal as a fraction by using a $_$		
that is a		. For example,	0.12345 can
be written as			
To write a repeating decimal N a	s a fraction wa		
To write a repeating decimal IV a	s a fraction, we		
•	_ by a		if neces-
	t to start right after the decimal p		
•	_ by another		so
that we have the same repeat	ting part after the decimal.		
•	_ these multiples of N from each of	ther to get a	
Note that we	e have chosen the multiples of ten	so that the	
	·		
• Now we know that a particul	ar multiple of N is equal to a who	ole number, and	dividing by
this coefficient gives us the va	alue of N .		
For example, if $N = 0.123123123$.	$\dots = 0.\overline{123},$		

If $N = 0.8234343434... = 0.82\overline{34}$,