MATH 520 - PRACTICE PROBLEMS FOR MIDTERM I

For Full Credit, Show All Work No Calculators

1. Let

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 3 & 0 \\ 3 & 6 & 3 \end{bmatrix}.$$

Compute A^{-1} .

2. Find an orthonormal basis for the space spanned by the vectors

[1]		$\begin{bmatrix} 2 \end{bmatrix}$		$\left[0 \right]$
1		0		1
-1	,	-2	,	4
[-1]		0		1

Let A be the matrix with these vectors as columns. Factor A = QR.

3. For what values of c does the following system have a solution?

$$\begin{bmatrix} 3 & 1 & 6 \\ 2 & 0 & 4 \\ 1 & 2 & 2 \end{bmatrix} \vec{x} = \begin{bmatrix} 1 \\ c \\ c \end{bmatrix}$$

- 4. What is the dimension of the space of 2×2 symmetric matrices? Give a basis for this vector space.
- 5. Let $\mathbf{v}_1 = (1, 2, 0, 1), \mathbf{v}_2 = (1, 1, 1, 1), \mathbf{v}_3 = (2, 3, 1, 0).$
 - (a) Find a vector in \mathbb{R}^4 that is perpendicular to $\mathbf{v}_1, \mathbf{v}_2$, and \mathbf{v}_3 .
 - (b) For which values of c is the 4×4 matrix whose columns are $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$, and (1, -1, c, 0) invertible?
- 6. Let A be a 5×4 matrix.
 - (a) Let $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ be vectors in \mathbb{R}^4 . By the definition of linear independence, what does it mean for the vectors $A\mathbf{v}_1, A\mathbf{v}_2$, and $A\mathbf{v}_3$ in \mathbb{R}^5 to be linearly independent?
 - (b) Suppose now that N(A) = 0 and that $\mathbf{v}_1, \mathbf{v}_2$, and \mathbf{v}_3 are linearly independent vectors in \mathbb{R}^4 . Show that $A\mathbf{v}_1, A\mathbf{v}_2$, and $A\mathbf{v}_3$ are linearly independent vectors in \mathbb{R}^5 .