Math 191 Fundamentals of Mathematics II 13.1: Polyhedra and Other Solid Shapes March 14, 2014

We will start learning about three-dimensional shapes. These shapes are all around us and are familiar to most students. As usual, we will investigate the properties of these shapes systematically.

Polyhedra

A polyhedron is a	shape whose	outer surface is
made up of	These polygons are called	and where
two of the polygons meet is called an	A corner where multiple	
point is called a (Note:	The plural of polyhedron is	The plural of
vertex is)		

Platonic Solids

The Platonic solids are _____.

The Platonic solids are:

- Tetrahedron:
- Cube:
- Octahedron:
- Dodecahedron:
- Icosahedron:

What makes the Platonic solids special is that all their faces are		
and the same number of faces	. The Platonic solids	
are the only convex three-dimensional shapes with these properties.		

A shape is convex if		. In	simple
terms, a convex shape has no _	or		

1. What is the difference between a square and a cube? What is the difference between a triangle and a tetrahedron?

2. What would happen if you tried to make a convex polyhedron whose faces were all equilateral triangles, and which had six triangles meeting at every vertex?

3. Could you make a convex polyhedron that had seven or more equilateral triangles meeting at each vertex?