Math 42 - Practice Final

Name:_____

FOR FULL CREDIT SHOW ALL WORK

NO CALCULATORS

1. Find the GCD of 1234 and 357.

2. Find all solutions *x*, *y* in \mathbb{Z} to the linear diophantine equation 1234x + 357y = d, where *d* is the GCD of 1234 and 357.

3. Is 127 a square mod 617? Is 31 a square mod 617? (127, 617 and 31 are all prime.)

4. Mod which primes *p* is 7 a square?

5. How many elements are there in U_{1000} ?

6. Give an example of a function that is one-to-one, but not onto.

7. Give an example of a function that is onto, but not one-to-one.

8. Describe all solutions in \mathbb{Z} to the equation

$$x^2 \equiv 2 \mod 119.$$

(Hint: $119 = 7 \cdot 17$.)

a	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
6 ^{<i>a</i>}	6	36	11	25	27	39	29	10	19	32	28	4	24	21	3	18	26	33	34	40
a	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
6 ^{<i>a</i>}	35	5	30	16	14	2	12	31	22	9	13	37	17	20	38	23	15	8	7	1

Here is a table with powers of 6 mod 41. Use it to solve the next two problems.

9. Use logarithms to find all inequivalent solutions to $40x^4 \equiv 1 \mod 41$.

10. What is the order of 18 mod 41? What is the order of 14 mod 41? Of $18 \cdot 14$?

11. Factor 3737 into primes in $\mathbb{Z}[i]$.

12. Write 3737 as the sum of two squares in two different ways.

13. Express $\sqrt{11}$ as a simple continued fraction.

14. Find two positive solutions to $x^2 - 11y^2 = 1$.

15. Give 4 examples of units in $\mathbb{Z}[\sqrt{11}]$, none of which may be 1 or -1.

16. Prove that for integers *a* and *b*, any linear combination ax + by with *x*, *y* in \mathbb{Z} is divisible by d = (a, b). You may use the fact that the smallest natural number expressible in the form ax + by is *d*.

17. Prove that for *z* and *w* in $\mathbb{Z}[i]$, N(zw) = N(z)N(w). Use this to prove that if N(z) and N(w) are relatively prime in \mathbb{Z} , then *z* and *w* are relatively prime in $\mathbb{Z}[i]$.