Math 42: Final Exam Topics Covered

1 Types of Problems

- Solving linear diophantine equations
 - Finding all solutions in $\mathbb Z$
 - Finding solutions in \mathbb{N}
 - Solving LDE's in $\mathbb{Z}[i]$
- Finding GCD's
 - In \mathbb{Z} and in $\mathbb{Z}[i]$
- Continued Fractions
 - Compute continued fractions of rational numbers
 - Compute continued fractions of square roots
 - Given an infinite continued fraction, find a closed form (i.e. $\frac{a+\sqrt{d}}{b}$)
 - Computing convergents
- Solving linear congruences $ax \equiv b \mod m$
 - Give the number of solutions without solving
- Computing $\varphi(n)$
- Computing powers mod m
 - Euler's theorem $(a^{\varphi(m)} \equiv 1 \mod m)$
 - Fermat's little theorem $(a^{p-1} \equiv 1 \mod p, p \text{ prime})$
 - Successive squaring
- Chinese remainder theorem
 - Solving systems of congruences
 - Solving equations mod m by first solving mod factors of m
- Generators and Logarithms
 - Finding generators
 - Making a log table and using it to solve problems
- Factorization in $\mathbb{Z}[i]$
 - Using factorization in $\mathbbm{Z}[i]$ to express integers as the sum of two squares

- Which primes of \mathbb{Z} are still prime in $\mathbb{Z}[i]$ and which can factor?
- Legendre Symbols
 - Computing Legendre symbols using Euler's Criterion and Gauss's Lemma
 - Computing Legendre symbols using Quadratic Reciprocity
 - Using Legendre symbol rules (e.g. multiplicativity)
 - Using Legendre symbols to determine numbers of solutions to quadratic equations mod m
 - Determining, using quadratic reciprocity, for which primes p a given prime q is a square (e.g. When is 3 a square mod p?)
- Pell's Equation
 - Finding multiple solutions to $x^2 dy^2 = 1$
 - Connection to units in $\mathbb{Z}[\sqrt{d}]$
- Unique Prime Factorization
 - Know examples of systems that have UPF and systems that don't
 - Be able to explain why two factorizations are really "the same" or really "different"

2 Definitions

- Divides, i.e. $a \mid b$
- Congruence, i.e. $a \equiv b \mod c$
- Unit (in $\mathbb{Z}, \mathbb{Z}_m, \mathbb{Z}[i], \mathbb{Z}[\sqrt{d}]$)
- \mathbb{Z}_p and U_p
- One-to-one and Onto functions
- Ring (e.g. \mathbb{Z})
- Norm and conjugate in $\mathbb{Z}[i]$ and in $\mathbb{Z}[\sqrt{d}]$
- Generator, order
- Legendre symbol

3 Proofs

- Induction
- Contradiction
- Euclid-type proofs for infinitude of primes
- Proofs from class are fair game
- Proofs from homework are especially fair game