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Abstract

The growing reliance on computing devices to advance efficiency and func-

tionality in fields from mobile technologies to finance has been accompanied with a

need for increasingly complex software in order to provide that functionality. Expe-

rience has proven this complexity in software difficult to manage, and most software

released to the public today contains numerous defects. The impossibility of exhaus-

tive testing in a pre-release environment suggests that at least some of these latent

defects will be found in the much larger exploration of the program’s state space after

release. However, in this situation it is difficult for the software designers to pinpoint

the exact cause of a failure. For this reason the idea of automated fault localization

after software deployment in the context of in vivo software testing is explored, and

the feasibility of defect identification using existing algorithms is demonstrated.
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Chapter 1

Introduction

Computer software has become a necessity for managing and interfacing with a va-

riety of devices used in everyday life. Some examples are mobile phones and GPS

devices, automobiles, some household appliances, thermostats, in-flight entertainment

systems, handheld and console gaming platforms, and of course desktop and laptop

computers. The ballooning popularity of internet-based services epitomized by the

recent growth of Facebook and the previous establishment of Google has created an

entirely new and expanding market for on-demand software products—a drastic shift

from store-bought software that was the only major distribution medium prior to the

internet.

The benefits of software and powerful hardware on which to run it have been

realized across almost every industry through automation of business processes from

back office, to manufacturing, to risk management, to coordination. There is also in-

creasing popularity of private high performance computing centers especially in fields

like finance, which requires computer models to price complex financial instruments
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and analyze risk exposure. It is fair to say that software has even been the main factor

behind the scale on which automation and data management are currently possible;

without large enterprise software managing everything from ordering to processing

and distribution, many businesses could simply not operate as efficiently as they do.

The result is that various software components have been extensively devel-

oped with a strong theoretical and practical foundation, and are frequently leveraged

across disciplines. Various engineering practices have moved towards sophisticated

three dimensional modeling tools and computational simulations; any field that re-

quires gathering of data likely does so in a digital format and stores it within a

database management system; and artists use software to create, edit, and distribute

their work. The internet has become a medium for publication of and access to every-

thing from independent work to peer-reviewed journals, and has established itself as

an ecosystem of its own that composes software systems in new ways, from commerce

to social networking and cloud computing.

As consumers and industry alike demand more and more from the software

they use, various technologies have been invented to cope with managing the dra-

matic increase in complexity of the systems delivered. In fact, the field of Software

Engineering has come into being to establish methods for controlling software com-

plexity throughout development and until retirement of a system. While common

best practices have been established for testing a system against its functionality and

behavioral requirements, there remains a serious problem of defects in deployed soft-

ware systems. This is a direct result of the infeasible computational requirements of

comprehensively testing all possible interactions between a system’s various compo-
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nents, even in light of exponential improvements in the speed of and storage available

to modern computers.

Software defects are the cause of myriad problems with computer systems

such as data loss and corruption, improper behavior preventing them from fulfilling

their intended purpose, reliability issues, and security compromises. However, it is

eventually decided that loss of revenue from delaying product releases outweighs the

benefits of time spent finding and fixing more defects, and systems are therefore

shipped with latent defects. In addition, there is no feasible way to prove the absence

of defects in such a complex system, and the severity of possible defects is completely

unknown until discovered. From this perspective, the development and use of software

has evolved into a risk management scenario concerned with balancing the efficiency

and scale gains of using the software against the possibility that its incorrectness

might threaten data or other systems (as in a networked environment).

Of course it is desirable to identify and fix these defects before they can cause

any damage or be exploited. This is made possible via systems to “patch” the soft-

ware such as is done with operating system update functionality like the Windows

Update system for Microsoft operating systems and Software Update in Apple’s OS

X. Defects found through continued testing in a development environment are eas-

ier to create patches for than those identified through the typical crash reporting

supplied with operating systems and applications. This is because in a development

environment engineers may inspect the entire internal state of the program as a failure

is reproduced and have access to input data that will reproduce the defect whereas

neither advantage is typically available otherwise.
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In order to help locate the cause of program failures in a deployed software

instance, methods for gathering relevant information during execution and period-

ically running tests and reporting result data are examined in chapter 4, In Vivo

Fault Localization. Information on the field of software engineering and the process

for pre-deployment software testing as established thus far is presented in chapter

2, Pre-deployment SoftwareTesting, which covers various methods for testing along

with their associated benefits and tradeoffs. Existing research related to automated

fault localization and post-deployment software analysis and testing is presented in

chapter 3, Related Research, offering a good introduction to methods as old as 1981

up through current work in the fields.
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Chapter 2

Pre-deployment Software Testing

This chapter explains the concepts of software testing phases that are typically imple-

mented prior to deployment of a production software system in order to offer sufficient

assurance that it operates to its specifications and is generally well-behaved. Before

addressing the specifics of testing, the field of software engineering is introduced in or-

der to put the testing component of software development in the context of a complete

and refined software creation process.

2.1 Software Engineering

The complexity of modern software is what necessitates the field known as software

engineering, leading Van Vliet to claim that “the central theme is mastering com-

plexity” [1, pp. 7]. Software engineering consists of various areas that assist the goal

of creating software in an efficient, well-structured manner. In order to create quality

software, a number of standard phases are typically completed in various ways. This
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leads to what is known as “software processes” or “the software life cycle” [1, 2, 3,

pp. 64, pp. 64, pp. 48], which is generally composed of the following components:

• Specification: gathering of requirements from end users of the contracted soft-

ware system, and their subsequent validation and translation into technical

specifications that are presented to the system engineers

• Design and Implementation: decision on the organization of the system, tech-

nologies used, the physical process used for development, and actual implemen-

tation of the system

• Verification and Validation: various actions taken to assure that the software

developed meets the requirements outlined, and that it is sufficiently reliable

• Evolution: change of the deployed system to meet evolving client needs

All areas mentioned have been formalized to some degree. The specification

phase identifies two sorts of requirements: functional requirements that describe func-

tionality the system must or must not provide and possible required behavior, and

non-functional requirements that can generally be viewed as constraints or limitations

on the system imposed by resource, timing and process requirements among other

things [2, 3, pp. 119, pp. 103-104]. The problem of gathering sufficiently complete

and detailed requirements is also acknowledged, and various techniques for eliciting

and validating requirements are mentioned in all three sources as well.

The design and implementation phase has a multitude of well-established

paradigms for appropriate completion including a variety of “design patterns” that
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outline various system architectures. Each supports different functionality to varying

degrees, best practices for code organization and architecture, and also has a unique

conceptual process describing the steps in development—waterfall, iterative, agile are

some examples [2, pp. 64-88]. The evolution process is addressed in literature in a

variety of manners, but descriptions concur on at least two empirically-observed laws

of software evolution: the law of continuing change, and the law of increasing com-

plexity. The former states that requirements of the software system will perpetually

be evolving, creating a challenge for the architects and engineers to adapt a system

to requirements for which it was not originally designed to fulfill. This is a significant

driving force for the latter observation, which claims that as software persists and is

improved it is made increasingly complex [1, 2, pp. 491, pp. 453].

The remainder of this chapter focuses on the verification and validation step

of the software process, which has been thoroughly formalized as outlined below.

2.2 The Need for Software Testing

The name “verification and validation” is typically given to the portion of the software

development process that includes software testing. The subtle difference between the

two components is clearly delineated by Sommerville, who notes that validation is es-

sentially “are we building the right product?” whose answer involves acceptability

of the system, and that verification is “are we building the product right?” whose

answer is related to verifying that the software does indeed conform to specifications

[2, pp. 516]. It is the latter part that encompasses what is commonly called “software
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testing”, and it is an integral part of software development since some sort of verifi-

cation of correctness is required due to the complexity of many modern-day software

systems.

The goal of software testing is universally recognized to be the efficient iden-

tification of errors within a given software program, and in the larger context of the

entire verification and validation process, the remediation of those errors. The preva-

lence of modern software failures brought to light in a public manner are an indicator

that there are great benefits to improving the software testing process. Since it is

simply unfeasible to test software under all possible internal state configurations and

transitions, it is a very difficult if not impossible problem to prove program correct-

ness through current software testing methodologies. This intractability of exhaustive

testing of software behavior has led to a near certainty of defects in all modern soft-

ware systems [1, 2, 3, 4, pp. 539, pp. 397, pp. 205, pp. 9].

In light of this, it is evident that the net benefit of software testing with re-

gards to a deployed system is not the absence of defects but rather a certain degree

of assurance that the software system will behave as intended. This leads to various

heuristics that are used throughout the software testing process in order to maximize

the assurance that the software is indeed sufficiently correct. A main stumbling block

for achieving this goal efficiently is what has been widely recognized as a natural

tendency towards psychological mindsets that do not facilitate proper software test-

ing. Both [1, pp. 405-406] and [4, pp. 5-6, 8] warn against the mentality that the

purpose of testing is to demonstrate that no errors are present, and link this behavior

to inefficiency in test case design.
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The need for software testing is perhaps best shown through the dedication

of time towards software testing practices in real-world projects and the results of

its inadequate presence. It was estimated in [5] that time waiting for tests to run

accounted for 10—15% of total time of software development, and [6] cites the results

of some studies claiming that more than half of all development effort is put into test-

ing and debugging. Additionally [7] justifies in vivo testing by noting that even with

existing testing efforts, “40% of companies consider insufficient pre-release testing to

be a major cause of later production problems”.

2.3 Manual Testing

Manual testing of software via human analysis is an integral part of a software engi-

neering process, but the scope of the problem leads to the necessity of other forms of

testing as well; it is not economically sound to develop an exclusively manual process

for software testing because of the inability to re-use developed work in an automated

fashion. However, it is noted in [4, pp. 23] that manual review of the system’s code

yields benefits due to exact localization of the fault rather than simply its symptoms

as is typical in automated testing, and also that experienced software testers find

some classes of problems better suited to human analysis while others appear to be

more efficiently identified through automated testing.

A widely used form of manual software testing is known as a “code inspection”

or “code review”, and involves a team of people who review a particular section of

program code as a group. While noted that the number of people involved in a code
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inspection is not limited in any way, all suggest a team of about four people that

fulfill at least the following roles:

• The original author of the piece of code being inspected to answer questions

• Inspectors to review the code

• A moderator to keep the meeting moving

• A scribe to record a list of the defects discovered during the meeting

• A reader to narrate the code being reviewed

[1, 2, 4, pp. 415, pp. 523, pp. 24]. It is generally suggested that formal documents be

provided for the code inspection such as a code inspection checklist, which contains

common types of programming errors and spaces to note the occurrence of each if

present. Identified defects are not fixed during the inspection, and it is the author’s

responsibility to address the issues found in time outside the meeting [4, pp. 22]

Sommerville includes individual preparation in the code inspection process.

The meeting itself is driven by the person fulfilling the role of the reader who narrates

the program code and allows for interruptions from inspectors who require clarification

or wish to discuss a possible defect. The maximum time for an efficient code review

is cited at around 2 hours as the process can become mentally taxing, and figures

between 40% and 60% for the percentage of net discovered defects uncovered via code

inspections are typical. It is also noted that the psychological approach taken by the

code inspectors plays a crucial role in team dynamics as any personal attacks regarding

the author’s code can easily be internalized, so it is recommended that comments are
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directed at the code itself rather than the author in any manner whatsoever. It is

also recognized that even comments regarding defects in the code can have negative

impacts on the author if the process is improperly approached [1, 2, 4, pp. 414,

pp. 522,526-527, pp. 23,26].

[4] notes other types of manual code inspections including “walkthroughs”,

which are similar to code inspections in terms of the duration and number of people

gathered for the walkthrough. However, unlike code inspections, they focus on manual

execution of code stemming from simple test cases in order to further understanding

of the program’s workings as well as find defects. A “desk check” is a term for an

individual effort to debug programs, and it is suggested that a person other than the

author of the program perform the check. This process may be somewhat structured,

for example by requiring that the examiner fill out a checklist of various types of

common mistakes, but is generally less effective than full-fledged, team-based forms

of manual testing. Finally, peer review of programs by multiple individuals can offer

valuable feedback on factors like style and organization as well as offer a well-rounded

opinion of the examined code [1, 4, pp. 414, pp. 38-41].

2.4 Black-box Testing

Black-box testing is the process of verifying that the program behaves correctly while

treating it as a “black box” so that all examination of the system is done without

knowledge of internal implementation. Therefore this type of testing is typically the

process of testing input against requirements for the system’s associated output that
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were gathered in the specification step of the software process [4, pp. 9], or according

to the technical documents following from the original specification if testing is carried

out at a finer granularity than at the system level. However, as previously noted it

is infeasible to test every possible configuration, so a method called “equivalence

partitioning” is used in order to maximize the effectiveness of non-exhaustive testing

scenarios.

This process breaks ranges of input into various groupings called “equivalence

classes” that are likely to have all items in the group behave in the same manner.

Using this technique, a minimal number of members of a given equivalence class can

likely represent behavior of a majority (or ideally all) of the values in that class, and

hence the number of test cases required for reasonable assurance of correctness of the

program can be significantly reduced [1, 2, 3, 4, pp. 403, pp. 553, pp. 213, pp. 52-53].

There are no all-encompassing rules for performing equivalence partitioning

properly as it depends on the specific piece of software and requires experience to

perform well [2, 4, pp. 554, pp. 54-55]. An example of a common equivalence partition

would be splitting the possible values for integers into negative and non-negative to

catch errors resulting from assumptions based on the sign of a given value. Once these

equivalence classes have been established, the technique of “boundary value analysis”

is used to make effective use of equivalence classes by exploiting the observation that

errors are more common on the values at the bounds of equivalence classes and hence

should be more thoroughly tested [2, 4, pp. 554, pp. 59].

Using these techniques is helpful both for finding defects and for assuring that

changes to a system do not result in breaking some related functionality. There are
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a wide number of tools available to automate the running of tests [2, 4, pp. 563,

pp. 120-121], and they are necessary to facilitate the practice of “regression testing”,

in which tests are re-run to ensure their exercised functionality is not compromised

due to changes made to the system. Since running all available tests for every change

made to the system may be impractical a subset of tests may be re-run instead,

selected by the likelihood of the change impacting the functionality exercised by the

tests [1, 4, pp. 411, pp. 147].

2.5 White-box Testing

While black-box testing as described in §2.4 is useful for testing, higher assurance can

be achieved by also performing white-box testing (also called “structural testing”).

In this case, the software is not treated as an opaque unit, but various analysis

techniques requiring access to the program’s source code may be carried out in order

to test the system more thoroughly. Access to the program’s source code during

testing allows for expansion on black-box testing by establishing either new or more

specific equivalence classes to be used during testing [2, pp. 557].

Various metrics can be used to measure the completeness of a testing infras-

tructure, and many focus on the extent to which various parts of the code are exercised

during testing. The simplest of these is the metric of statement coverage, which mea-

sures the number of unique source code statements executed during a full run of tests.

While it can give some measure regarding the completeness of a program’s testing, it

is a relatively weak indicator of program correctness since the construction of trivial
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test cases offering full statement coverage that do not expose errors is relatively sim-

ple [1, pp. 42]. This is because statement coverage is unable to detect two important

classes of errors: those stemming from incorrect values of data, and errors of omis-

sion where required functionality is simply not present. In fact, Myers claims “the

statement coverage criterion is so weak that it generally is useless” [4, pp. 45]. While

this may be true from a defect identification standpoint, it can be used to ensure

that more robust testing methods are actually examining a reasonable portion of the

supplied program code.

The weakness of simple statement coverage as an indicator of defects can

be made more robust by performing “path testing” or “branch coverage” testing,

which requires that each possible conditional branch must be be tested so that it is

examined as both succeeding and failing [1, 2, 3, 4, pp. 421, pp. 559, pp. 257-260,

pp. 46-47]. This is not nearly as strong as the criterion that every possible path

through the program should be examined, but the combinatoric explosion of possible

cases renders that method unfeasible for any reasonably complex program. Branch

coverage can in turn be extended to what is known as “condition/decision coverage”,

which requires that each part of a boolean expression evaluate to both false and true

throughout the course of testing (and likewise not that all possible combinations of

predicate values be examined) [1, 4, pp. 422, pp. 49].

While the above are basic concepts behind white-box testing, there are in-

evitably many other techniques. Chapter 3 describes various methods for automated

fault detection and localization that rely on access to program source code in order to

function and are hence a form of white-box testing. However the relatively small col-
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lection of techniques overviewed above is the common denominator in various books

on software engineering and testing, indicating that the field has only been established

on a basic level.

2.6 Integration Testing

Abstraction methods allowing compartmentalization of functionality as well as code

re-use have made the complexity of modern software somewhat manageable, but prob-

lems can arise when various pieces of a system are integrated even if individual units

have passed rigorous testing in isolation. This sort of testing is required for any sub-

stantial software product, as its assurance of meeting requirements must ultimately

be at the system level. There are multiple approaches to integration testing includ-

ing the well-known strategies of “bottom-up”, “top-down”, and “big-bang” that are

described below along with their various trade-offs.

Before addressing the different styles of integration testing, it is necessary to

explain the place of “stubs” and “drivers” in the testing process. In order to test a

module, test cases and the associated data must be passed along to it by a driver.

Automating the testing process to facilitate regression testing as mentioned in §2.4 is

useful when considering integration of components by developing a driver that can be

re-used in all stages of testing. In order to thoroughly test functionality of individual

modules in isolation it can also be necessary to create small toy implementations

of other modules with which the module being tested interfaces. Such implementa-

tions are stubs, and the effort expended in creating stubs varies depending on the
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integration technique used.

The big-bang method for integration testing is the simultaneous integration of

all individual modules into a cohesive unit for testing. While this technique is very

straightforward, it can greatly increase the overhead of localizing the cause of defects

because of the large number of untested interactions that could be the root cause of

the failure [3, 4, pp. 263, pp. 107-108]. Bottom-up integration deals with combining

the most basic modules (those not referencing other modules) first and eventually

working up towards more and more top-level modules (those not reference d by other

modules), whereas top-down integration is the opposite. These two methods are

known as “incremental” integration methods since modules are added to the testing

base incrementally, making the problem of fault localization that complicates the

big-bang approach more manageable.

Myers claims that the big-bang integration style unconditionally requires more

overall work, and Sage and Palmer do not treat it as a viable style but rather suggest

that the bottom-up integration style typically results in a big-bang style integra-

tion strategy in practice [3, 4, pp. 263, pp. 107] (possibly stemming from a dated

view of bottom-up integration). However, the details of this disagreement are ren-

dered less important by the fact that some form of incremental method is generally

used in practice (Sommerville and Van Vliet only cite examples using incremental

techniques)—Sommerville considers the problem of fault localization so significant

that it is his main rationale for discussing incremental techniques exclusively, and

work as far back as that of Sage and Palmer claims “[big-bang integration] is a very

costly and usually unsuccessful approach” [1, 2, 3, 4, pp. 438-439, pp. 541-543, pp. 216,
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pp. 109].

Using the top-down approach has the benefit of offering an early preview of

the fully-integrated software modules as it begins with top-level modules that are not

called by other modules, and works down towards core modules. The specific benefits

are varied and include the testing of what are likely the most frequently used module

interfaces, allows demonstration to the client, shows architectural flaws earlier, and

can be used as a morale boost for the development team since it demonstrates a

working system [3, 4, pp. 264, pp. 114]. However, it is apparent that this integration

method requires stubs to be created as each module is tested—when a new module

is added, it replaces a stub and all stubs it requires to function properly are created.

The reliance on stubs can be difficult in testing for many reasons outlined by Myers

including the need for multiple stubs per replaced subtree in the module hierarchy

to facilitate multiple test cases, as well as the possibility of a test case spanning the

functionality multiple stubs [1, 4, pp. 439, pp. 110-112].

Myers makes a specific point of noting that the bottom-up integration scheme’s

need for drivers presents less of a challenge than the stubs required by the top-down

scheme because only a single driver should be needed per module instead of multiple

stubs, and that drivers are generally less complex and therefore easier to write. In

addition bottom-up integration has the benefit of being able to include I/O modules

immediately to facilitate testing, although a top-down integration scheme can be

designed to integrate I/O modules early in the process [4, pp. 113, 116-117]. The

benefits of bottom-up integration sorely miss the benefits of a functioning system

mock-up, and for this reason a combination of the two incremental styles is almost
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always used in practice; because of the testing of both bottom and top parts of the

module hierarchy at an early stage, this hybrid method is frequently called something

similar to “sandwich integration” [1, 2, 3, pp. 439, pp. 541, pp. 265].

2.7 System Testing

System testing can be a somewhat ambiguous term as Sommerville has it encom-

passing integration testing while the two are considered separately by Myers and Van

Vliet, [1, 2, 4, pp. 439, pp. 541, pp. 130]. But here it is viewed as by Myers: a com-

pletely disjoint form of testing that focuses solely on aspects of the fully-assembled

system in order to make sure it meets the necessary constraints and specifications.

Since functional tests for expected behavior are done on inputs and verified with out-

puts by other testing methods, system testing focuses on differences between system

design and implementation and the description of and intent for the system as con-

tracted. From this context, it encompasses a variety of criteria enumerated at length

by Myers, with many mentioned by other sources although none have as comprehen-

sive a collection. However, some are redundant in the face of other testing methods,

so they are enumerated in a modified, abbreviated form below:

• Volume testing: examination of program behavior while processing relatively

high volumes of data in order to overrun possible assumed size boundaries where

applicable

• Stress testing: examination of program behavior on high rates of data for pro-

cessing to discover problems with simultaneous actions, their relative ordering,
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etc.

• Usability testing: finding out whether or not the program and its interface are

sufficiently useful to end users as a tool for data manipulation

• Security testing: examination of the program under atypical conditions, with

atypical input etc. as well as attempts to illicit incorrect behavior using known

exploitation techniques

• Performance testing: verification that the program does indeed meet the per-

formance criteria outlined in its specification

[4, pp. 130-142].
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Chapter 3

Related Research

Useful software systems produce some sort of output, and it is required that the

output be correct to the extent dictated by the application domain. Programs that

can produce some sort of incorrect output are deemed defective or “buggy” as they

must contain some defects or “bugs” that cause improper output to be generated.

The problem of assessing whether or not an arbitrary software program is

buggy is undecidable, as a trivial case where the program does not ever terminate

due to its own logic does not produce any output and is an instance of “the halting

problem”, which has been proven undecidable. Therefore, in order to have reasonable

assurance that a software system fulfills its requirements it is necessary to carry out

as much testing of the software as allowed before the utility of shipping the software

outweighs the perceived risk of remaining defects. The following sections explore

some work related to two concepts underlying the work on post-deployment fault

localization as elaborated in chapter 4.
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3.1 Assisted/Automated Fault Localization

3.1.1 Source Code Analysis

Slicing

Perhaps one of the first techniques proposed for automated analysis of programs was

called “program slicing” or more recently “static slicing” to contrast with the closely

related concept of “dynamic slicing”, and had the goal of automating the debugging

process. The idea of program slicing was first described in [8] by Weiser in 1981, and

both it and its extensions are explored to the present day. Program slicing requires

a “slicing criterion” consisting of a variable value and a line number in the target

program’s source code, and produces a subset of the original program that contains

all statements influencing the value of the slicing criterion. As noted by Weiser,

this process is likely similar to that carried out by professional programmers when

debugging and altering complex software systems in order to facilitate changes to the

software without requiring consideration of an unwieldy amount of program code.

Slicing is implemented by applying data flow analysis to the target program

in order to determine exactly which statements can influence the value of the slicing

criterion. While readily inferred, two desirable properties of program slices noted

explicitly by Weiser are that

1. The slice must be obtained from the original program by statement deletion

2. The behavior of the slice must correspond with the behavior of the original pro-

gram from the perspective of the slicing criterion when the program terminates
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The requirement that the program terminate in the second point above is required for

cases such as below in which the behavior of the program cannot possibly be sliced

on the value of x at line 7 to properly correspond with its original behavior.

1 read x
2 if x is 0
3 then while true
4 do � no-op
5 x = 1
6 else x = 2
7 . . .

Figure 3.1: Illustration of the requirement for program termination in program slicing

The analysis and output of a semantically valid slice of the original program

is performed by using its representation as a “flowgraph” consisting of a set of nodes

N , a set of edges E ∈ N × N , and an initial node representing the starting point

of the program. This structure can be created by making non-control flow program

statements correspond with nodes, making each of their related statements nodes

as well, and creating edges from a node a to a node b in order to indicate that

the statement represented by b can logically follow the statement represented by a.

Weiser uses this graph structure to assist in describing the creation of semantically

valid slices as well as to formally define procedures for computing slices. Specifically,

deletion of statements during the process of creating a slice corresponds to deleting

their nodes in the associated flowgraph and only leaves the program semantically

valid when the deleted nodes have a single successor. His algorithm for creating slices

is not elaborated here at length, but essentially backtracks from the location of the

slicing criterion by including all statements modifying variables that contribute to
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the value of the criterion as well as all control flow statements influencing execution

of those statements [8].

In contrast to static slicing, dynamic slicing performs similar tasks although

on a specific execution instance of a program instead of static analysis on the program

source code. Precursors to full-fledged dynamic slicing were explored as early as 1973

in [9], but were formalized by Korel and Laski in 1990 [10] and promptly explored

more in [11]. The idea of dynamic program slicing is to output a program slice that

more closely corresponds with the minimal slice for the given criterion by computing

additional data dependencies that can prune nodes from the graph of the resulting

slice by using data from the actual execution instance of the target program.

Using the terminology from [10], the requirement to include any statements

possibly contributing to the value of a variable is extended to keeping track of a

specific history in a program’s execution called a “trajectory”. The trajectory of a

program is represented as a sequence of nodes in the corresponding flowgraph for the

target program as with static slicing, but it is also necessary to differentiate between

various executions of the same statement since each can possibly have different data

dependencies. Therefore the trajectory must store not only nodes in the graph, but

specific instances of nodes in the graph corresponding with a specific execution—[11]

notes that improvements may be made on the amount of storage actually required

to store an execution trajectory, but that improvements are limited because there

is no way around keeping at least one state for each unique node and its related

dependencies. There is also the requirement to specify external inputs in order to

make the program execution instance well-defined, so these values are given along
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with the original criterion defined for static slicing.

This execution-dependent information allows for reasonable reduction in the

size of a generated slice, but much more additional computation is required to properly

prune extraneous nodes. Many of the gains of dynamic slicing arise from the use of

conditional and looping constructs available in most programming languages, and are

therefore widely applicable. Consider the following example and explanation from

[11]

1 read x
2 if x < 0

then
3 y = f1(x)
4 z = g1(x)

else
5 if x is 0

then
6 y = f2(x)
7 z = g2(x)

else
8 y = f3(x)
9 z = g3(x)

10 write y
11 write z

Figure 3.2: Program for showing differences between static and dynamic slices

The static slice of variable y at statement 10 of figure 3.2 can be calculated as follows:

1. Find all possible definitions of the variable y affecting its value at statement 10

(3, 6 and 8)

2. Add all nodes that can lead to these definitions (1, 2 and 5)

so the static slice is {1, 2, 3, 5, 6, 8}. The dynamic slice for X = −1 and the same
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location of y is smaller because the only assignment statement actually executed is

statement 3, so the dynamic slice is then only {1, 2, 3}. This shows the gains of dy-

namic slicing in terms of slice size, but computation can be much more strenuous since

the program must actually be executed for the given inputs (long loops magnify this

problem) and complexities regarding the storage and processing of data dependencies

can arise.

Since the introduction of program slicing there have been many variations and

uses related to fault localization outside the obvious applications to highlighting all

possible responsible code for an error during debugging. Another type of program

slice is specifically targeted towards interoperation with a testing suite by finding all

statements labeled as “critical” to a slicing critereon: those leading to the same failure

location via mutations of the original program code [6]. There has also been work

more closely related to software engineering that attempts to use program slicing

combined with requirements documents in order to more effectively localize the most

important program faults [12]. These are just two examples of some ways in which

program slicing can be applied, and there are certainly many more.

State and Control Flow Analysis

An alternative to program slicing for fault localization deals with analyzing a pro-

gram’s state during execution and/or how that state was achieved, and is closer to

the approach as described in chapter 4 for fault localization. The practice of “delta

debugging” as developed by Zeller in [13] exercises examination of program state with

the goal of increased automation of the debugging process as well.
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In this method, differences in variable states between at least one failing and

one successful execution are compared and systematically examined in order to locate

the cause of failure that must internally stem from some difference between the two

runs. Generating these differences depends on creation of a “memory graph”: a data

structure holding complete information on program state, including pointer values to

handle analysis of variable aliasing. Both the failing and successful executions have

snapshots taken, and their memory graphs are compared in order to generate a list of

differences between the two by using deep comparisons made possible by leveraging

type information. Then an increasingly small number of differing variable values are

mutated until a subset of the difference is found where no error state in the program

is induced.

This process is iterated, and eventually finds the smallest set of changes pos-

sible that lead to a failure by closing the gap between minimally-sized known-bad

states and maximally-sized known-good states. An example of a known error in the

GNU C compiler being identified was presented along with the concept in [13], and

pointed to the location of failure but not the direct cause. While it produced very

useful information about the defect, it required 44 executions of the program with

various state mutations in order to produce the results.

Zeller expands the delta debugging methodology by combining its information

about where the failure manifested with information regarding when the state of the

program actually became erroneous in [14]. He does this by focusing on what he

calls “cause transitions”, where the invalid value of a variable effectively taints the

value of other variables. He argues that leveraging this method will lead to faster
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bug fixes during debugging because it focuses on “good locations for fixes”, even

though it was still fundamentally unable to locate the defect in the GNU C compiler

used in [13] because no comparable state existed between successful and failing runs.

This suggests that while similar in spirit to the method outlined in chapter 4, delta

debugging is not comparable because of its inability to identify the underlying causes

unique to failing executions.

A few other methods encountered while exploring related work on fault local-

ization analyzed the behavior of conditional statements in order to gain information

regarding program behavior related to a fault. One even focuses on generating a suc-

cessful run from an unsuccessful run with the hope that it offers a similar execution,

and relaxes the requirement for a similar successful run to make Zeller’s work useful

[15]. Research described in [16] builds on previous work using special program slices

as in [17] to more effectively localize the cause of software failure by switching the

values of conditional predicates during execution to glean more information regarding

where the error occurred. However, this method is unable to indicate any errors due

to data values, which may be detected by Zeller’s work as well as the in vivo fault

localization method outlined in chapter 4.

While the localization of faults is partially automated in [13, 14, 16], all main-

tain that significant human reasoning (although reasonably reduced) is still necessary

to locate the root cause of a failure. The extent to which this can be avoided still

remains limited, but there are also drawbacks such as the inability to detect various

types of errors. This suggests that these methods are generally less useful than others

described in the following sections.
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3.1.2 Anomaly Detection

Promising work applying techniques in anomaly detection, the attempt to identify

when a program behaves abnormally, looks to be of assistance in fault localization

by aiding efforts to tell when and even possibly where errors occur in a program’s

execution. Both [18] and [19] use a probabilistic model known as a Markov model in

order to develop a model of typical program behavior. One proposal for enhancing

test suite quality is identifying when new program functionality is exercised while

automating the process of changing the model along with the test suite, and another

uses anomaly detection in order to identify when a program instance executing in the

field runs awry [18, 19].

The concept of a classifier is used in these approaches–a way of separating

executions into distinct classes and labeling them as belonging to that class as appro-

priate. Both methods use first-order Markov models, which create a classifier that

essentially claims that the probability of arriving in the current state of the program

is only dependent on the state immediately previous. This sort of probabilistic model

can be represented as an n × n matrix for states S having size |S| = n where each

row and each column represents a unique state in S, and the entry pij corresponds

to the likelihood that the next state is that represented by j given that the current

state is that represented by i. Both methods also use the program’s control flow as

an indicator of behavior by examining the frequency of each branch taken during

execution. In this way it can be considered a dynamic variation on the work in the

second part of §3.1.1. However, this approach was put in a separate section as it does
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not attempt to use control flow information to estimate how the program arrived at

a given state.

In [18] Bowring et al. create the initial classifier with a customized technique.

First, each training execution is associated with its own Markov model, and the

individual models are iteratively combined or “clustered” based on their similarity

score assessed by a chosen metric; in the case of [18], the scores were simply the

magnitude of differences in corresponding positions in a matrix of thresholded entries

in the Markov models. For this analysis, each instance is given the label for an

execution class that is not necessarily limited to the testing-centric values of “pass”

and “fail”.

Since the classifier itself is a cluster of Markov models, the probability of

each internal model producing the given execution is calculated. If the probability

is below a certain threshold the execution instance is labeled as anomalous, and

is otherwise given the label corresponding to the most appropriate model in the

cluster. The anomalous executions can then be used to re-train the existing clustered

model of executions in order to include the previously anomalous behavior if desired.

According to [18], one possible application of this method is to improve the efficiency

of test suites by identifying which new test cases actually exercise previously unknown

program behavior, and can also improve the assurance of test quality by indicating

the increasing difficulty with which sufficiently anomalous test cases can be created.

Baah et al. [19] generate an initial Markov model from all execution instances

based on the value of observed boolean predicates in the program or the fact that

they have not been observed, and then proceed to cluster the individual states of the
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model based on grouping by either their corresponding line number or the method

in which they reside. Finally, an extra state is added to the resulting Markov model

that corresponds to all predicate states not included in the generated model. This

state corresponds with anomalous behavior, and all of the predicate states falling into

this state’s representation are all given a uniform, miniscule probability weighting.

Then, a numeric threshold value is defined as

min

(
P (Osi

t )

P (O
sj

t−1)

)

where P (OS
T ) represents the probability that the current state of predicates O is

emitted by the model with the final state S being emitted at time T (this ratio is

not necessarily the same value as the raw transition between states si and sj in the

corresponding model). Using this value, any execution passing between two states

having the execution-time ratio evaluate to a value below the threshold is labeled as

an anomalous instance since the model predicts a sufficiently low likelihood that a

typical execution instance would cause such a state transition.

This second technique was successfully applied to various versions of a pro-

gram with known bugs: it correctly identified all executions corresponding to buggy

behavior as anomalous in 72% of test cases, and had accuracy of at least 80% in 84%

of test cases. Findings also noted that no benefit was observed when comparing the

accuracy of method clustering to line number clustering of nodes except for a nearly

eleven-fold increase in the time required to build a model using line clustering. It was

also claimed but not shown that since this model actively evaluates values by compar-

ing them to a given threshold at the time of program execution, it should facilitate
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fault localization. Of course since this analysis method is based solely on control

flow of the given program, it is unable to identify anomalous behavior stemming from

calculated values unless they significantly influence control flow.

3.1.3 Statistical Debugging

Liblit’s work developing the statistical technique of Cooperative Bug Isolation (CBI)

was first proposed in his PhD dissertation [20] (which is concisely summarized in [21]),

and attempts to apply mathematical analysis to widespread sampling of executing

programs with statistical rigor. This sampling is carried out via the insertion of

automatically generated boolean predicates as well as the tracking of associated values

that can be inferred to form a set of predicates used in statistical analysis. The data

collected during execution is simply the number of times a predicate is observed as

true during execution during a run of the program along with whether or not the run

failed. Using this information, the end goal is to select a small subset of the observed

predicates that are statistically likely to be evaluated as true in the occasion of a

failure in order to help understand its cause.

Instrumentation is carried out by inserting boolean predicates into code and

observing their values during execution. Like in vivo testing, this method requires

that action be taken during field execution and aims to distribute overhead across

many execution instances in order to gather sufficient data regarding defects–this

is done by probabilistically executing instrumentation code during execution. How-

ever, unlike the implementation of the Invite framework used in [22], Liblit’s method

addresses optimizations of the instrumentation method extensively.
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CBI takes great care to ensure sufficiently random sampling of predicates in

a way that minimizes overhead. It is figured that the probability of instrumentation

code actually executing in a real-world deployment of the technique would be between

1
100

and 1
1000

, and therefore the likelihood that any predicate is not assessed for a given

run is 99%. Another interesting related statistic is that for n predicates in a given

section of code, the probability that none of them executes is
(

99
100

)n
so that even

when n = 10 there is more than a 90% chance that no predicate will be evaluated.

For this reason, Liblit notes that the predicate evaluations are bernoulli trials and

that the number of predicates not evaluated can be represented using a geometrically

distributed random number and viewed as a countdown until the next predicate

evaluation.

By analyzing a graph representing the control flow of the original program,

a weight can be given to each acyclic region (ie. non-recursive functions without

loops) representing the maximum number of potential predicate evaluations for that

region. When used with the countdown until the next instrumentation execution,

the instrumented code can instead skip all instrumentation statements in the acyclic

region if the assigned weight is less than the number of encountered predicates until

the next evaluation. In this manner Liblit allows for accurate statistical sampling

while maintaining performance of the instrumented program.

Analysis of gathered execution data begins with filtering of results by excluding

predicates meeting a subset of the following criteria identified by Liblitt:

1. Elimination by universal falsehood: disregard any predicate never observed true
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in all runs as it likely represents an impossible condition

2. Elimination by lack of failing coverage: disregard all predicates for an instru-

mentation site if none of them were encountered since the instrumentation site

was likely not explored during execution

3. Elimination by lack of failing example: disregard any predicate not observed

true in any failing runs as its value being true is not a likely indicator of failure

4. Elimination by successful counterexample: disregard any predicate observed

true in a successful program execution as it can be true without indicating a

program failure

What predicates remain after the filtering are ranked based on the discovery of binary

classifiers that indicate whether or not a given run will fail, thus suggesting the cause

of failure.

While this is essentially solving the same general problem as that considered in

the fault localization method described in chapter 4, it is carried out in a different way

than the more descriptive but computationally more expensive process for creating

classification trees described in §4.3.2. Instead the log likelihood of the predicates’

presence in a failing run is found, and the top values are inspected for causes of failure.

Given data on program executions (x1, y1), . . . , (xM , yM) for xi ∈ Rn being the vector

of predicate true-value counts and yi ∈ {0, 1} denoting the success or failure of the

run, the vanilla log likelihood is defined as

M∑
i=1

[yi log Pr(Y = 1|x) + (1− yi) log (1− Pr(Y = 1|x))]
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In practice, a weighted version is used in order to force most features towards 0 as

there are likely only a few contributing to any given failure. More information on the

details are available in [20].

While this method definitely identifies predicates influencing a failure, it is

explicitly noted that it only identifies behavior predicting failures rather than a cause

for the failure since the outputs are simply the predicates with the highest indication

of failure, but not what caused them to have a specific value. For this reason, others

have used CBI not as a full-scale solution but rather built upon it in order to assist

in fault localization. An example of this is [23], which combines CBI with control

flow analysis and machine learning techniques. This is a hybrid process, combining

the method of this section and source code analysis, that also uses the following

techniques for fault localization:

• Support vector machines (iterative classification models) and Random forests

(many decision trees as described in §4.3.2, each for a partition of the observed

predicates) [24] to identify predicates critical to execution outcome

• Clustering techniques to identify correlations between predicates in the same

executions by using a distance metric to assess differences

• Analysis of the program’s control flow graph in order to capture the path of

execution leading to the predicate values indicating failure

The addition of control flow analysis appeared to help with the identification of race

conditions, but the remainder of the section on the empirical results of the method is

rather sparse and similar to results achieved by Liblit.
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3.2 Post-deployment Software Testing

This section describes work towards application of software testing techniques to real-

world deployed software, and analyzes the feasibility of various proposals. This is the

domain of the work described in chapter 4, and includes discussion of the in vivo

testing concept [22] as well as related projects that address issues in post-deployment

testing such as Skoll [25] and Gamma [26].

3.2.1 General Work

Since the task of exercising a program’s validity for all possible internal states is

infeasible, equivalence partitions of input are leveraged in pre-deployment testing to

efficiently exercise a large amount of critical program code. For systems requiring a

specific level of assurance of proper operation, the decision to deploy is based on the

assumption that the “residual” parts of the program not exercised in existing tests

do not contribute in any significant manner to the behavior of the system.

The earliest publication explored in this section relates to work in testing ac-

tivities of deployed software systems, and focuses on monitoring execution of this

residual code. Pavlopoulou and Young [27] apply techniques of software analysis

to post-deployment systems in order to gather information regarding the residue of

a deployed system, and use the data as a metric of the testing quality of the pre-

deployment testing framework. The main concern regarding their implementation is

the overhead induced by instrumentation, and they demonstrate progress in its reduc-

tion by dynamically reducing the number of instrumentation probes during execution

35



to only those necessary to detect exploration of residual code. The implementation

as discussed is implemented in Java, and is achieved by modifying the bytecode for

the target program by inserting the appropriate instrumentation at the entrance to

every basic block of code in the program, since all code defaults to being labeled as

unexamined.

In order to track coverage, a table mapping uniquely-assigned identifiers to

corresponding instrumented code blocks is maintained (and remains consistent across

re-compilation) and a second table is also kept to represent the basic blocks not yet

executed. Finally, a table mapping the second table onto the first is used to associate

the data. This is necessary because the table representing blocks not yet executed

changes during execution, and reduces the size of the second table as fewer and

fewer blocks remain unexamined in an execution instance as it runs. As measured,

this instrumentation adds significant initial overhead—upwards of 100% in code with

frequent and/or long loops because the savings of removing instrumentation probes

are delayed, but in other types of code full instrumentation overhead can be reduced

to around 15%. In both cases, two iterations of testing and re-instrumentation are

sufficient to bring overhead down to levels below 2%.

A more engineering-focused approach is proposed in [28], which describes an

architecture for verifying that field executions of deployed software conform to its

specifications. The proposed system is based on a publish-subscribe model where a

centralized (but possibly internally designed as a distributed system) event notifica-

tion service processes subscription to various data streams called “events” that are

published by various execution instances, and handles exporting the event data to
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subscribed instances. In this way, the task of verification is distributed over multiple

execution instances. Instrumentation of the source code is performed using a custom

class loader that can appropriately intercept calls during execution and is driven by

an automatic parser of UML descriptions of the system as given in its specification.

While a good deal of work explored so far focuses on the simple feasibility

of various techniques, [29] describes an application of random forests to classify pro-

gram executions as either successful or failing as this information is useful in many

remote program analysis techniques [29]. It is immediately obvious that this work is

somewhat exploratory, as it specifically aims to address the three following questions:

1. Can we reliably classify program outcomes using execution data?

2. If so, what kinds of execution data should we collect?

3. How can we reduce the runtime data collection overhead?

Experimentation with the method proved that such classification is indeed possible,

and examined various aspects of program executions as potential predictors of pro-

gram behavior.

In fact, the initial attempt at classification proved successful using statement

counts (the number of times a block of code is executed) as a valid indicator as they

produced error rates of classification near 0%–this suggested that coarsely-collected

data could be successfully used for such classification. Along similar lines, it was found

that method counts, the same technique applied to methods instead of code blocks,

were as good an indicator as statement counts and also had the benefit of being even

more coarse hence resulting in less overhead. As the authors were testing Java code,
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statistics on throw/catch execution counts were also explored as potential predictors

and found to be successful for only one of nineteen faulty programs examined.

3.2.2 Post-deployment Testing

This subsection transitions from automated testing methodologies and early work on

distributed testing of post-deployment software systems to the origins and explanation

of the in vivo approach to software testing in §3.2.3, which is the foundation for the

work described in chapter 4. The information below begins with examining software

tomography followed by a discussion of work on fundamental properties of distributed

post-deployment systems.

In [30], Bowring et al. explore the concept of software tomography as it relates

to the challenge of distributed software analysis. Software tomography is essentially a

technique that is used to divide up a task among many executing software instances,

and the authors note that it provides essential services to a distributed system. How-

ever, they were not aware of prior work such as [27] when making the claim that

work on residual monitoring did not provide functionality for reducing instrumen-

tation sites during execution, a topic that was indeed extensively explored prior to

publication. The three main tasks of software tomography as outlined in [30] are as

follows:

1. Dividing the desired task into subtasks requiring minimal instrumentation

2. Assigning the subtasks effectively to different instances of the software

3. Integrating the information returned by those instances for comprehensive anal-
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ysis

The main contribution of the work is exploration of various “topographic refinement”

policies that can be used to effectively distribute instrumentation overhead across

many execution instances while eliminating instrumentation sites already exercised

from a pool of sites remaining to be examined.

Three techniques for distribution and dynamic reduction of instrumentation

code are explored:

• Simple Refinement: branches in code are evenly distributed among all in-

stances; each instance is responsible for executing and testing one branch

• Round-robin Refinement: instrumentation of covered branches is removed,

and all instances instrumenting the removed branches are re-assigned in a round-

robin fashion to the yet-uncovered branches; each instance is responsible for one

branch

• Aggregation Refinement: allows multiple branches to be tested per instance,

and is activated when the “refinement ratio”
branch execution count / time

remaining branches

becomes sufficiently low, and is otherwise like Round-robin Refinement

It was found that the problem as explored equated to a reasonable trade-off between

completeness/speed of achieving completeness of instrumentation and the amount of

interaction between software instances required to successfully carry out each instru-

mentation method. The aggregation refinement method generally performed the

best in terms of rapidly approaching full instrumentation with four times the inter-

instance communication cost when compared to round-robin refinement, which
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was slower to gain complete coverage if at all (depending on space partitioning for

instances). This method for distribution was cited as core functionality for Gamma

System as outlined in [26], which is designed for dynamic, minimally-invasive contin-

uous testing of deployed software in a distributed manner.

Another project with the goal of leveraging distributed deployed software in-

stances is Skoll [25], which focuses on quality assurance testing. Among motivations

for using deployed instances in this manner are pressures on production timeframes,

and an “explosion of the software configuration space”; the description of the Skoll

project asserts that “when increasing configuration space is coupled with shrinking

software development resources, it becomes infeasible to handle all QA in-house”. In

order to accomplish this, it was necessary to develop a way of modeling the config-

uration space. This was done by pairing every possible configuration option with

every possible value except those disallowed by explicit constraints, which could be

arbitrarily complex boolean conditions on the configuration parameters’ values.

The architecture relies on an “intelligent steering agent” to synchronize the

distributed QA work, and offers the ability to hook into the system by providing

custom instructions for future behavior based on incoming information. It also offers

a great deal of automation to deal with the potentially overwhelming amount of

collected information including the identification and analysis of related failures via

distance metrics in the configuration space as well as automatic classification of data

using classification trees (see §4.3.2). The feasibility and usefulness of Skoll were

examined in [25] and many real-world defects in both compilation and execution

stemming from its automated testing of possible configurations.
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3.2.3 In Vivo Testing

The technique of in vivo software testing [22, 7] allows adaptation of an existing test

suite for execution in a deployed environment in order to assess program correctness

in the larger state space examined by field instances of the software as opposed to

the smaller state space examined in a pre-deployment testing environment. Both

[22] and [7] mention Gamma and Skoll projects as related work, and mention that

in vivo testing focuses on distribution in order to limit overhead on each individual

software instance. They describe in vivo testing as the practice of running unit tests

during execution of deployed software without modifying the state of the system as

a side-effect.

For this reason it is necessary for the system to modify copies of any in-

formation used in the test rather than the actual program data itself. In the im-

plementation of the Invite in vivo testing framework the copy-on-write characteris-

tics inherent in the forking of new processes in Linux are leveraged to accomplish

the separation between the test’s state and the state of the executing program;

this is implemented in their Java code by using the Java Native Interface (JNI,

http://java.sun.com/j2se/1.4.2/docs/guide/jni/) to call C’s fork routine [7].

Tests are specified by prepending “test” to the name of a method to test,

and [7] notes that this convention required that methods with multiple tests must

internally dispatch a request to run a test to one of the test routines for that method.

It is also noted that certain types of unit tests are inherently not applicable for the

in vivo testing domain, including tests that require a certain state of an object in
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order to perform their task. An example of a unit test for a dynamically-sized data

structure is given where a unit test begins with an empty data structure, adds an

element, removes an element, and finally checks to make sure that the data structure

is in fact empty. These tests are then run with a certain probability as specified in

a configuration file, which can also be overridden by specified limits on maximum

execution/space overhead, etc.

[7] outlines the following five particular classes of defects targeted by in vivo

testing:

1. Defects remaining in software because unit tests use a reasonably unmodified

object for testing purposes

2. Defects arising from the inability to test all valid software configurations before

deployment

3. Defects that occur due to legal user action that was not exercised in previous

testing

4. Defects from unanticipated (but legal) user actions

5. Defects that occur rarely due to the complex conditions necessary to induce

them

The authors take particular interest in the final defect class, and show that this class

can readily be identified by the in vivo testing methodology. Both [22] and [7] focus

heavily on assessing overhead as well as on the ability of the technique to identify

various defects, and find that sufficiently low levels of overhead could be achieved
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with the probability of running an in vivo test at or below 5% while still allowing for

extensive testing in medium to large deployment bases.

Directions for further research in the area of in vivo testing mentioned in

[22, 7] note many opportunities for exploration. First, it is noted that the load dis-

tribution mechanisms of Gamma System as described in [26, 30] (and discussed in

§3.2.2) could be applied to more effectively distribute the testing task than the speci-

fication of a manual, universal probability/overhead metric as currently implemented

in Invite. The benefits of integration with the “DejaView” tool described in [31, 32]

are also addressed, and it is suggested that the tool can be leveraged to provide

robust sandboxing of the in vivo test environment as well as maximizing efficiency

of filesystem-dependent tests, and possibly network activity and database access if

supported by a future version of the tool. Finally, this thesis explores the possibility

of automated fault localization in the context of in vivo testing by implementing a

rudimentary system as elaborated in chapter 4.

3.3 Summary

While techniques for various forms of automated software testing such as program

slicing are well-established, their application to a post-deployment environment is

suggested to be difficult by the eclectic mix of research and the fundamental nature

of the issues addressed in research such as that described in §3.2.2. So far it appears

that distributed techniques are the focus of post-deployment research, and that they

are driven by the increasing ubiquity of internet connectivity and the widespread dis-
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tribution of software applications themselves. This discussion also serves to provide

background for work in chapter 4, which attempts to address the problem of fault

localization in a post-deployment situation in which failures may be infeasible to re-

produce or impossible to debug due to dependence on large amounts of data affecting

the program state.
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Chapter 4

In Vivo Fault Localization

The complexity of modern software applications combined with existing information

on both the quantity and severity of bugs found after deployment of past software

systems practically guarantees that almost all software will contain defects at the time

it is deployed. For this reason the application of algorithms used in data mining and

machine learning to identify the causes of software failures occurring after deployment

is explored—a problem where in which it is infeasible for the engineers of the system

to carefully inspect the state of the failing execution instance. Initial studies show

that with proper instrumentation the cause of multiple types of deterministic defects

can be detected: those stemming directly from incorrect changes in variable values as

well as those dependent on multiple items occurring in the execution history prior to

failure. Furthermore, benefits of the developed system for localizing faults in software

system failures may assist in automating the localization of errors before deployment

as well.
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4.1 Approach

The approach developed to address the problem was specifically designed to work with

technologies leveraged in the implementation of the Invite distributed in vivo testing

framework described in [22] and examined earlier in §3.2.3. The instrumentation for

gathering relevant information during program execution is carried out through the

use of the AspectJ project for aspect-oriented programming in Java (http://www.

eclipse.org/aspectj/). Information required for the described implementation of

this bug isolation approach is the change in variable values induced by instrumented

methods as well as method signatures. This information is currently gathered by

tracking the changes in variable values caused by execution of a member method of a

class that contains instrumented fields, and storing a record of value differences along

with a method name in a list containing as many items as allowed by a configurable

bounding length.

Using the standard Invite paradigm, tests are specified by pre-pending a

method name with a special prefix that is looked up during program execution to

see if a test exists for the currently executing method. These testing methods return

a boolean value of true if the test failed, or false otherwise. After execution of an

in vivo test, the information collected regarding the tracked state changes of variables

is transmitted to a database server with a specific schema and table name as defined

by the listing in §A.9.

When a sufficient quantity of execution data has been collected, an automated

script pulls information from the database and translates it into (currently a some-
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what inefficient representation in) the arff data format used by the machine learning

toolkit Weka (http://www.cs.waikato.ac.nz/ml/weka/). This file is then passed

though Weka’s implementation of machine learning algorithms to locate the cause

of failure. The two Weka utilities explored were J48 classification trees (based on

the C4.5 algorithm, discussed in §4.3.2 [33]) and the Apriori algorithm (discussed in

§4.3.3) [34] for their straightforward generation of production rules that can clearly

indicate the cause of a failure. The results section (§4.5) only references the Apri-

ori algorithm’s output as it was clearer than examining the J48 classification trees,

although the trees could have easily been converted into association rules [33] and

produced intuitive output.

4.2 Motivating Example

Consider the Java code in figure 4.1 that removes instances of an object x from an

internal data structure ds starting from the supplied index start, and removing any

of the next count objects if they are equal to x. There is a potential problem with the

code if getVal1() + getVal2(x,y) overflows the value of the int type, resulting in

a negative number so the loop never executes, and hence preventing objects’ removal

from an internal data structure ds as intended. This type of defect would be difficult to

test comprehensively because it would require a very careful code inspection. This is

because the calculated value depends on two other functions, getVal1 and getVal2,

that can each be arbitrarily complex and therefore may be difficult to coerce into

producing violating output themselves. Furthermore, it is more than plausible that
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the cause of such a defect would require more time to correct than a more obvious

error, making it a relatively costly fix without automation since programmer time is

generally orders of magnitude more expensive than computer time.

public int removeFrom ( Object x , int s t a r t )
{

. . .
int count = getVal1 ( ) + getVal2 (x , y ) ;
. . .
for ( int i = s t a r t ; i < count+s t a r t ; i++)

i f ( ds . get ( i ) . equa l s ( x ) )
ds . remove ( i ) ;

. . .
}

Figure 4.1: Motivating example code for in vivo fault localization

Assuming a proper implementation of an analogous containsFrom method,

the following in vivo test could identify the defect

/∗∗
∗ @return t r u e on f a i l u r e , f a l s e o t h e r w i s e
∗/

public boolean testDoRemove ( Object x , int s t a r t )
{

i f ( containsFrom (x , s t a r t ) )
{

removeFrom (x , s t a r t ) ;
return containsFrom (x , s t a r t ) ;

}
return fa l se ;

}

Figure 4.2: In vivo test that can be used to identify overflow errors in figure 4.1

Upon completion of the in vivo test, tracked information regarding execution history

would be transmitted to a central server. If changes to the member variable ds are

48



tracked along with the signatures of methods performing the changes to state, the

pattern of failure could be more easily recognized by machine learning algorithms due

to the distinct lack of calls to the ds.remove method that contrast a failed invocation

with a successful one. Extensions to the initial method described here could also be

added to track values of loop boundaries and other interesting values to allow for even

more accurate fault localization. Finally, in the context of [22, 7], this example defect

can be interpreted as belonging to either the first or final class of defects targeted by

in vivo testing.

4.3 Tools and Algorithms

The various tools and algorithms leveraged in the implementation of the described

fault localization technique are described in this section so that they may be ade-

quately explained to facilitate a comprehensive understanding of the method. How-

ever, coverage of the topics remain somewhat brief as only the core concepts and uses

are explained ([2] dedicates an entire chapter to aspect-oriented programming).

4.3.1 Aspect-oriented Programming

Aspect-oriented programming offers an abstraction called an “aspect” to elegantly

handle “cross-cutting concerns”—functionality that is required in multiple places, but

either not belonging to or even not able to function in any existing abstraction model.

Sommerville notes two specific undesirable characteristics of code that implements

cross-cutting concerns in a conventional manner: tangling and scattering. Tangling is
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simply the mixing of two pieces of functionality (such as synchronization of operations

on a primitive), and scattering is the widespread use of similar code throughout

various logical sections of a system such as code present for logging purposes [2].

There are many straightforward examples of plausible functionality that is

well-suited for aspect-oriented implementation, and it generally deals with a sequence

of actions that are both required and pervasive but not logical to put in a function,

subroutine, or method of its own. For example, consider a class in the object-oriented

paradigm that manages an object such as an account holding an internal value or bal-

ance as well as other necessary properties. Suppose that adherence to legal regulations

requires that certain conditions are always maintained, perhaps regarding the status

of the account holder relative to the status of the account itself. In this case, proper

encapsulation practices can contain the necessary code to the account class, but the

checks must still be scattered and tangled with various methods implementing trans-

actions on the account in order to verify that no transaction causes the regulatory

conditions to be violated.

Without aspect-oriented programming, two problems arise since every method

implementing an account transaction must perform certain checks:

1. Altering the nature of the checks may require updates in all places the checks

take place

2. Addition of new checks requires performing the work of finding all necessary

points at which to insert the new check

These both lead to increases in the complexity of the class’ code and introduce de-
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pendencies that render the software system less flexible in the face of future changes.

However, the proper definition of one aspect can contain the code implementing the

required functionality in a single location and hence facilitate modifications to the

cross-cutting code in a substantially simplified manner.

Aspect-oriented tools can be implemented in a variety of ways including both

dynamically at runtime [35] as well as at compilation time as with AspectJ. Tools like

AspectJ can also possess the same desirable qualities as various other constructs for

creating software systems such as type safety, and can also offer the power of pattern-

matching to alter code at very specific points and interact with parameters and return

values; these qualities were recognized early in the evolution of the paradigm [36].

Due to the fact that aspect-oriented code can be properly “woven” with existing code

at compile time and that checks can generally be performed quickly because of the

ability to maintain type safety, aspect-oriented functionality can be implemented with

somewhat minimal overhead.

Terminology related to aspect-oriented programming includes the following:

• Concern: a cross-cutting piece of functionality to implement with aspect-oriented

code

• Advice: the code implementing a concern

• Aspect: a unit of abstraction that contains implementation for various concerns

• Join Point: a point in the execution of a program at which advice is to be

inserted/executed
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• Pointcut: a statement that assists in specifying a join point

[2].

In AspectJ, pointcuts can be specified on various events including method

calls, object construction, field access and mutation, in control flow of specified con-

structs and more. In addition, AspectJ offers the ability to reference the context

of a pointcut such as the type of object receiving a message as well as choosing

when advice is executed relative to a pointcut. To simplify the semantic specifi-

cation of join points, pointcuts can be declared, re-used and composed using the

boolean conjunction, disjunction and negation operations. Finally, AspectJ offers

basic pattern-matching functionality in order to make it easier to specify join points.

Information on the full functionality of AspectJ can be found in the online man-

ual at http://www.eclipse.org/aspectj/doc/released/progguide/index.html

or in books on AspectJ programming such as [37], and examples of specific AspectJ

syntax used in the implementation of the proposed fault localization method can be

seen in §4.4.1 as well as in the aspect-oriented code generated for instrumentation in

§A.5.

An example of early criticism of aspect-oriented programming is found in [38],

where it is claimed that AspectJ does not provide logical modularization for interde-

pendencies relating to integration and event-based programming. However no indis-

putable argument is formed, and it rather appears that a problematic architecture is

chosen to illustrate a point. In fact, the third proposed alternative architecture to the

problematic original can be used in conjunction with AspectJ tools to elegantly fix
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its stated problem of redundant synchronization by making it aspect-oriented itself

as suggested by Sommerville.

Both this and the space given to the topic by Sommerville suggest that the

promise of production-grade aspect-oriented code is more plausible now through bet-

ter understanding and refinement of aspect-oriented concepts. In fact, [39] specifi-

cally sets out to show the scale at which aspect-oriented programming can be applied.

However, technology such as the AspectJ project as used in this thesis is still rela-

tively immature, as significant concerns are prominently addressed in the posted FAQ

page for the project at the time of writing (http://www.eclipse.org/aspectj/doc/

released/faq.php#q:productplans).

4.3.2 The C4.5 Algorithm

The construction of J48 classification trees was the first method explored in attempt-

ing to derive the source of failure from gathered data with in vivo fault localization

method, and is based on the C4.5 algorithm. This algorithm is known as a “classifier”

since its purpose is to divide items in its data set accurately into groups or “classes”

depending on the data’s characteristics, and does so by creating a “classification tree”

or “decision tree” defined by Quinlan as follows: a structure that is either

• a leaf, indicating a class, or

• a decision node that specifies some test to be carried out on a single attribute

value [of the data], with one branch and corresponding subtree for each possible

outcome of the test
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(intending of course that subtrees are recursively defined to be either a leaf or a

decision node)—all information regarding this algorithm is taken from [33]. In order

to examine which of the considered data fields account for a specific instance being

classified as belonging to a given class, one can trace the path from the leaf node

representing the final classification back to the root of the classification tree, noting

the decision made at each decision node. The following information is a summary of

the algorithm’s mathematical basis.

Quinlan mentions the same fundamentals from the field of information under-

lying his ID3 algorithm in his description of C4.5: that the amount of information

conveyed by identifying a piece of data as part of a class for class Cj and set of data

S is

−log2

(
frequency(Cj, S)

|S|

)
bits

He notes this quantity in the measure of what information theory terms “entropy”

info(S) = −
k∑

j=1

[
frequency(Cj, S)

|S|
× log2

(
frequency(Cj, S)

|S|

)]
bits

and states that when applied to a set of training data used to construct the decision

tree T this quantity represents the average amount of information needed to identify

the class corresponding to an element of T . He then uses the expected value of the

training data partitioned using decision test X

infoX(T ) =
n∑

i=1

|Ti|
|T |
× info(Ti)

to define a term measuring the amount of information gained due to partitioning by

X

gain(X) = info(T )− infoX(T )
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Improvement on the above measure for utility in classification as used in the

ID3 algorithm adjusts for a bias towards sets with a high number of individual out-

comes, as the case of a unique identifier for each item of test data has a maximal gain

metric because infoX(T ) = 0. Instead, the C4.5 algorithm takes the value

split info(X) = −
n∑

i=1

|Ti|
|T |
× log2

(
|Ti|
|T |

)

into account, which represents the amount of information potentially generated by

partitioning testing data T into partitions Ti using decision test X. Finally, the

amount of information useful for classification generated by the partitioning of T by

X is

gain ratio(X) =
gain(X)

split info(X)

Since finding the simplest decision tree for a set of training data is NP-

complete, the above method is typically used as a heuristic in a greedy manner

to construct a decision tree that has a reasonable likelihood of being satisfactorily

optimal.

4.3.3 The Apriori Algorithm

The Apriori algorithm is designed to process large quantities of data where items are

grouped together by an association called a transaction—a test result in the case of

fault localization for in vivo testing. The output of the algorithm is a list of association

rules of the form X =⇒ Y (defined formally below) and associated metrics calculated

for relative ranking of the association rules. The original paper on the algorithm is

the source for all information in this section [34].
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Formally, given a collection of distinct data items X = {i1, i2, . . . , im} and a

database of transactions under consideration D where each transaction T ∈ D is a

set of items such that T ⊆ X , the output of the algorithm is a set of association rules

of the form X =⇒ Y where X ⊂ X , Y ⊂ X and X ∩ Y = ∅. In order to efficiently

compute relevant association rules, two metrics are defined: support and confidence.

The support of an association rule is the percentage of transactions in D that contain

X ∪ Y , and the confidence of an association rule is support(X ∪ Y )/support(X), or

the percent of transactions in D containing X that also contain Y . While somewhat

similar, these metrics are definitely distinct. It may help to think of confidence as the

strength that the presence of X indicates the presence of Y , and the support to be a

measure of the overall prevalence of association rules that subsume the given rule.

The idea of the algorithm is to generate all association rules meeting a user-

supplied minimum value constraint for support (minsup), and threshold sets of items

that are labeled as candidates for inclusion in results by minimum values for other

metrics like confidence (minconf ). This is accomplished by making a number of

passes over the data, each time enumerating sets of items (“itemsets”) with increasing

cardinality that meet the criteria established by minsup (“large itemsets”) and other

parameters like minconf. More specifically, the benefit of the Apriori algorithm over

alternatives is that it efficiently prunes the state space considered in future iterations

based on the realization that all subsets of a large item set are large itemsets as well

since they trivially meet the minsup requirement (observation 1).

Pseudocode for the algorithm is quite concise and is given in figure 4.3, with

n-itemsets being sets of items with n elements, and line 11 possibly augmented by
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apriori(D)

1 L1 = {large 1-itemsets}
2 for (k = 2; Lk−1 6= ∅; k + +)
3 do
4 Ck = apriori-gen(Lk−1) � new candidates
5 for transaction t ∈ D
6 do
7 Ct = subset(Ck, t)
8 for candidate c ∈ Ct � candidate items in t
9 do

10 c.count++
11 Lk = {c ∈ Ck|c.count ≥ minsup}
12 return

⋃
k Lk

Figure 4.3: Pseudocode for the Apriori Algorithm (see also figure 4.4)

apriori-gen(Lk−1)

1 insert into Ck

select p.item1, p.item2, . . . , p.itemk−1, q.itemk−1

from Lk−1 p, Lk−1 q
where p.item1 = q.item1, . . . , p.itemk−2 = q.itemk−2, p.itemk−1 < q.itemk−1

2 for itemset c ∈ Ck

3 do
4 for k − 1-subsets s of c
5 do
6 if s /∈ Lk−1

7 then delete c from Ck

8 return Ck

Figure 4.4: Subroutine used in the Apriori Algorithm

additional constraints such as the minconf constraint, etc. This algorithm uses a

subset enumeration routine subset (not listed) as well as a routine for generating

candidate large k-itemsets, apriori-gen, as shown in figure 4.4. The latter generates

large itemsets of cardinality k (Lk) by first getting supersets of Lk−1 by joining it with

itself, and then eliminating all itemsets not having all subsets absent from Lk−1 as
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they cannot possibly be large k-itemsets by observation 1. In other words, “the join is

equivalent to extending Lk−1 with all possible items and then deleting those itemsets

for which the (k− 1)-itemset obtained by deleting the (k− 1)th item is not in Lk−1”.

Because the Apriori algorithm begins with all large 1-itemsets and all large itemsets

of cardinality k − 1 are present before calling the apriori-gen routine, all large

itemsets are eventually generated.

4.4 Implementation

The following sections describe in detail how the fault localization method was im-

plemented. The first topic addressed is how aspect-oriented code is generated given

fields of classes to instrument, and is followed by a discussion of how the data is

collected in the database and later extracted and processed to indicate the cause of

failure.

4.4.1 Code Generation

Concept

The code in the generation/ folder of the associated source code as listed in appendix

A contains the code for automatically generating the AspectJ instrumentation code

for the system given the variables to be instrumented. generation/ajgen-noinvite.pl

is a perl script that will generate the code on execution. The sections of string

data used in the script are in a separate file generation/stringdata.pm. The

generation/ajgen-noinvite.pl script allows the user to specify the location for
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the generated file, and will ideally allow specification of values to instrument when

invoked (values are currently hard-coded, see §4.7 for other thoughts on other future

improvements).

Interesting functionality of this step includes automatic insertion of static data

fields for instrumentation into those classes to be instrumented, as well as the appro-

priate generation of pointcuts and advice to instrument the specified fields. All of this

is accomplished with the AspectJ implementation of the aspect-oriented programming

paradigm. The current code is able to handle the specification of arbitrary class and

member names, and little additional work should be required to accept classes/fields

to track from command line arguments or a configuration file.

The generated code assumes it will be placed in the com.invite.core pack-

age of a deployment and also assumes that simple Java classes for tracking value

changes exists in the com.invite.changetracking package. This instrumentation

code consists of the following classes:

• DiffValue.java: stores differences between two versions of a value

• DiffBundle.java: a collection of DiffValues that are collected in a DiffChain

• DiffChain.java: a chain of DiffBundles associated with a method invocation

Currently the generated code only instruments primitive types, and objects in a

generic manner. The generated code is aspect-oriented, so it is woven with the code

being instrumented by the AspectJ compiler and carries out its instrumentation as

the program executes, sending data to a central database along with the results of in

vivo tests.

59



Detail/Example

The following are examples of code generated for the IntFields class instrumented to

gather data, and are used to give the reader an idea of the structure of the generated

code. Source for the IntFields class can be found in §A.4.

The aspect-oriented “pointcuts” below are generated once in the instrumen-

tation code:

• A pointcut matching all methods not named following the Invite convention for
test functions

pointcut notTestMethod() :

!call( boolean *.inviteTest () );

• A pointcut matching all code that does not assist with the instrumentation
implementation

pointcut notInvite() :

!within( com.invite.core.* )

&& !within( com.invite.changetracking.* );

These pointcuts are used in the generated code so that the advice used to instrument

the target source code is not itself advised, causing infinite recursion. The generated

AspectJ code has the following fields per instrumented class:

• A static vector of DiffChain objects with each entry corresponding to an object

being monitored

• A static, incrementing ID field used to track objects via O(1) lookup by its

correspondence with an index in the previously mentioned vector of DiffChain

objects

• A field to hold the value of the ID assigned to a given object instance
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These fields are leveraged in the implementation so that every time an object of some

type that is to be tracked is generated, it is assigned an ID corresponding to an unused

index in the static vector for its type class, and its initial state after creation is noted

for use in the storage of difference values on subsequent changes.

The following aspect-oriented pointcuts are generated for each instrumented

class, with the examples here generated for the IntFields class as listed in §A.4:

• A pointcut describing initialization routines to intercept:

pointcut objectCreation( IntFields x ) :

initialization( new( .. ) )

&& target( x )

&& !cflow( execution( * IntFields.clone () ) );

• A pointcut describing method calls to intercept (see §4.7 for issues relating to
completeness of instrumentation):

pointcut IntFieldsCall( IntFields x ) :

call( * * ( .. ) )

&& !call( * clone () )

&& !call( static * * ( .. ) )

&& target( x );

As stated previously, the initialization routine takes action adding the new object in-

stance to the static vector inserted into its type class and setting its initial values for

difference tracking. The reason these pointcuts exclude the clone method is because

it is used internally to create copies of objects so the originals are not modified during

the in vivo test—making them advised by code in Invite would cause infinite recur-

sion. Also, the focus in this simple proof-of-concept test focused solely on member

functions in order to work with Invite. As a result static methods were excluded in

the IntFieldsCall pointcut even though action could easily have been taken on a

modification of a field using existing functionality in AspectJ.
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Finally, code is dynamically generated to implement the tracking of variable

values inside an object instance (the below example is for a primitive type with the

name “field1”):

// genera te t h e s e cases based on members
// be ing t r a c k e d
i f ( newValue . f i e l d 1 != oldValue . f i e l d 1 )

d i f f V a l s . add ( new Dif fVa lue ( oldValue . f i e l d 1 ,
newValue . f i e l d 1 ,
‘ ‘ f i e l d 1 ’ ’ ,
Di f fVa lue . INT TYPE ) ) ;

Figure 4.5: AspectJ code for updating values in a DiffChain

Integration with the Invite framework initially seemed immensely beneficial to

this project as it would demonstrate integration with a tool already targeted towards

post-deployment testing. It turned out that the version of Invite code originally

used in the project leveraged the Java Native Interface (JNI) for making calls to C

code from within Java programs in order to do things like set processor affinity to

assess parallel performance. This would have been great functionality to retain and

would have allowed for interesting measurements regarding the overhead on multi-core

processors, but unfortunately it had to be removed because the JNI code prevented

the use of network connections (which seemed quite odd for a piece of software that

was targeted towards distributed testing).

4.4.2 Data Gathering and Analysis

The gathering of execution data is relatively simple. It requires an active and acces-

sible database server as specified in the connection information variables at the top
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of the generated instrumentation AspectJ code, and the AspectJ compiler to weave

the aspect-oriented code with standard Java code. The resulting bytecode can be

executed with any Java 1.5-compliant JVM, and relevant information regarding the

instrumented fields of classes during the test run is automatically transmitted to the

database.

Data gathered is extracted from the database for analysis by the Weka ma-

chine learning toolkit using the make-arff.pl script, which requires the name of the

output file and the length of difference chain desired for extraction as parameters.

One main issue with the use of classification trees and production rule systems for

localization is that when the unaltered, “vanilla” versions of the algorithms are used,

the algorithm may pick up that simply using the boolean field indicating whether

or not a program failed to be a sufficiently accurate approach rather than actually

discriminating based on variable values or method names during classification or rule

generation. This could be avoided by modifying the algorithms to avoid such patterns

or by formatting the data in another manner, but this has not been implemented due

to time constraints and limited personal experience with machine learning algorithms.

Instead the make-arff.pl script is currently set up to generate a file with

information that is perfectly balanced with respect to failed and successful test data.

This ensures that failed cases are included in the generated file so that any useful

classifier is easily identified, rather than the analysis algorithm simply using whether

or not a test failed as the sole classifier because of a potentially large fraction of cases

where tests pass.

The most meaningful results so far are from applying the Apriori algorithm
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to collected data. More information regarding how the Apriori algorithm was of

assistance in analyzing the data is in §4.5.

4.5 Initial Results

The following sections describe initial results of work on two toy cases that demon-

strate the initial feasibility of the approach.

4.5.1 Toy Case 1

This first toy case was a simple check of a boolean member variable testBool of an

instrumentation class called IntFields. The class consists solely of integer fields,

accessors and mutators and has a lone in vivo test that re-sets the failure variable

testBool before actually returning a value indicating the result of the test so that it

can be placed in a tight loop for automated testing.

public boolean inv iteTestDecrement ( ) {
i f ( t e s tBoo l ) {

t e s tBoo l = fa l se ;
return true ;

}
return fa l se ;

}

Figure 4.6: In vivo test for Toy Case 1

This test was exercised by putting calls to an IntFields instance inside a

loop that probabilistically set the testBool variable using the setTestBool method

to induce a failure of the in vivo test, and then called either increment or decrement
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with probability 1
2
. When the data was passed through the Apriori algorithm various

production rules were produced that suggest both success and failure cases. All useful

rules appeared in the top 10 results ranked by confidence, with the ones capturing

the more comprehensive rules having the maximum confidence value of 1—ties were

broken with the support metric. The highest-ranking association rule was

method2_name=IntFields.setTestBool(boolean) ==> succeeded=false

indicating that the test failed every time the testBool method was called immediately

prior.

4.5.2 Toy Case 2

The second of the toy cases was designed to see if the method could correctly identify

a multi-cause failure. The two tests in the code listing of figure 4.7 were implemented

in the IntFields class. These tests are such that a failure would be reported if the

decrement method was called two or more times directly prior to the execution of the

in vivo test. Once again, an IntFields instance had its increment and decrement

methods called with equal probability inside a tight loop.

When the data was extracted from the database and passed though Weka’s

Apriori implementation, many rules with a confidence metric of 1 were returned in

the top 10 results. Examination of rules with prior knowledge regarding the cause of

the failure indeed shows they make sense, but the most useful was the ninth result:

method1_name=IntFields.increment(), method2_name=IntFields.decrement()

==> succeeded=true

Additional time likely would have shown other ways to observe the failure such as

tracking the values of field1 directly.
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public void increment ( ) {
o ldF i e ld1 = f i e l d 1 ;
f i e l d 1 ++;

}

// shou ld f a i l i f decrement was c a l l e d
// at l e a s t t w i c e in a row j u s t p r i o r
// to f a i l u r e
public boolean inv iteTestDecrement ( ) {

i f ( o ldF i e ld1 − f i e l d 1 >= 2 )
return true ;

return fa l se ;
}

public void decrement ( ) {
f i e l d 1 −−;

}

Figure 4.7: Code from IntFields class for Toy Case 2

4.5.3 Instrumentation Overhead

Since the implementation was originally designed to work with the Invite in vivo test-

ing framework [22], it was hoped that the overhead in terms of perceived execution

time of the program would be made acceptable by running in vivo tests as well as the

result reporting on a separate, more available processor core than the majority of the

main application. Unfortunately, this impact was not measured as the project became

stand-alone after problems relating to network connectivity arose when integrating

with the code for Invite. However initial measurement of both aspect-oriented and

reflection-based instrumentation was carried out at the beginning of the experimen-

tation phase.

Table 4.1 summarizes the results of various forms of data manipulation being

performed in a tight 100,000 iteration loop in which an instance of the IntFields
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Table 4.1: Execution time for various instrumentation methods

Method Average time

No instrumentation, plain 0.005s

No instrumentation, copying 0.226s

Instrumented, copying 0.433s

Instrumented, diffing 0.673s

Instrumented, reflection 7.281s

class (source for a version of this class may be found in §A.4) was altered at each

iteration. The statistics indicated are measured in seconds and are averages over four

trial runs. Instrumented versions are those that included a form of variable value

history gathered either via reflection or aspect-oriented code instrumentation. The

case using reflection is indicated as such, and the other two cases of instrumented

observation are simple copying of information and calculation of differences that are

stored in the DiffChain container as described in §4.4.1. All of these methods take

significantly longer to complete the loop’s execution than versions of the loop lacking

any instrumentation. In addition to the described instrumentation methods and no

instrumentation, there are also measurements for plain calls to copying methods that

do not store data in a list structure.

As expected prior to testing, instrumentation methods using the standard Java

reflection API were an order of magnitude slower than any other method, and three

orders of magnitude slower than performing the loop without any instrumentation
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whatsoever. As can be seen, copying of the altered information in the IntFields

instance every loop iteration increased the cost of the loop by 45 times. However, this

is essentially a worst-case scenario because the time to copy an entire object is much

larger than that required to increment an integer field, and these actions comprised

the majority of execution time and therefore magnified this factor. Furthermore the

overhead is essentially minimal in the sense that in vivo tests must be completely

isolated from the original program to avoid side effects, which necessitates copying.

The overhead of 91% between the two copying instrumentations can be at-

tributed to insertion into a linked list data structure, necessitating even more alloca-

tion of memory-resident data. Finally, the differencing operation and storage in the

DiffChain data structure roughly doubled this overhead. This data indicates that

efficiency is indeed an issue that needs more exploration in order to facilitate in vivo

fault localization that is acceptable to users. But as suggested in [22] a relatively

small user base is required in order to execute a sufficient number of tests and bring

the amortized overhead of tests over all instances down to an acceptable level. This

suggests that even the 50% increase in overhead as measured for a single instance

could be distributed across a large installation base of the software.

4.5.4 Apache POI

Code from the Apache POI project was configured for instrumentation using the

described method. Code changes were minimal, and only included the implementa-

tion of member functions clone and equals inherited from class Object. Due to time

restrictions, full results gathering and analysis was not completed during the imple-
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mentation phase. Future work can examine the same class of bugs in more complex

systems to ascertain the effectiveness of this method as applied to real-world software

scenarios. However, the ease with which the code was analyzed and augmented for

instrumentation suggests that design for this type of testing would indeed be trivial

since it only required a few simple utility functions to implement.

4.6 Discussion

4.6.1 Technique Analysis

Results based on the toy systems seem promising as the Apriori algorithm successfully

produced clear association rules showing the exact cause of the defect within the top

ten results for each implementation. However, the lower position of the revealing

association rule in the second toy example suggests that metrics other than support

may potentially be used more effectively as a secondary indicator of rule relevance.

The first obvious extrapolation of this method is to explore instrumentation

for values in code, other than member variables, that may be strong indicators of de-

fect presence and may not even require extensive tracking of internal program state

(but rather only temporary values calculated from it such as loop iterators). Sec-

ondly, no tests have yet been carried out to measure the effectiveness of the described

localization method in the presence of multiple failure cases, but it is hypothesized

that this would simply lower the confidence and support metrics for defects while still

revealing patterns for failed tests.

Although the current implementation is stand-alone, it can easily be integrated
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with the Invite in vivo testing framework from [22] because it uses the same concepts

and technologies. There is currently no parallelism in the model due to complications

with using the Invite framework as provided, but the theoretical overhead of this

method is that of Invite plus the cost of maintaining a DiffChain of object states

when a test is run. This cost can vary greatly depending on the quantity of underlying

data actually representing a snapshotted member, but grows linearly with member

size and test frequency. This is because each field of primitive type in an object is

copied and then compared against the value in the most recently stored copy of the

object during each in vivo test.

Despite the linear growth, the fact that action is taken for every method

modifying the object should make the overhead noticeable. However if only some

information on instrumented classes is required the cost can be reduced, and the

ability to parallelize the problem can take advantage of multi-core processors since in

vivo tests are strictly isolated from program execution and therefore do not have any

external data dependencies. Recent industry moves towards multiple processing cores

suggest that the practice of spending time storing a chain of differences of tracked

fields at the time of snapshot is preferable to storing a chain of copies, since the overall

power available for parallel tasks may quickly become more than can currently be

utilized.

The cost in space for the implementation is configurable–currently users may

specify a maximum length for DiffChains that hold an object’s modification history,

and this is carried out in such a way that it could be changed dynamically during

execution in response to system load if desired in future work. Additionally, the
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ability to store full object copies with the goal of saving computation time is another

of many possibilities for adjusting resource usage to a given execution environment.

4.6.2 Relation to Other work

While the overhead of this in vivo fault localization method is significant and may

inhibit its use in time-critical situations, it appears reasonable when compared to

Zeller’s work on delta debugging[13, 40] which, of all related work explored in chapter

3, achieves the most similar results. This is because the delta debugging technique

amounts to a binary search in program executions, which requires a standard case of

a logarithmic bound on the number of (possibly altered) program executions rather

than a constant amount of overhead per tracked item per test pair during execution

as with the method described here.

The amount of information collected also gives the benefit of easing the search

for the root cause of failure. The strategy in [16] relies only on values observed at

branching points in execution and therefore cannot identify the cause of faults that

are a result of any specific data values of variables, but rather only by their influence

on branching behavior. Zeller’s work [13, 14] has a similar problem with localizing

faults because states of succeeding and failing executions may simply not be directly

comparable and therefore not yield any results.

Finally, Liblitt’s technique [20] has much lower overhead, and can essentially

be viewed as an alternate version of this technique insomuch as that it trades a good

amount of localization ability for speed of instrumentation and a higher proportion

of offline processing time to yield results; Liblitt explicitly notes that “we do not

71



give strict causes and effects”. Another significant difference between the approach

described here and Liblitt’s work is automation of testing. Whereas this method still

relies on instrumentation constructed by humans (even if possibly re-used from stan-

dard pre-deployment testing practices), Liblitt’s method is more automated. Liblitt

also notes that in his technique “sampled data is terribly incomplete”, suggesting that

human intuition may offer a great deal of assistance in tackling this problem.

4.7 Future Work

Parse tree analysis of the code being instrumented would lead to both more compre-

hensive and more efficient implementation of the fault localization process described.

The following optimizations could be implemented using information encoded in the

parse tree of the code to instrument:

• Only transmit information relating to variables referenced in the function

• Handle access of public/protected, non-final variables (ie. in classes other than

those indicated for instrumentation) as well as the appropriate static member

functions if aspect-oriented applications were unable to handle such constructs

• Only execute instrumentation code for methods altering instrumented variables

or in special user-defined cases to allow finer control over processing overhead

and information gathering

The final method can almost certainly produce noticeable speedups in the proposed

fault localization method as it currently looks for an in vivo test to run on every
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method call, and hence each method call, whether instrumented or not, incurs over-

head. This can be remedied by dynamically generating the pointcut criteria for the

running of in vivo tests based on parse tree analysis so that all overhead of looking

for a test method to run is completely eliminated.

Another improvement on the implemented methodology is with regard to the

tracking of changed values. The current implementation only handles changes in

primitive types, and translates a difference between objects (due to a false return

value from the equals method) into a constant numeric difference. This limitation

can be overcome by implementing a facility for specifying new methods for comparison

when complex types need to be tracked, as well as by a standard interface for defining

how to perform the differencing of internal state.

It is also worth noting that the current implementation of arff file generation

only extracts method names and associated failure values from the database. This is

because of limited time for implementation, and lossless translation into arff format

is slightly more complex (although feasible). Expanding this functionality would

likely result in identification of applications for this localization technique extending

to the values of variables and other indicators of internal program state.

In vivo fault localization could also be used in conjunction with a technology

called PODs [31, 32], which facilitates efficient snapshotting of a running system as

well as replay of execution and branching. By helping to locate the cause of a failure

in the presence of otherwise unmanageable quantities of captured execution/error

data, in vivo fault localization would likely be indispensable in many cases. Finally,

there is also the issue of privacy that has been neglected throughout the exploration
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of this topic. Privacy must be taken into account for any real-world implementation

of this concept since values that may hold sensitive information are transmitted to a

centralized database store, but satisfying this requirement is beyond the scope of this

thesis.
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Appendix A

Source Code

A.1 com/invite/changetracking/DiffValue.java

0 package com . i n v i t e . changetrack ing ;

public c lass Dif fValue {
public stat ic f ina l int NO TYPE = −1;
public stat ic f ina l int BYTE TYPE = 0 ;

5 public stat ic f ina l int SHORT TYPE = 1 ;
public stat ic f ina l int INT TYPE = 2 ;
public stat ic f ina l int LONG TYPE = 3 ;
public stat ic f ina l int FLOAT TYPE = 4 ;
public stat ic f ina l int DOUBLE TYPE = 5 ;

10 public stat ic f ina l int BOOLEAN TYPE = 6 ;
public stat ic f ina l int CHAR TYPE = 7 ;

protected int type ;
protected Object oldValue ;

15 protected Object newValue ;
protected St r ing fieldName ;

public Dif fVa lue ( Object oldValue , Object newValue , S t r ing fieldName , int type ) {
this . o ldValue = oldValue ;

20 this . newValue = newValue ;
this . f ie ldName = fieldName ;
this . type = type ;

}

25 public int getType ( ) {
return type ;

}

public Object getNewValue ( ) {
30 return newValue ;

}

public Object getOldValue ( ) {
return oldValue ;

35 }

public St r ing getFieldName ( ) {
return f ie ldName ;

}
40

public St r ing toS t r ing ( ) {
St r ing typeName = ”” ;
switch ( type ) {

case BYTE TYPE: typeName = ”Byte” ; break ;
45 case SHORT TYPE: typeName = ”Short ” ; break ;

case INT TYPE: typeName = ” In t ege r ” ; break ;
case LONG TYPE: typeName = ”Long” ; break ;
case FLOAT TYPE: typeName = ”Float ” ; break ;
case DOUBLE TYPE: typeName = ”Double” ; break ;

50 case BOOLEAN TYPE: typeName = ”Boolean” ; break ;
case CHAR TYPE: typeName = ”Character ” ; break ;
default : a s s e r t ( fa l se ) ;

}
return f ie ldName + ” ( ” + typeName + ” ) : ” + oldValue . t oS t r i ng ( ) + ”−>” + newValue .

t oS t r i ng ( ) ;
55 }

}
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A.2 com/invite/changetracking/DiffBundle.java

0 package com . i n v i t e . changetrack ing ;

public c lass Dif fBundle {
St r ing methodName ;
Di f fValue [ ] d i f fV a l s ;

5
Di f fBundle ( St r ing methodName , Di f fValue [ ] d i f fV a l s ) {

this . methodName = methodName ;
this . d i f fV a l s = d i f fV a l s ;

}
10

public St r ing getMethodName ( ) {
return methodName ;

}

15 public Dif fValue [ ] g e tD i f fVa l s ( ) {
return d i f fV a l s ;

}
}
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A.3 com/invite/changetracking/DiffChain.java

0 package com . i n v i t e . changetrack ing ;

import java . u t i l . L inkedList ;

public c lass DiffChain<T> {
5 private T currentVers ion ;

private LinkedList<DiffBundle> d i f fH i s t o r y ;

public Dif fChain ( T o ) {
cur rentVers ion = o ;

10 d i f fH i s t o r y = new LinkedList<DiffBundle >() ;
}

// d i s t h e array o f changes made by t he cu r r en t method c a l l
// maxSize i s pas sed in so a l l g ene ra t ed code i s con ta ined to t h e AspectJ aspec t ,

15 // perhaps a l l ow i t t o change based on system r e s ou r c e s
public void update ( St r ing methodName , T newVersion , Di f fVa lue [ ] d , int maxSize )
{

cur rentVers ion = newVersion ;
d i f fH i s t o r y . addFirst ( new Dif fBundle ( methodName , d ) ) ;

20 while ( d i f fH i s t o r y . s i z e ( ) > maxSize )
d i f fH i s t o r y . removeLast ( ) ;

}

public T getCurrentVers ion ( ) {
25 return cur rentVers ion ;

}

public LinkedList<DiffBundle> g e tD i f fH i s t o r y ( ) {
return ( LinkedList<DiffBundle >)( d i f fH i s t o r y . c lone ( ) ) ;

30 }

public void de l e t eH i s t o ry ( ) {
d i f fH i s t o r y . c l e a r ( ) ;
cur rentVers ion = null ;

35 }

public St r ing toS t r ing ( ) {
St r i ngBu f f e r retBuf = new St r i ngBu f f e r ( cur rentVers ion . t oS t r ing ( ) + ” : < ” ) ;

40 int i = 0 ;
for ( Di f fBundle bundle : d i f fH i s t o r y ) {

retBuf . append ( ”{” ) ;
for ( int j = 0 ; j < bundle . d i f fV a l s . l ength ; j++ ) {

i f ( j != bundle . d i f fV a l s . l ength − 1 )
45 retBuf . append ( bundle . d i f fV a l s [ j ] . t oS t r ing ( ) + ” , ” ) ;

else
retBuf . append ( bundle . d i f fV a l s [ j ] . t oS t r ing ( ) + ” ” ) ;

}

50 i f ( i != d i f fH i s t o r y . s i z e ( ) − 1 )
retBuf . append ( ”} , ” ) ;

else
retBuf . append ( ”} >” ) ;

i++;
55 }

return retBuf . t oS t r ing ( ) ;
}

}
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A.4 com/invite/drivers/IntFields.java

This is the version as used to carry out the tasks as described in §4.5.2
0 package com . i n v i t e . d r i v e r s ;

public c lass I n tF i e l d s {
private int f i e l d 1 ;
private int f i e l d 2 ;

5 private int f i e l d 3 ;
private int f i e l d 4 ;

private int o ldF i e ld1 ;

10 private I n t eg e r f i e l d 5 ;
private I n t eg e r f i e l d 6 ;

private boolean t e s tBoo l ;

15 public I n tF i e l d s ( int a , int b , int c , int d ) {
f i e l d 1 = a ;
f i e l d 2 = b ;
f i e l d 3 = c ;
f i e l d 4 = d ;

20
f i e l d 5 = new I n t eg e r ( a ) ;
f i e l d 6 = new I n t eg e r ( b ) ;

t e s tBoo l = fa l se ;
25 }

public void increment ( ) {
o ldF i e ld1 = f i e l d 1 ;
f i e l d 1++;

30 f i e l d 2++;
f i e l d 3++;
f i e l d 4++;

}

35 // shou l d f a i l i f decrement was c a l l e d a t l e a s t tw i c e in a row
public boolean inviteTestDecrement ( ) {

i f ( o ldF i e ld1 − f i e l d 1 >= 2 )
return true ;

return fa l se ;
40 }

public void decrement ( ) {
f i e l d 1 −−;
f i e l d 2 −−;

45 f i e l d 3 −−;
f i e l d 4 −−;

}

public void setTestBool ( boolean b ) {
50 te s tBoo l = b ;

}

public stat ic St r ing myStaticMethod ( ) {
return ” s t a t i c s t r i n g ” ;

55 }

public I n tF i e l d s c lone ( ) {
return new I n tF i e l d s ( f i e l d 1 , f i e l d 2 , f i e l d 3 , f i e l d 4 ) ;

}
60

public St r ing toS t r ing ( ) {
return ” [ ” + In t ege r . t oS t r i ng ( f i e l d 1 ) + ” , ” + In t ege r . t oS t r ing ( f i e l d 2 ) + ” , ” +

In t ege r . t oS t r ing ( f i e l d 3 ) + ” , ” + In t ege r . t oS t r ing ( f i e l d 4 ) + ” ] ”
;

}
65 }
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A.5 com/invite/core/Invite.aj

(generated for IntFields)

0 /∗
∗ I n v i t e . a j
∗ Generated on Wed Nov 5 07 : 49 : 36 2008
∗
∗ Copyr i gh t Columbia Un i v e r s i t y 2008

5 ∗ Generator w r i t t e n by Del S lane − d j s2160
∗/

package com . i n v i t e . core ;

10
import java . s q l . ∗ ;
import java . u t i l . ∗ ;
import java . lang . r e f l e c t . ∗ ;

15 import com . i n v i t e . changetrack ing . ∗ ;

import org . a sp e c t j . lang . Jo inPoint ;
import org . a sp e c t j . lang . r e f l e c t . CodeSignature ;

20 import java . s q l . ∗ ;
import java . u t i l . ∗ ;

import com . i n v i t e . changetrack ing . ∗ ;
import com . i n v i t e . d r i v e r s . ∗ ;

25

pub l i c privileged aspect I nv i t e {

stat ic f ina l St r ing dbURL = ” jdbc : mysql : // l o c a l h o s t / i n v i t e ” ;
30 stat ic f ina l St r ing dbUser = ” root ” ;

stat ic f ina l St r ing dbPassword = ” rootpas s ” ;

// s t o r e s t h e names o f a l l methods t h a t don ’ t have a co r r e spond ing un i t t e s t
stat ic TreeSet noTest = new TreeSet ( ) ;

35
public stat ic f ina l int DEFAULT OBJ VEC SIZE = 50 ; // a l l o c a t e t h i s s i z e v e c t o r per t ype
public stat ic f ina l int MAX CHAIN LEN = 30 ; // max s i z e o f d i f f c ha in s

pointcut notTestMethod ( ) : ! ca l l ( boolean ∗ . i nv i t eTe s t ( ) ) ;
40 pointcut no t Inv i t e ( ) :

! within ( com . i n v i t e . core .∗ )
&& ! within ( com . i n v i t e . changetrack ing .∗ ) ;

pointcut no t I n i t ( ) :
! i n i t i a l i za t ion ( ∗ . new ( . . ) )

45 && ! pre in it ia l izat ion ( ∗ . new ( . . ) )
&& ! handler ( ∗ ) ;

/∗∗∗∗∗∗∗∗ INSTRUMENTATION FOR CLASS I n t F i e l d s ∗∗∗∗∗∗∗∗/

// F i e l d s f o r c l a s s I n t F i e l d s
50 private stat ic int I n tF i e l d s . nextId = 0 ; // s e t on o b j e c t c r ea t i on , i s index in v e c t o r

be low
private stat ic Vector<DiffChain<In tF i e ld s >> I n tF i e l d s . t rackedObjects =

new Vector<DiffChain<In tF i e ld s >>( DEFAULT OBJ VEC SIZE ) ;
private int I n tF i e l d s . t racerAspectObjId ; // add the ID f i e l d to each c l a s s i n s t an c e
// Po in t cu t s f o r c l a s s I n t F i e l d s

55 pointcut ob jec tCreat i on ( I n tF i e l d s x ) :
i n i t i a l i za t ion ( new( . . ) )

&& target ( x )
&& ! cflow ( execution ( ∗ I n tF i e l d s . copy ( ) ) ) ;

60 pointcut I n tF i e l d sCa l l ( I n tF i e l d s x ) :
ca l l ( ∗ ∗ ( . . ) )

&& ! ca l l ( ∗ copy ( ) )
&& ! ca l l ( ∗ t oS t r ing ( ) ) // remove wi th p r i n t s t a tmen t s
&& ! ca l l ( stat ic ∗ ∗ ( . . ) ) // don ’ t need to t r a c k s t a t i c method c a l l s

65 && target ( x ) ;

// Jo i n po i n t s f o r c l a s s I n t F i e l d s
after ( I n tF i e l d s x ) : ob j ec tCreat i on ( x ) && not Inv i t e ( ) && notTestMethod ( )
{

70 x . tracerAspectObjId = In tF i e l d s . nextId ;
I n tF i e l d s . nextId++;
I n tF i e l d s . t rackedObjects . add ( x . tracerAspectObjId , new DiffChain<In tF i e ld s >( x .

copy ( ) ) ) ;
}

75 after ( I n tF i e l d s newValue ) : I n tF i e l d sCa l l ( newValue ) && not Inv i t e ( ) && notTestMethod ( )
{

Vector<DiffValue> d i f fV a l s = new Vector<DiffValue >( 10 , 5 ) ;
Dif fChain<In tF i e ld s > trackingChain = In tF i e l d s . t rackedObjects . get ( newValue .

tracerAspectObjId ) ;
I n tF i e l d s oldValue = trackingChain . getCurrentVers ion ( ) ;

80
// g ene ra t e t h e s e ca s e s based on members
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i f ( newValue . f i e l d 1 != oldValue . f i e l d 1 )
d i f fV a l s . add ( new Dif fVa lue ( oldValue . f i e l d 1 , newValue . f i e l d 1 , ” f i e l d 1 ” ,

Di f fVa lue . INT TYPE ) ) ;

85 i f ( newValue . f i e l d 3 != oldValue . f i e l d 3 )
d i f fV a l s . add ( new Dif fVa lue ( oldValue . f i e l d 3 , newValue . f i e l d 3 , ” f i e l d 3 ” ,

Di f fVa lue . INT TYPE ) ) ;

Di f fVa lue [ ] a = new Dif fValue [ d i f fV a l s . s i z e ( ) ] ;
90 trackingChain . update ( th i s Jo i nPo in tS ta t i cPa r t . ge tS ignature ( ) . t oS t r ing ( ) , newValue .

copy ( ) , d i f fV a l s . toArray ( a ) , MAX CHAIN LEN ) ;

// System . out . p r i n t l n ( ” a f t e r ’” + t h i s J o i nP o i n t S t a t i c P a r t . g e t S i g n a t u r e ( ) + ” ’ : ” )
;

// System . out . p r i n t l n ( ”\ t ” + t rack ingCha in ) ;
// System . out . p r i n t l n ( ) ;

95 }

// a u t oma t i c a l l y g ene ra t e p o i n t c u t s in o t h e r f i l e s t h a t a c c e s s package / p u b l i c members

// in s t rumen t s methods r e t u r n i n g o b j e c t s
100 Object around ( ) :

no t Inv i t e ( )
&& notTestMethod ( )
&& ! cflow ( within ( I nv i t e ) && adviceexecution ( ) )
&& ! execution ( stat ic ∗ ∗ ( . . ) )

105 && execution ( ∗ ∗ ( . . ) )
{

// f i xme : make t h i s p a r a l l e l i z a b l e
Object r e t = proceed ( ) ;
Object target = thisJoinPoint . getTarget ( ) ;

110
St r ing invokedName = thisJoinPoint . g e tS ignature ( ) . getName ( ) ;
S t r ing fullInvokedName = target . g e tC las s ( ) . getName ( ) + ” . ” + invokedName ;

i f ( noTest . conta ins ( ful lInvokedName ) )
115 return r e t ;

S t r ing f i r s tCha r = invokedName . subs t r i ng (0 , 1) . toUpperCase ( ) ;
S t r ing r e s t = invokedName . subs t r i ng (1 , invokedName . l ength ( ) ) ;
S t r ing testMethodName = ” inv i t eTe s t ” + f i r s tCha r + r e s t ;

120
try {

Method testMethod = target . g e tC la s s ( ) . getMethod ( testMethodName , null ) ;
boolean t e s tPassed = ( ( Boolean ) testMethod . invoke ( target , null ) ) .

booleanValue ( ) ;
r epor tFa i l edTes t ( target , t e s tPassed ) ;

125 }
catch ( NoSuchMethodException e ) {

noTest . add ( fullInvokedName ) ;
}
catch ( Exception e ) {

130 e . pr intStackTrace ( ) ;
System . e x i t ( 0 ) ;

}
f ina l ly {

return r e t ;
135 }

}

stat ic void r epor tFa i l edTes t ( Object target , boolean f a i l e d )
{

140 try {
Fie ld t rackedObjec t sF i e ld = target . g e tC la s s ( ) . g e tF i e l d ( ”

a j c $ i n t e rF i e l d $ c om inv i t e c o r e I nv i t e $ t r a c k edOb j e c t s ” ) ;
F i e ld t race rOb j IdF i e ld = target . g e tC la s s ( ) . g e tF i e l d ( ”

a j c $ i n t e rF i e l d $ c om inv i t e c o r e I nv i t e $ t r a c e rAsp e c tOb j I d ” ) ;

i f ( ! t rackedObjec t sF i e ld . i sA c c e s s i b l e ( ) )
145 t rackedObjec t sF i e ld . s e tAc c e s s i b l e ( true ) ;

i f ( ! t r ace rObj IdF i e ld . i sA c c e s s i b l e ( ) )
t race rObj IdF i e ld . s e tAc c e s s i b l e ( true ) ;

Vector<DiffChain<?>> t rackedObjects = ( Vector<DiffChain <?>>)
150 ( t rackedObjec t sF i e ld . get ( target ) ) ;

int obj Id = ( ( In t ege r ) t race rObj IdF i e ld . get ( target ) ) . intValue ( ) ;

i f ( obj Id < t rackedObjects . s i z e ( ) ) // compensate f o r c a l l i n g j o i n p o i n t
e x e c u t i n g b e f o r e e x i s t e n c e

sendInfoToDb ( trackedObjects . get ( obj Id ) , f a i l e d ) ;
155 }

catch ( NoSuchFieldException e ) {
System . out . p r i n t l n ( ”Test f a i l u r e r epor t f a i l e d : ” + e . getMessage ( ) ) ;
e . pr intStackTrace ( ) ;

}
160 catch ( Secur i tyExcept ion e ) {

System . out . p r i n t l n ( ”Test f a i l u r e r epor t f a i l e d : ” + e . getMessage ( ) ) ;
e . pr intStackTrace ( ) ;

}
catch ( I l l ega lArgumentExcept ion e ) {

165 System . out . p r i n t l n ( ”Test f a i l u r e r epor t f a i l e d : ” + e . getMessage ( ) ) ;
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e . pr intStackTrace ( ) ;
}
catch ( I l l e g a lAc c e s sExc ep t i on e ) {

System . out . p r i n t l n ( ”Test f a i l u r e r epor t f a i l e d : ” + e . getMessage ( ) ) ;
170 e . pr intStackTrace ( ) ;

}
}

stat ic private void sendInfoToDb ( DiffChain <?> chain , boolean f a i l e d ) {
175 St r ing objType = chain . getCurrentVers ion ( ) . ge tC las s ( ) . t oS t r ing ( ) ;

try {
// s e t up da ta ba s e connec t ion , can make t h i s a poo l l a t e r
Class . forName ( ”com . mysql . jdbc . Driver ” ) . newInstance ( ) ;

180 Connection dbConnection = DriverManager . getConnection ( dbURL, dbUser ,
dbPassword ) ;

// use t r a n s a c t i o n s
dbConnection . setAutoCommit ( fa l se ) ;

185 PreparedStatement getLast Id = dbConnection . prepareStatement ( ”SELECT
LAST INSERT ID( ) ” ) ;

PreparedStatement i n f o I n s e r t = dbConnection . prepareStatement ( ”INSERT INTO
d i f f i n f o ” +

” ( t id , ob jec t type , method name ) VALUES (? , ? , ?) ” ) ;
PreparedStatement v a l s I n s e r t = dbConnection . prepareStatement ( ”INSERT INTO

d i f f v a l s ” +
” ( f i e ld name , f i e l d v a l u e , f i e l d change , did ) VALUES (? ,

? , ? , ?) ” ) ;
190

PreparedStatement makeTrial = dbConnection . prepareStatement ( ”INSERT INTO
t r i a l s ( f a i l e d ) VALUES (? ) ” ) ;

i f ( f a i l e d )
makeTrial . s e t I n t ( 1 , 1 ) ;

else
195 makeTrial . s e t I n t ( 1 , 0 ) ;

makeTrial . executeUpdate ( ) ;

Resu l tSet r s = getLast Id . executeQuery ( ) ;
i f ( ! r s . next ( ) )

200 throw new SQLException ( ”No element in r e s u l t s e t f o r l a s t ID” ) ;
int t i d = r s . g e t In t ( 1 ) ;

for ( Di f fBundle bundle : chain . g e tD i f fH i s t o r y ( ) ) {
i n f o I n s e r t . s e t I n t ( 1 , t i d ) ;

205 i n f o I n s e r t . s e t S t r i n g ( 2 , objType ) ;
i n f o I n s e r t . s e t S t r i n g ( 3 , bundle . getMethodName ( ) ) ;
i n f o I n s e r t . executeUpdate ( ) ;

r s = getLast Id . executeQuery ( ) ;
210 i f ( ! r s . next ( ) )

throw new SQLException ( ”No element in r e s u l t s e t ” ) ;
int did = rs . g e t In t ( 1 ) ;

for ( Di f fVa lue value : bundle . g e tD i f fVa l s ( ) ) {
215 v a l s I n s e r t . s e t S t r i n g ( 1 , value . getFieldName ( ) ) ;

v a l s I n s e r t . s e t I n t ( 4 , did ) ;
se tF ina lVal Inser tParams ( value , v a l s I n s e r t ) ;
v a l s I n s e r t . executeUpdate ( ) ;

}
220 }

dbConnection . commit ( ) ; // commit as a t r a n s a c t i o n
}
catch ( SQLException e ) {

225 System . out . p r i n t l n ( ”SQLException in sendInfoToDb : ” + e . getMessage ( ) ) ;
}
catch ( Exception e ) {

System . out . p r i n t l n ( ”Error load ing MySQL JDBC dr i v e r : ” + e . getMessage ( ) )
;

}
230 }

stat ic private void setFina lVal Inser tParams ( Di f fValue value , PreparedStatement v a l s I n s e r t
)

throws SQLException
{

235 switch ( value . getType ( ) ) {
case Dif fValue .BYTE TYPE:

Byte oldValue = ( Byte ) value . getOldValue ( ) ;
Byte newValue = (Byte ) value . getNewValue ( ) ;
v a l s I n s e r t . setDouble ( 2 , newValue . doubleValue ( ) ) ;

240 v a l s I n s e r t . setDouble ( 3 , newValue . doubleValue ( ) − oldValue .
doubleValue ( ) ) ;

break ;
case Dif fValue .SHORT TYPE:

Short oldValueS = ( Short ) value . getOldValue ( ) ;
Short newValueS = ( Short ) value . getNewValue ( ) ;

245 v a l s I n s e r t . setDouble ( 2 , newValueS . doubleValue ( ) ) ;
v a l s I n s e r t . setDouble ( 3 , newValueS . doubleValue ( ) − oldValueS .

doubleValue ( ) ) ;
break ;
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case Dif fValue . INT TYPE:
In t eg e r o ldValueI = ( In t eg e r ) value . getOldValue ( ) ;

250 In t ege r newValueI = ( In t eg e r ) value . getNewValue ( ) ;
v a l s I n s e r t . setDouble ( 2 , newValueI . doubleValue ( ) ) ;
v a l s I n s e r t . setDouble ( 3 , newValueI . doubleValue ( ) − oldValueI .

doubleValue ( ) ) ;
break ;

case Dif fValue .LONG TYPE:
255 Long oldValueL = (Long ) value . getOldValue ( ) ;

Long newValueL = (Long ) value . getNewValue ( ) ;
v a l s I n s e r t . setDouble ( 2 , newValueL . doubleValue ( ) ) ;
v a l s I n s e r t . setDouble ( 3 , newValueL . doubleValue ( ) − oldValueL .

doubleValue ( ) ) ;
break ;

260 case Dif fValue .FLOAT TYPE:
Float oldValueF = ( Float ) value . getOldValue ( ) ;
Float newValueF = ( Float ) value . getNewValue ( ) ;
v a l s I n s e r t . setDouble ( 2 , newValueF . doubleValue ( ) ) ;
v a l s I n s e r t . setDouble ( 3 , newValueF . doubleValue ( ) − oldValueF .

doubleValue ( ) ) ;
265 break ;

case Dif fValue .DOUBLE TYPE:
Double oldValueD = ( Double ) value . getOldValue ( ) ;
Double newValueD = ( Double ) value . getNewValue ( ) ;
v a l s I n s e r t . setDouble ( 2 , newValueD . doubleValue ( ) ) ;

270 v a l s I n s e r t . setDouble ( 3 , newValueD . doubleValue ( ) − oldValueD .
doubleValue ( ) ) ;

break ;
case Dif fValue .BOOLEAN TYPE:

Boolean oldValueB = ( Boolean ) value . getOldValue ( ) ;
Boolean newValueB = ( Boolean ) value . getNewValue ( ) ;

275 i f ( oldValueB . booleanValue ( ) ) {
v a l s I n s e r t . setDouble ( 2 , 1 .0 ) ;
i f ( newValueB . booleanValue ( ) )

v a l s I n s e r t . setDouble ( 3 , 0 .0 ) ;
else

280 v a l s I n s e r t . setDouble ( 3 , 1 .0 ) ;
}
else {

v a l s I n s e r t . setDouble ( 2 , 0 .0 ) ;
i f ( newValueB . booleanValue ( ) )

285 v a l s I n s e r t . setDouble ( 3 , 1 .0 ) ;
else

v a l s I n s e r t . setDouble ( 3 , 0 .0 ) ;
}
break ;

290 case Dif fValue .CHAR TYPE:
In t eg e r oldValueC = new I n t eg e r ( Character . getNumericValue ( (

Character ) value . getOldValue ( ) ) ) ;
I n t eg e r newValueC = new I n t eg e r ( Character . getNumericValue ( (

Character ) value . getNewValue ( ) ) ) ;
v a l s I n s e r t . setDouble ( 2 , newValueC . doubleValue ( ) ) ;
v a l s I n s e r t . setDouble ( 3 , newValueC . doubleValue ( ) − oldValueC .

doubleValue ( ) ) ;
295 break ;

default :
a s s e r t ( fa l se ) ;

}
}

300
}
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A.6 generation/ajgen.pl

0 #!/ usr / b in / p e r l

require ’ s t r i ngda ta .pm ’ ;

use Data : : Dumper ;
5

i f ( $#ARGV == 0 ) {
die ”no c l a s s e s to snapshot\n” ;

}
e l s i f ( $#ARGV == −1 ) {

10 die ”Usage : a j gen2 <ou t f i l e > <c l a s s to trace> . . ” ;
}

open OUTFILE, ”>” , $ARGV[ 0 ] or die ”Could not open output f i l e ’ ” . $ARGV[ 0 ] . ” ’ f o r wr i t i ng \
n” ;

15 open INVITE , ”<” , ” . . / com/ i n v i t e / core / In s e r tTe s t . java . template ” or die ”Cannot f i nd requ i r ed f i l e
In s e r tTe s t . java . template\n” ;

#make t h e s e se t−a b l e v i a sw i t c h e s
my $ d e f a u l t o b j v e c s i z e = 50 ;
my $ c o n f i g f i l e = ”/home/ de l /Desktop/ t h e s i s / t r a c i ng /com/ i n v i t e / core / con f i g ” ;

20 my $max chain len = 30 ;

my $ c l a s s i n f o = g e t c l a s s i n f o ( ) ;

print OUTFILE ”package com . i n v i t e . core ;\n\n” ;
25 print OUTFILE ” import com . i n v i t e . changetrack ing .∗ ;\ n” ;

# ge t r i d o f t h i s and f i g u r e out a permantent sys tem f o r p u t t i n g in s t rumented code here
print OUTFILE ” import com . i n v i t e . d r i v e r s .∗ ;\ n” ;

30

# −− THE BELOW WILL BE IMPLEMENTED WHEN CLASSES ARE STORED AS FULLY−QUALIFIED
# ( a l s o g e t i n f o f o r methods a c c e s s i n g members d i r e c t l y )
#p r i n t import s t a t emen t s f o r a l l i n s t rumented c l a s s e s

35 #fo r my $ c l a s s ( key s %$ c l a s s i n f o ) {
# pr i n t OUTFILE ” import $ c l a s s .∗ ;\ n ” ;
#}

40 while ( <INVITE> ) {
#s/ c o n f i g F i l e = ”.∗”/ c o n f i g F i l e = ” $ c o n f i g f i l e ”/ ;
s/Object around ( ) : demoExecs ( ) /Object around ( ) : demoExecs ( ) && not Inv i t e ( ) / ;
s/ s t a t i c f i n a l int MAX CHAIN LEN .∗/ s t a t i c f i n a l int MAX CHAIN LEN = $max chain len ; / ;

45 print OUTFILE $ ;

i f ( / s t a t i c f i n a l void p r i n t l n / ) {
print OUTFILE sprintf (

$Str ingdata : : g ene ra l u se ,
50 $ d e f a u l t o b j v e c s i z e

) ;
p r i n t t r a c e r a s p e c t s ( $ c l a s s i n f o ) ;

}

55 i f ( /\/\∗\∗ i n s e r t f a i l u r e r epo r t i ng here \∗\// ) {
i n s e r t t r a c i n g l o g i c ( ) ;

}
}

60 sub g e t c l a s s i n f o {
my $ i ;
my $ c l a s s e s = {

I n tF i e l d s => { f i e l d 1 => ’INT TYPE ’ , f i e l d 3 => ’INT TYPE ’ , t e s tBoo l => ’
BOOLEAN TYPE’ } ,

} ;
65

return $ c l a s s e s ;
}

#c a l l w i t h a hash o f data on what to t r a c k as o u t l i n e d in a p r e v i o u s comment
70 sub p r i n t t r a c e r a s p e c t s {

my $ c l a s s i n f o = sh i f t ;

foreach my $ c l a s s ( keys %$ c l a s s i n f o ) {
print OUTFILE ”/∗∗∗∗∗∗∗∗ INSTRUMENTATION FOR CLASS $ c l a s s ∗∗∗∗∗∗∗∗/\n\n” ;

75 print OUTFILE ”\ t // F i e l d s f o r c l a s s $ c l a s s \n” ;
print OUTFILE sprintf (

$Str ingdata : : f i e l d s p e r c l a s s ,
$ c l a s s ,
$ c l a s s ,

80 $c l a s s ,
$ c l a s s ,
$ c l a s s

) ;

90



85 print OUTFILE ”\ t // Pointcuts f o r c l a s s $ c l a s s \n” ;
print OUTFILE sprintf (

$Str ingdata : : p o i n t c u t s p e r c l a s s ,
$ c l a s s ,
$ c l a s s ,

90 $c l a s s ,
$ c l a s s

) ;

my @members ;
95 while ( my ( $ f i e l d , $type ) = each ( %{ $ c l a s s i n f o −>{$ c l a s s } } ) ) {

push @members , sprintf (
$Str ingdata : : f i e l d c h e c k s p e r c l a s s ,
$ f i e l d ,
$ f i e l d ,

100 $ f i e l d ,
$ f i e l d ,
$ f i e l d ,
$type

) ;
105 }

my $member equal i ty checks = join ( ”\n” , @members ) ;

print OUTFILE ”\n\ t // Jo inpo in t s f o r c l a s s $ c l a s s \n” ;
110 print OUTFILE sprintf (

$Str ingdata : : j o i n p o i n t s p e r c l a s s ,
$ c l a s s ,
$ c l a s s ,
$ c l a s s ,

115 $c l a s s ,
$ c l a s s ,
$ c l a s s ,
$ c l a s s ,
$ c l a s s ,

120 $c l a s s ,
$ c l a s s ,
$member equal i ty checks

) ;
}

125 }

sub i n s e r t t r a c i n g l o g i c {
my $ t r a c i n g l o g i c = ”\ t\ t /∗∗ Huzzah , t r a c i ng l o g i c abound ! ∗∗/\n” ;
print OUTFILE $ t r a c i n g l o g i c ;

130 }
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A.7 generation/stringdata.pm

0 #!/ usr / b in / p e r l

package Str ingdata ;

5 our $header = <<ML;
/∗
∗ I nv i t e . a j
∗ Generated on %s
∗

10 ∗ Copyright Columbia Un ive r s i ty 2008
∗ Generator wr i t t en by Del Slane − djs2160
∗/

package com . i n v i t e . core ;
15

import java . s q l . ∗ ;
import java . u t i l . ∗ ;
import java . lang . r e f l e c t . ∗ ;

20
import com . i n v i t e . changetrack ing . ∗ ;

import org . a sp e c t j . lang . Jo inPoint ;
import org . a sp e c t j . lang . r e f l e c t . CodeSignature ;

25
%s

pub l i c p r i v i l e g e d aspect I nv i t e {

30 s t a t i c f i n a l S t r ing dbURL = ” jdbc : mysql : // l o c a l h o s t / i n v i t e ” ;
s t a t i c f i n a l S t r ing dbUser = ” root ” ;
s t a t i c f i n a l S t r ing dbPassword = ” rootpas s ” ;

// s t o r e s the names o f a l l methods that don ’ t have a corresponding uni t t e s t
35 s t a t i c TreeSet noTest = new TreeSet ( ) ;

pub l i c s t a t i c f i n a l i n t DEFAULT OBJ VEC SIZE = %s ;// a l l o c a t e t h i s s i z e vec tor per type
pub l i c s t a t i c f i n a l i n t MAX CHAIN LEN = %s ; // max s i z e o f d i f f cha ins

40 po intcut notTestMethod ( ) : ! c a l l ( boolean ∗ . i nv i t eTe s t ( ) ) ;
po intcut no t Inv i t e ( ) :

! with in ( com . i n v i t e . core .∗ )
&& ! within ( com . i n v i t e . changetrack ing .∗ ) ;

po intcut no t I n i t ( ) :
45 ! i n i t i a l i z a t i o n ( ∗ . new ( . . ) )

&& ! p r e i n i t i a l i z a t i o n ( ∗ . new ( . . ) )
&& ! handler ( ∗ ) ;

ML

50 our $ f i e l d s p e r c l a s s = <<ML;
pr i va t e s t a t i c i n t %s . nextId = 0 ; // s e t on ob j e c t c reat ion , i s index in vector below
pr i va t e s t a t i c Vector<DiffChain<%s>> %s . trackedObjects =

new Vector<DiffChain<%s>>( DEFAULT OBJ VEC SIZE ) ;
p r i va t e i n t %s . tracerAspectObjId ; // add the ID f i e l d to each c l a s s in s tance

55 ML

our $ g e n e r i c o b j e c t t r a c k i n g f i e l d = <<ML;
pr i va t e i n t %s .%sValue = 0 ; // add f i e l d to t rack ob j e c t va lues as type GENERIC OBJECT

ML
60

# Fina l po intcut i s to avoid t rack ing whi le in the t e s t i n g . The nature o f the f i n a l po intcut
# means the user must manually c a l l copy methods e tc . i n s i d e the t e s t to not d i s tu rb in s tance
# va r i a b l e s − make code easy / c l ea r , and can be warned v ia s t a t i c ana l y s i s l a t e r
our $ p o i n t c u t s p e r c l a s s = <<ML;

65 po intcut ob j ec tCreat i on ( %s x ) :
i n i t i a l i z a t i o n ( new( . . ) )

&& ta rg e t ( x )
&& ! c f low ( execut ion ( ∗ %s . c lone ( ) ) ) ;

70 po intcut %sCa l l ( %s x ) :
c a l l ( ∗ ∗ ( . . ) )

&& ! c a l l ( ∗ c lone ( ) )
&& ! c a l l ( ∗ t oS t r i ng ( ) ) // remove with pr in t statments
&& ! c a l l ( s t a t i c ∗ ∗ ( . . ) ) // don ’ t need to track s t a t i c method c a l l s

75 && ta rge t ( x ) ;
ML

our $ j o i n p o i n t s p e r c l a s s = <<ML;
80 a f t e r ( %s x ) : ob j ec tCreat i on ( x ) && not Inv i t e ( ) && notTestMethod ( )

{
x . tracerAspectObjId = %s . nextId ;
%s . nextId++;
%s . t rackedObjects . add ( x . tracerAspectObjId , new DiffChain<%s>( x . c l one ( ) ) ) ;

85 }

a f t e r ( %s newValue ) : %sCa l l ( newValue ) && not Inv i t e ( ) && notTestMethod ( )
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{
Vector<DiffValue> d i f fV a l s = new Vector<DiffValue >( 10 , 5 ) ;

90 DiffChain<%s> trackingChain = %s . t rackedObjects . get ( newValue . tracerAspectObjId ) ;
%s oldValue = trackingChain . getCurrentVers ion ( ) ;

// these ca s e s based on members s p e c i f i e d
%s

95
Di f fValue [ ] a = new Di f fValue [ d i f fV a l s . s i z e ( ) ] ;
t rackingChain . update ( th i s Jo i nPo in tS ta t i cPa r t . ge tS ignature ( ) . t oS t r ing ( ) , newValue .

c l one ( ) , d i f fV a l s . toArray ( a ) , MAX CHAIN LEN ) ;

//System . out . p r i n t l n ( ” a f t e r ’ ” + th i s Jo i nPo in tS ta t i cPa r t . ge tS ignature ( ) + ” ’ : ” )
;

100 //System . out . p r i n t l n ( ”\\ t ” + trackingChain ) ;
//System . out . p r i n t l n ( ) ;

}

// automat i ca l l y generate po in t cut s in other f i l e s that ac c e s s package/ pub l i c members
105 ML

# in s e r t e d per f i e l d to t r a c k f o r each c l a s s b e i n g proces sed , adds changed v a l u e s to a d i f f v a l u e
our $ f i e l d c h e c k s p e r c l a s s = <<ML;

110 i f ( newValue.%s != oldValue .%s )
d i f fV a l s . add ( new Di f fValue ( oldValue .%s , newValue.%s , ”%s ” , Di f fVa lue .%s

) ) ;
ML

our $ o b j e c t c h e c k s p e r c l a s s = <<ML;
115 i f ( ! newValue . equa l s ( oldValue ) )

d i f fV a l s . add ( new Di f fValue ( %s .%sValue , ++%s .%sValue , ”%s” , Di f fVa lue .
INT TYPE ) ) ;

ML

# the code f o r f a i l u r e r e p o r t i n g and the a s p e c t ’ s c l o s i n g brace
120 our $ f o o t e r = <<ML;

// instruments methods r e tu rn ing ob j e c t s
Object around ( ) :

no t Inv i t e ( )
125 && notTestMethod ( )

&& ! c f low ( with in ( I nv i t e ) && adv i ceexecut i on ( ) )
&& ! execut ion ( s t a t i c ∗ ∗ ( . . ) )
&& execut ion ( ∗ ∗ ( . . ) )

{
130 // fixme : make t h i s p a r a l l e l i z a b l e

Object r e t = proceed ( ) ;
Object t a rg e t = th i sJo inPo in t . getTarget ( ) ;

S t r ing invokedName = th i sJo inPo in t . ge tS ignature ( ) . getName ( ) ;
135 St r ing fullInvokedName = ta rg e t . ge tC las s ( ) . getName ( ) + ” . ” + invokedName ;

i f ( noTest . conta ins ( ful lInvokedName ) )
return r e t ;

140 St r ing f i r s tCha r = invokedName . subs t r i ng (0 , 1) . toUpperCase ( ) ;
S t r ing r e s t = invokedName . subs t r i ng (1 , invokedName . length ( ) ) ;
S t r ing testMethodName = ” inv i t eTe s t ” + f i r s tCha r + r e s t ;

t ry {
145 Method testMethod = ta rg e t . ge tC las s ( ) . getMethod ( testMethodName , nu l l ) ;

boolean tes tPassed = ( ( Boolean ) testMethod . invoke ( target , nu l l ) ) .
booleanValue ( ) ;

r epor tFa i l edTes t ( target , t e s tPassed ) ;
}
catch ( NoSuchMethodException e ) {

150 noTest . add ( fullInvokedName ) ;
}
catch ( Exception e ) {

e . pr intStackTrace ( ) ;
System . exit ( 0 ) ;

155 }
f i n a l l y {

return r e t ;
}

}
160

s t a t i c void r epor tFa i l edTes t ( Object target , boolean f a i l e d )
{

t ry {
Fie ld t rackedObjec t sF i e ld = ta rg e t . ge tC las s ( ) . g e tF i e l d ( ” a j c \ $ i n t e rF i e l d \

$ c om inv i t e c o r e I n v i t e \ $trackedObjects ” ) ;
165 F ie ld t race rObj IdF i e ld = ta rg e t . ge tC las s ( ) . g e tF i e l d ( ” a j c \ $ i n t e rF i e l d \

$ c om inv i t e c o r e I n v i t e \ $tracerAspectObjId ” ) ;

i f ( ! t rackedObjec t sF i e ld . i sA c c e s s i b l e ( ) )
t rackedObjec t sF i e ld . s e tAc c e s s i b l e ( t rue ) ;

i f ( ! t r ace rObj IdF i e ld . i sA c c e s s i b l e ( ) )
170 t race rObj IdF i e ld . s e tAc c e s s i b l e ( t rue ) ;

Vector<DiffChain<?>> t rackedObjects = ( Vector<DiffChain <?>>)
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( t rackedObjec t sF i e ld . get ( t a r g e t ) ) ;
int obj Id = ( ( In t ege r ) t race rObj IdF i e ld . get ( t a rg e t ) ) . intValue ( ) ;

175
i f ( obj Id < t rackedObjects . s i z e ( ) ) // compensate for c a l l i n g j o i npo i n t

execut ing be f o r e ex i s t en c e
sendInfoToDb ( trackedObjects . get ( obj Id ) , f a i l e d ) ;

}
catch ( NoSuchFieldException e ) {

180 System . out . p r i n t l n ( ”Test f a i l u r e r epor t f a i l e d : ” + e . getMessage ( ) ) ;
e . pr intStackTrace ( ) ;

}
catch ( Secur i tyExcept ion e ) {

System . out . p r i n t l n ( ”Test f a i l u r e r epor t f a i l e d : ” + e . getMessage ( ) ) ;
185 e . pr intStackTrace ( ) ;

}
catch ( I l l ega lArgumentExcept ion e ) {

System . out . p r i n t l n ( ”Test f a i l u r e r epor t f a i l e d : ” + e . getMessage ( ) ) ;
e . pr intStackTrace ( ) ;

190 }
catch ( I l l e g a lAc c e s sExc ep t i on e ) {

System . out . p r i n t l n ( ”Test f a i l u r e r epor t f a i l e d : ” + e . getMessage ( ) ) ;
e . pr intStackTrace ( ) ;

}
195 }

s t a t i c p r i va t e void sendInfoToDb ( DiffChain <?> chain , boolean f a i l e d ) {
St r ing objType = chain . getCurrentVers ion ( ) . ge tC las s ( ) . t oS t r i ng ( ) ;

200 try {
// s e t up database connect ion , can make t h i s a pool l a t e r
Class . forName ( ”com . mysql . jdbc . Driver ” ) . newInstance ( ) ;
Connection dbConnection = DriverManager . getConnection ( dbURL, dbUser ,

dbPassword ) ;

205 // use t r an s a c t i on s
dbConnection . setAutoCommit ( f a l s e ) ;

PreparedStatement getLast Id = dbConnection . prepareStatement ( ”SELECT
LAST INSERT ID( ) ” ) ;

PreparedStatement i n f o I n s e r t = dbConnection . prepareStatement ( ”INSERT INTO
d i f f i n f o ” +

210 ” ( t id , ob jec t type , method name ) VALUES (? , ? , ?) ” ) ;
PreparedStatement v a l s I n s e r t = dbConnection . prepareStatement ( ”INSERT INTO

d i f f v a l s ” +
” ( f i e ld name , f i e l d v a l u e , f i e l d change , did ) VALUES (? ,

? , ? , ?) ” ) ;

PreparedStatement makeTrial = dbConnection . prepareStatement ( ”INSERT INTO
t r i a l s ( f a i l e d ) VALUES (? ) ” ) ;

215 i f ( f a i l e d )
makeTrial . s e t I n t ( 1 , 1 ) ;

else
makeTrial . s e t I n t ( 1 , 0 ) ;

makeTrial . executeUpdate ( ) ;
220

Resu l tSet r s = getLast Id . executeQuery ( ) ;
i f ( ! r s . next ( ) )

throw new SQLException ( ”No element in r e s u l t s e t f o r l a s t ID” ) ;
int t i d = r s . g e t In t ( 1 ) ;

225
for ( Di f fBundle bundle : chain . g e tD i f fH i s t o r y ( ) ) {

i n f o I n s e r t . s e t I n t ( 1 , t i d ) ;
i n f o I n s e r t . s e t S t r i n g ( 2 , objType ) ;
i n f o I n s e r t . s e t S t r i n g ( 3 , bundle . getMethodName ( ) ) ;

230 i n f o I n s e r t . executeUpdate ( ) ;

r s = getLast Id . executeQuery ( ) ;
i f ( ! r s . next ( ) )

throw new SQLException ( ”No element in r e s u l t s e t ” ) ;
235 int did = rs . g e t In t ( 1 ) ;

for ( Di f fVa lue value : bundle . g e tD i f fVa l s ( ) ) {
v a l s I n s e r t . s e t S t r i n g ( 1 , value . getFieldName ( ) ) ;
v a l s I n s e r t . s e t I n t ( 4 , did ) ;

240 setFina lVal Inser tParams ( value , v a l s I n s e r t ) ;
v a l s I n s e r t . executeUpdate ( ) ;

}
}

245 dbConnection . commit ( ) ; // commit as a t r an sa c t i on
}
catch ( SQLException e ) {

System . out . p r i n t l n ( ”SQLException in sendInfoToDb : ” + e . getMessage ( ) ) ;
}

250 catch ( Exception e ) {
System . out . p r i n t l n ( ”Error load ing MySQL JDBC dr i v e r : ” + e . getMessage ( ) )

;
}

}

255 s t a t i c p r i va t e void setFina lVal Inser tParams ( Di f fVa lue value , PreparedStatement v a l s I n s e r t
)
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throws SQLException
{

switch ( value . getType ( ) ) {
case Di f fValue .BYTE TYPE:

260 Byte oldValue = (Byte ) value . getOldValue ( ) ;
Byte newValue = (Byte ) value . getNewValue ( ) ;
v a l s I n s e r t . setDouble ( 2 , newValue . doubleValue ( ) ) ;
v a l s I n s e r t . setDouble ( 3 , newValue . doubleValue ( ) − oldValue .

doubleValue ( ) ) ;
break ;

265 case Di f fValue .SHORT TYPE:
Short oldValueS = ( Short ) value . getOldValue ( ) ;
Short newValueS = ( Short ) value . getNewValue ( ) ;
v a l s I n s e r t . setDouble ( 2 , newValueS . doubleValue ( ) ) ;
v a l s I n s e r t . setDouble ( 3 , newValueS . doubleValue ( ) − oldValueS .

doubleValue ( ) ) ;
270 break ;

case Di f fValue . INT TYPE:
In t eg e r o ldValueI = ( In t eg e r ) value . getOldValue ( ) ;
I n t eg e r newValueI = ( In t ege r ) value . getNewValue ( ) ;
v a l s I n s e r t . setDouble ( 2 , newValueI . doubleValue ( ) ) ;

275 v a l s I n s e r t . setDouble ( 3 , newValueI . doubleValue ( ) − oldValueI .
doubleValue ( ) ) ;

break ;
case Di f fValue .LONG TYPE:

Long oldValueL = (Long ) value . getOldValue ( ) ;
Long newValueL = (Long ) value . getNewValue ( ) ;

280 v a l s I n s e r t . setDouble ( 2 , newValueL . doubleValue ( ) ) ;
v a l s I n s e r t . setDouble ( 3 , newValueL . doubleValue ( ) − oldValueL .

doubleValue ( ) ) ;
break ;

case Di f fValue .FLOAT TYPE:
Float oldValueF = ( Float ) value . getOldValue ( ) ;

285 Float newValueF = ( Float ) value . getNewValue ( ) ;
v a l s I n s e r t . setDouble ( 2 , newValueF . doubleValue ( ) ) ;
v a l s I n s e r t . setDouble ( 3 , newValueF . doubleValue ( ) − oldValueF .

doubleValue ( ) ) ;
break ;

case Di f fValue .DOUBLE TYPE:
290 Double oldValueD = ( Double ) value . getOldValue ( ) ;

Double newValueD = ( Double ) value . getNewValue ( ) ;
v a l s I n s e r t . setDouble ( 2 , newValueD . doubleValue ( ) ) ;
v a l s I n s e r t . setDouble ( 3 , newValueD . doubleValue ( ) − oldValueD .

doubleValue ( ) ) ;
break ;

295 case Di f fValue .BOOLEAN TYPE:
Boolean oldValueB = ( Boolean ) value . getOldValue ( ) ;
Boolean newValueB = ( Boolean ) value . getNewValue ( ) ;
i f ( oldValueB . booleanValue ( ) ) {

v a l s I n s e r t . setDouble ( 2 , 1 .0 ) ;
300 i f ( newValueB . booleanValue ( ) )

v a l s I n s e r t . setDouble ( 3 , 0 .0 ) ;
else

v a l s I n s e r t . setDouble ( 3 , 1 .0 ) ;
}

305 else {
v a l s I n s e r t . setDouble ( 2 , 0 .0 ) ;
i f ( newValueB . booleanValue ( ) )

v a l s I n s e r t . setDouble ( 3 , 1 .0 ) ;
else

310 v a l s I n s e r t . setDouble ( 3 , 0 .0 ) ;
}
break ;

case Di f fValue .CHAR TYPE:
In t eg e r oldValueC = new Int ege r ( Character . getNumericValue ( (

Character ) value . getOldValue ( ) ) ) ;
315 In t ege r newValueC = new Int ege r ( Character . getNumericValue ( (

Character ) value . getNewValue ( ) ) ) ;
v a l s I n s e r t . setDouble ( 2 , newValueC . doubleValue ( ) ) ;
v a l s I n s e r t . setDouble ( 3 , newValueC . doubleValue ( ) − oldValueC .

doubleValue ( ) ) ;
break ;

d e f au l t :
320 a s s e r t ( f a l s e ) ;

}
}

}
325 ML

1 ;
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A.8 make-arff.pl

0 #!/ usr / b in / p e r l

use warnings ;
use s t r i c t ;

5 use DBI ;
use Getopt : : Std ;
use Data : : Dumper ;

die ”Usage : . / command <o u t f i l e name> <h i s t o r y length >\n” unless $#ARGV + 1 == 2 ;
10

open OUTFILE, ’> ’ , $ARGV[ 0 ] or die ”Cannot open output f i l e : $ ! ” ;
my $h i s t o r y l e n = $ARGV[ 1 ] ;
my $dbConnection = DBI−>connect ( ’DBI : mysql : i n v i t e : l o c a l h o s t ’ , ’ root ’ , ’ r oo tpas s ’ ) ;
my $statement ;

15

# use t h i s as a format s t r i n g f o r p r i n t i n g t h e header ,
# fo rma t t ed s t r i n g s must be s i n g l e−quoted , comma−s e pa ra t e d s t r i n g s

20
my $header format = <<ML;
\@re la t ion D i f fRe l a t i on

\@attr ibute succeeded { true , f a l s e }
25 ML

#my $heade r f o rma t = <<ML;
#\@re l a t i on D i f f R e l a t i o n
#

30 #\@a t t r i b u t e f a i l e d { t rue , f a l s e }
#\@a t t r i b u t e f i e l d v a l u e numeric
#\@a t t r i b u t e f i e l d c h a n g e numeric
#\@a t t r i b u t e f i e l d name {%s}
#ML

35
my $h i s t o r y a t t r i bu t e f o rma t = ”\@attr ibute method%s name {%s}\n” ;

my $method names sql = <<ML;
SELECT objec t type , method name

40 FROM d i f f i n f o
GROUP BY objec t type , method name

ML

my $ f i e l d s s q l = <<ML;
45 SELECT i . ob jec t type , v . f i e ld name

FROM d i f f i n f o i , d i f f v a l s v
WHERE i . did = v . did
GROUP BY i . ob jec t type , v . f i e ld name

ML
50

wr i t e header ( ) ;

55
######################################
############# MAIN LOOP ##############
######################################

60 my $ sq l = <<ML;
SELECT t . t i d AS tid , i . did AS did , t . f a i l e d AS f a i l e d , i . ob j e c t type AS objec t type , i .

method name AS method name
FROM t r i a l s t , d i f f i n f o i
WHERE t . t i d = i . t i d
ORDER BY t . t id , i . did

65 ML

my $sq lFai lCount = ”SELECT count (∗ ) FROM t r i a l s WHERE f a i l e d = 1” ;
my $sqlSucceedCount = ”SELECT count (∗ ) FROM t r i a l s WHERE f a i l e d = 0” ;

70 my $sq lFa i lStmt = $dbConnection−>prepare ( $sq lFai lCount ) ;
my $sqlSucceedStmt = $dbConnection−>prepare ( $sqlSucceedCount ) ;

$sq lFai lStmt−>execute ( ) ;
$sqlSucceedStmt−>execute ( ) ;

75
my $netFai lCount = ( $sqlFai lStmt−>f e t chrow ar ray ( ) ) [ 0 ] ;
my $netSuccessCount = ( $sqlSucceedStmt−>f e t chrow ar ray ( ) ) [ 0 ] ;

$sq lFai lStmt−>f i n i s h ( ) ;
80 $sqlSucceedStmt−>f i n i s h ( ) ;

$statement = $dbConnection−>prepare ( $ sq l ) ;
$statement−>execute ( ) ;

85 my $ l im i t ingVa lue = $netFai lCount < $netSuccessCount ? $netFai lCount : $netSuccessCount ;
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my $count = 0 ; # number o f methods w r i t t e n f o r cu r r en t TID
my $ l a s t t i d = −1;
my $ fa i lCount = 0 ;

90 my $successCount = 0 ;

while ( my $row hashre f = $statement−>f e t ch row hash r e f ( ) ) {

#pr i n t Dumper ( $ r ow ha sh r e f ) .”\n ” ;
95

i f ( $ fa i lCount >= $l imi t ingVa lue && $successCount >= $l imi t ingVa lue ) { last ; }

#t e s t w i th h i s t o r y l e n + 1 because o f t h e t r u e / f a l s e f i e l d

100 i f ( $ l a s t t i d == −1 ) { $ l a s t t i d = $row hashref−>{ ’ t i d ’ } ; }

i f ( $row hashref−>{ ’ t i d ’} != $ l a s t t i d ) {
# mark sho r t e r−than−h i s t o r y l e n h i s t o r y as unknown
i f ( $ h i s t o r y l e n + 1 − $count > 0 ) {

105 my @missing = ( ”?” ) x ( $h i s t o r y l e n + 1 − $count ) ;
print OUTFILE ” , ” ;
print OUTFILE join ( ” , ” , @missing ) ;

}

110 print OUTFILE ”\n” ;
$count = 0 ;
$ l a s t t i d = $row hashref−>{ ’ t i d ’ } ;

}
e l s i f ( $count == $h i s t o r y l e n + 1 ) { next ; }

115
my $areBeginningNewLine = $count == 0 ;
my $ t e s tFa i l e d = $row hashref−>{ ’ f a i l e d ’ } ;

# a c t u a l l y w r i t e someth ing
120

i f ( $areBeginningNewLine && $t e s tFa i l e d && $fa i lCount < $ l im i t ingVa lue − 1 ) {
print OUTFILE ” true ” ;
$ fa i lCount++;

}
125 e l s i f ( $areBeginningNewLine && ! $ t e s tFa i l e d && $successCount < $ l im i t ingVa lue − 1 ) {

print OUTFILE ” f a l s e ” ;
$successCount++;

}

130 # beg inn in g a new en t r y and SHOULD NOT PRINT ANYTHING FOR THIS ENTRY
e l s i f ( $areBeginningNewLine ) {

$count = $h i s t o r y l e n + 1 ;
next ;

}
135

else {
i f ( $count != $h i s t o r y l e n + 1 ) { print OUTFILE ” , ” ; }

#pr i n t out t h e method names
140 $row hashref−>{ ’method name ’} =˜ s/ / /g ;

$row hashref−>{ ’ ob j e c t type ’} =˜ s/ / /g ;
print OUTFILE ” ’ $row hashref−>{’ ob j e c t type ’} . $row hashref−>{’method name ’} ’ ” ;

}
145

$count++;
}

$statement−>f i n i s h ( ) ;
150 $dbConnection−>d i s connect ( ) ;

print OUTFILE ”\n” ;

155 ########################################
########## HEADER PRINTING #############
########################################

sub wr i t e header
160 {

my @methods = ( ) ;

$statement = $dbConnection−>prepare ( $method names sql ) ;
$statement−>execute ( ) ;

165 while ( my ( $method object , $method name ) = $statement−>f e t chrow ar ray ( ) ) {
$method name =˜ s/ / /g ;
$method object =˜ s/ / /g ;
push @methods , ” ’ $method object . $method name ’ ” ;

}
170

#r e s t o r e t h e be low when hand l i n g f i e l d s p r o p e r l y
#
#my @ f i e l d s = ( ) ;
#$ s t a t emen t = $dbConnect ion−>prepare ( $ f i e l d s s q l ) ;

175 #$ s ta t ement−>e x e cu t e ( ) ;
#wh i l e ( my ( $ f i e l d o b j e c t , $ f i e l d n ame ) = $ s ta t ement−>f e t c h r ow a r r a y ( ) ) {
# $ f i e l d o b j e c t =˜ s / / /g ;
# push @methods , ” ’ $ f i e l d o b j e c t . $ f i e l d n ame ’ ” ;
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#}
180

#pr i n t OUTFILE s p r i n t f (
# $header format ,
# j o i n ( ’ , ’ , @ f i e l d s )
# ) ;

185
print OUTFILE $header format ;

# pr i n t an a t t r i b u t e l i n e f o r each member o f t h e h i s t o r y cha in up to l e n g t h
foreach ( 1 . . $ h i s t o r y l e n ) {

190 print OUTFILE sprintf (
$h i s t o r y a t t r i bu t e f o rma t ,
$ ,
join ( ’ , ’ , @methods )

) ;
195 }

print OUTFILE ”\n\n\@data\n” ;
}
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A.9 tables.sql

0 DROP DATABASE i n v i t e ;
CREATE DATABASE i n v i t e ;

USE i n v i t e ;

5 DROP TABLE IF EXISTS d i f f v a l s ;
DROP TABLE IF EXISTS d i f f i n f o ;
DROP TABLE IF EXISTS t r i a l s ;

CREATE TABLE t r i a l s (
10 t i d int NOT NULL AUTO INCREMENT,

time timestamp NOT NULL DEFAULT CURRENTTIMESTAMP,
f a i l e d int (2 ) NOT NULL,
CONSTRAINT e r r o r s pk PRIMARY KEY( t i d )

) ENGINE = InnoDB ;
15

CREATE TABLE d i f f i n f o (
did int NOT NULL AUTO INCREMENT,
t i d int NOT NULL,
ob j e c t type varchar (60) NOT NULL,

20 method name varchar (120) NOT NULL,
CONSTRAINT d i f f i n f o p k PRIMARY KEY( did ) ,
CONSTRAINT d i f f i n f o f k 1 FOREIGN KEY( t i d ) REFERENCES t r i a l s ( t i d ) ON DELETE CASCADE

) ENGINE = InnoDB ;

25 CREATE TABLE d i f f v a l s (
did int NOT NULL,
f i e ld name varchar (45) NOT NULL,
f i e l d v a l u e DECIMAL(15 ,8 ) NOT NULL,
f i e l d c h ang e DECIMAL(15 ,8 ) NOT NULL,

30 CONSTRAINT d i f f v a l s p k PRIMARY KEY( did , f i e ld name ) ,
CONSTRAINT d i f f v a l s f k 1 FOREIGN KEY( did ) REFERENCES d i f f i n f o ( did ) ON DELETE CASCADE

) ENGINE = InnoDB ;
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A.10 Makefile

(with Invite compilation)

0 JNI INCLUDE = −I / usr / l i b /jvm/ java−6−openjdk/ inc lude / −I / usr / java / inc lude / l inux
CC SHARED FLAGS = −shared −fPIC

PREFIX = /Users / de l /Desktop/ t h e s i s /
AJC = ajc −source 5 #−i npa t h $ (PREFIX)

5
CORE = com/ i n v i t e / core
CORE JAVA = $ (CORE)/ A f f i n i t y . java $ (CORE)/Forker . java $ (CORE)/Pipe . java $ (CORE)/PipeReader . java \

$ (CORE)/ Stat s . java $ (CORE)/ In s e r tTe s t . java $ (CORE)/ Sor t e r . java

10 CORE DEPS = $ (CORE JAVA) $ (CORE)/Forker . c $ (CORE)/ A f f i n i t y . c $ (CORE)/Pipe . c

DRIVERS = com/ i n v i t e / d r i v e r s
DRIVERS DEPS = $ (DRIVERS) / In tF i e l d s . java $ (DRIVERS) /Runner . java $ (DRIVERS) /TestTracking . java

15 CHANGE = com/ i n v i t e / changetrack ing
CHANGE DEPS = $ (CHANGE)/Dif fChain . java $ (CHANGE)/Dif fBundle . java $ (CHANGE)/ Di f fValue . java

a l l : $ (DRIVERS DEPS) $ (CHANGE DEPS)
$ (AJC) $ (DRIVERS DEPS) $ (CHANGE DEPS) $ (CORE)/ Inv i t e . a j

20
a l l−old : $ (CORE DEPS) $ (DRIVERS DEPS) $ (CHANGE DEPS)

$ (AJC) $ (CORE JAVA) $ (DRIVERS DEPS) $ (CHANGE DEPS)
javah − j n i −d $ (CORE) com . i n v i t e . core . Forker
gcc $ (CORE)/Forker . c $ (CC SHARED FLAGS) −o $ (CORE)/ l i b f o r k e r . so $ (JNI INCLUDE)

25 javah − j n i −d $ (CORE) com . i n v i t e . core . A f f i n i t y
gcc $ (CORE)/ A f f i n i t y . c $ (CC SHARED FLAGS) −o $ (CORE)/ l i b a f f i n i t y . so $ (JNI INCLUDE)
javah − j n i −d $ (CORE) com . i n v i t e . core . Pipe
gcc $ (CORE)/Pipe . c $ (CC SHARED FLAGS) −o $ (CORE)/ l i b p i p e . so $ (JNI INCLUDE)

30 clean−core :
rm −r f $ (CORE) /∗ . c l a s s $ (CORE) /∗ . so

d r i v e r s : $ (DRIVERS DEPS)
$ (AJC) $ (DRIVERS DEPS)

35
clean−d r i v e r s :

rm −r f $ (DRIVERS) /∗ . c l a s s

changetrack ing : $ (CHANGE DEPS)
40 $ (AJC) $ (CHANGE DEPS)

runner : a l l
java com/ i n v i t e / d r i v e r s /Runner

45 runner−old : a l l−old
java com/ i n v i t e / d r i v e r s /Runner

clean−changetrack ing :
rm −r f $ (CHANGE) /∗ . c l a s s

50
c l ean : c lean−core clean−d r i v e r s c lean−changetrack ing

rm −r f ∗ . c l a s s
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A.11 test.sh

0 #!/ b in / bash

make c l ean
cd generat i on
. / ajgen−no inv i t e . p l . . / com/ i n v i t e / core / I nv i t e . a j a sd f

5 cd . .
make runner
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