
MATH 191 FUNDAMENTALS OF MATHEMATICS II 12.6: AREA OF CIRCLES AND THE NUMBER PI FEBRUARY 21, 2014

What is π ?

You probably know the formula for the area of a circle:

But what is π ? 3.14159265.	The Greek letter π	(pronounced) rep	presents a, about
We	$_{-}\pi$ to be the $_{-}$	of the	to its
$\pi = ($) ÷ ()
is a	the size of the circle is, this ratio will be the same because every circle version of some, and when we scale the circle, the get multiplied by		
	In other		but the actual value of π is an on

1. Using the figure below, explain how you can tell that π is between 3 and 4.

• Draw a	and a	,		
•	the strip of paper arc	and the	·	
the strip to be t	the		_•	
• Use the	to	the strip of paper and	d the	_ of the
circle.				
• Compute:				
	$\pi =$			
Explain why this me	thod only approxim	ates π instead of computing	it exactly.	
Formulas Using π : C	ircumference and	Area of Circles		
Because π is defines	to be the			, we
get the formula	vo se une			, , ,, ,
circumferenc	e of a circle =	×()	
or, if we let C denote	te and d denote			
		the length	of the	, we
can rewrite the form	ula as			
Composito an ana	hand mand to have t	hain tuunka uunannad uuith a	anacial tana ta pua	
		heir trunks wrapped with a out 1 foot in diameter and i		
		eet. The tape is 3 inches		
_	_	ree? (Use that one wrap of		-
approximately a circ		ce. (obe that one wrap or	one cape around the	010015
or processing of the)			

You could also approximate π using a compass, a long strip of paper and a ruler.

The formula for the area of a circle also uses π . Namely, a circle with				
has area				
${\rm Area\ of\ a\ circle} =$	square units.			

Why does this formula make sense?

4. Look at the pictures on the separate sheet. In the first picture, a circle has been cut into 8 wedges and rearranged. In the second, the circle was cut into 16 wedges and rearranged. In the third, the circle was cut into 32 wedges and rearranged.

If you imagine cutting the circle into more and more wedges (each of which will become smaller and smaller) and rearranging them as shown,

- What shape do the rearranged pie wedges look more and more like?
- What are the side lengths of this shape?
- What is the area of this shape?

5. Explain why it makes sense that the area of a circle with radius r is πr^2 square units if you know the circumference of a circle of radius r is $2\pi r$.