MATH 191 FUNDAMENTALS OF MATHEMATICS II 14.3 CONGRUENCE, CONTINUED MARCH 28, 2014

Notation for congruent triangles: If $\triangle XYZ$ is congruent to $\triangle PQR$ in such a way that we can align the two triangles by matching vertex X with vertex P, vertex Y with vertex Q, and vertex Z with vertex R, we write:

It would be wrong to write

We want there to be faster ways to check whether two triangles are congruent formally. In fact, we have ______ methods.

Method 1:	_ congruence condition (
criterion): Two triangles are congruent if all pairs of		
are		

In other words, a triangle that has side lengths a, b, and c units is ______ to any triangle that also has side lengths a, b, and c units. For example:

This means that once the three sides of a triangle are fixed, then the ______ of that triangle are also ______. This is called the *rigid property of a triangle*, and is the reason that, for example, triangular braces are used to make buildings more stable.

Note: a quadrilateral does not have this rigid property. For example:

Let's see why the SSS criterion works:

If we were to construct a triangle with side lengths a, b, and c units, we use circles. There are _ possible triangles, but

Method 2:	congruence condition (_):
Two triangles are congruent if	of corresponding angles and their in-	
cluded sides are equal.		

Why does this work?

Method 3:	congruence condition ():
Two triangles are congruent if	of corresponding sides	
and their included angles are equal.		

Why does this work?

Is AAA a congruence condition for triangles?

Is ASS a congruence condition for triangles?

Some simple applications of congruent triangles:

1. Instead of using ______, we can use congruent triangles to show that an isosceles triangle has two equal angles.

Furthermore, we see that

 \mathbf{SO}

2. We can use this result to show that a rhombus has perpendicular diagonals.

