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1. Introduction

A lot of people learn that the golden ratio makes the “most beautiful” rectangles.
They might also learn that the golden ratio is sometimes called ϕ and that

ϕ =
1 +
√

5

2
.

But why does it come up in nature so much? It’s not that nature “wants” to be
beautiful, and thus chooses the “most beautiful” number. There’s an actual reason!

To understand this reason, we first have to learn about continued fractions. Once
we compute the continued fraction for ϕ, we’ll see that ϕ is especially irrational
(and explain what that even means). Then we’ll see why nature should want to be
as irrational as possible.

2. Background: Continued Fractions

A continued fraction is an expression of the form

a1 +
1

a2 +
1

a3 +
1

a4 +
1

. . .

,

where the ai are positive integers.
We can write any rational number in this form without too much trouble by

repeatedly using division with remainder. This is also known as Euclid’s algorithm
for finding the GCD (greatest common divisor). Here’s an example. Say we want
to write 29

11 as a continued fraction. Start with division with remainder.

29 = 2 · 11 + 7

11 = 1 · 7 + 4

7 = 1 · 4 + 3

4 = 1 · 3 + 1

3 = 3 · 1 + 0

1
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From this, we see that we can write 29
11 as 2 + 7

11 . And working our way through
the equations, we get

29

11
= 2+

7

11
= 2+

1
11
7

= 2+
1

1 +
4

7

= 2+
1

1 +
1
7
4

= 2+
1

1 +
1

1 +
3

4

= 2+
1

1 +
1

1 +
1
4
3

= 2+
1

1 +
1

1 +
1

1 +
1

3

.

Notice that the ai’s are just the coefficients 2, 1, 1, 1, 3 from Euclid’s Algorithm!
Now, the “partial fractions”1 approximate our fraction. By partial fractions, I

mean we truncate the continued fraction and omit some of the lower parts. These
“partial fractions” are called convergents. So in our example, the convergents are

2, 2 +
1

1
= 3, 2 +

1

1 +
1

1

=
5

2
, 2 +

1

1 +
1

1 +
1

1

=
8

3
, 2 +

1

1 +
1

1 +
1

1 +
1

3

=
29

11

These fractions converge to our number 29
11 , meaning they get closer and closer to

29
11 . Now it’s your turn to practice.

Exercise 1. Find the continued fraction decompositions for:

72

25
,

67

23
,

158

57
, and

4001

2689
.

A note on notation: since the numerators in a continued fraction are always 1,
we really only have to pay attention to the non-numerators. In the case of 29

11 , those
numbers were 2,1,1,1,3. To save space, we’ll write

29

11
= [2, 1, 1, 1, 3]

to mean the continued fraction with ai’s equal to 2,1,1,1,3.

3. Continued Fractions of Irrational Numbers?!

In the end, we want to understand ϕ, the golden ratio. This number is irrational,
so we can’t find its continued fraction the way we did for rational numbers, like
29
11 . It turns out that irrational numbers involving square roots can be written as
infinite repeating continued fractions.

Let’s look at the example of
√

2. If we want to express
√

2 as a continued fraction,
we need

√
2 = a1 +

1

a2 +
1

a3 +
1

a4 +
1

. . .

.

Note that
√

2− a1 is less than 1, so a1 should be the biggest integer less than
√

2.
In other words, since 1 <

√
2 < 2, a1 = 1.

1No, not those partial fractions. Not the ones from calculus.
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Our computation now goes like this:
√

2 = 1 + (
√

2− 1) = 1 +
1(
1√
2−1

) .
Now we have to remember how to rationalize the denominator. For the fraction

in parentheses above, we multiply numerator and denominator by
√

2 + 1 to get

√
2 = 1 +

1
√
2+1
2−1

= 1 +
1

1 +
√

2
.

So we have a formula for
√

2 in terms of itself! We can plug our formula into
itself to find

√
2 = 1 +

1

1 + 1 +
1

1 +
√

2

= 1 +
1

2 +
1

1 +
√

2

.

If we repeat the process, we get that
√

2 = [1, 2̄], where the bar over the 2 means
that it repeats (like with repeating decimals).

Your turn! (Note: these problems are a little trickier. They will require that

you repeat the process described for finding a1 for
√

2, and you may need to decide

what the biggest integer less than something like a
√
d+b
c is.)

Exercise 2. Find continued fraction expansions for
√

3,
√

7, and ϕ = 1+
√
5

2 .

Just like with rational numbers, we can use the convergents (those partial frac-
tions) to approximate the continued fractions. This is useful because irrational
numbers are much harder to get a grip on. But with convergents, we find rational
numbers (fractions) that are close to our irrational number.

Exercise 3. Compute the first few convergents for the continued fraction of ϕ.
Notice anything cool?

4. The Golden Ratio is the Most Irrational Number!

You should have gotten that

ϕ = [1, 1, 1, 1, 1, ...]

and that the convergents are ratios of consecutive Fibonacci numbers! Neat, right?
Just in case you didn’t get that, notice that if x = [1, 1, 1, ...], then

x = 1 +
1

x
.

If we solve for x now using the quadratic formula (and know that x > 0), then we
can see that this is the right continued fraction for ϕ.

Now let’s think about what it means to be “the most irrational.” By that, we
mean that the rational approximations from the convergents are far away from our
irrational number. Think about what it means when one of the ais is really big,
like 100. It means that the last convergent (the one not including the 100) is pretty
close! In the next step, we only change by 1

100 , instead of something much bigger,

like 1
2 . Concretely,

√
3 = [1, 1, 2]



4 LI-MEI LIM

and

1 +
1

1

is close (relatively speaking) to
√

3 because the next ai is 2, which is somewhat
large (at least it’s bigger than 1). The next convergent, namely

1 +
1

1 +
1

2

is pretty close to the previous one.
So to summarize, big numbers in the continued fraction mean good rational ap-

proximations. So ϕ, which has all 1’s in its continued fraction, has only bad rational
approximations!

5. Why the Golden Ratio Occurs in Nature

So now we understand that the golden ratio is very irrational. Great! So why
would nature care?

Let’s say you’re a tree. You have a central trunk and you want to put branches
out at regular angles spiraling up your trunk. Now, you want your branches to
overlap as little as possible so that they don’t block the light for the branches
below. So what angle should you choose?

You don’t want to choose something like 90◦, because you will just have four
stacks of branches, and basically only four branches that get to see the light. In
other words, you don’t want to choose a factor of 360◦.

Instead of thinking about angle measurements, let’s just think about what frac-
tion of the circle we want to go around each time. What we said just now is that
we don’t want to go around by 1

4 of the circle every time. Nor would we want to
go around by any other rational number. After a few go rounds (depending on
the denominator) our branches will start to stack. So each branch should be an
irrational fraction of the circle from the last.

But which irrational number? If we want to be as far away from a rational
number as possible, we should choose ϕ! Of course, turning 1.618... of a circle each
time is the same as turning 0.618... each time. So often you might hear the 0.618...
number when reading about plant growth.

This same principle applies to flowers putting out petals, growing pinecones, and
many other things. The idea is that if you’re a flower, you don’t want all your petals
to overlap. You want to have them all nicely nestled instead of going out on spokes.
The following website has a nice simulation. Put in a decimal to rotate each time,
and see what kind of pinecone, seed head, petal pattern, etc. you would get.

http://www.mathisfun.com/numbers/nature-golden-ratio-fibonacci.html

If you play around with the angles, you’ll see that rational numbers (like 0.25 or
0.3333333) create spokes. Irrational numbers (or at least, decimal approximations of
irrational numbers, since you can only type decimals into the website) give spiraling
arms. “More irrational” irrational numbers will give more tightly packed spirals.
The golden ratio looks really good!

A final note: you may have heard that the Fibonacci numbers are the numbers
that come up in nature, not just the golden ratio. Well, ratios of Fibonacci numbers
approximate the golden ratio! So really, it all makes sense.

http://www.mathisfun.com/numbers/nature-golden-ratio-fibonacci.html
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For another nice presentation of Fibonacci numbers showing up in nature, check
out Vi Hart’s videos.

http://www.vihart.com/blog/doodling-fibonacci-1/

In conclusion, math is awesome and makes all kinds of sense. Thanks for reading!

http://www.vihart.com/blog/doodling-fibonacci-1/
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