Math 191 Fundamentals of Mathematics II 14.4 Straightedge and Compass Constructions March 31, 2014

We can use what we learned	ed about congruence to help us make	precise drawings. We will use a
compass and a	, namely a	without any mark-
ings. That is, it can		,
but it cannot		
Dividing a Line Segment in D	Half and Drawing a Perpendicul	ar Line
If you are given a line se	egment, how can you find the poin from the	t on the line segment that is of the line
segment? This point is called	the	
Students might just		
This method doesn't work	because	
Instead, we'll use a compar	ss and straightedge.	
Step 1: Starting with a line	segment AB, draw a	(or
with	and radius	

Why does this work? Imagine drawing the line segments

Now we have a ______ because

This tells us that

In addition, we even know that	and	are	
· · · · · · · · · · · · · · · · · · ·			

This tells us that	is the		_of,
that is, the line segment that is		_ and	(
).	<i>AB</i> .		

Notice that if we want to draw a perpendicular line to a given line segment, we need to follow a procedure such as this one if we don't have a protractor. When asked to draw a right angle without a protractor, students might

However, this does not guarantee that the angle is exactly 90° .

Dividing an Angle in Half

If we have an angle, $\angle P$, made by two rays with P as their endpoints, how can we divide it into two angles of equal measure? In other words, we want to draw a ______ with endpoint ______ that is ______ the two original rays.

Students might

but this

Instead, we can use a compass and straightedge construction.

Step 1: Draw (a portion of) a	with
and	
	,
	\times
Step 2: Draw 0	centered at the of
the circle and the rays with the	
~	
Step 3: Draw the	_ through the
of the two circles drawn in step 2 and P .	
Ŷ	/

Why does this work? If we draw the line segments shown below, then we have

