
On Quantum Computation

by

Fedor Labounko

A Thesis submitted to the Faculty

in partial fulfillment

of the requirements for the

BACHELOR OF ARTS

Accepted

Allen Altman, Thesis Advisor

Michael Bergman, Second Reader

Paul Shields, Third Reader

Mary B. Marcy, Provost and Vice President

Simon’s Rock College
Great Barrington, Massachusetts

2006

Abstract

On Quantum Computation

by

Fedor Labounko

Simon’s Rock College

Allen Altman, Thesis Advisor

This paper aims to introduce the reader to quantum computation and to implement

quantum algorithms to find generators for an abelian group. We present a brief intro-

duction to the necessary linear algebra, and define the postulates needed for quantum

computing. Common quantum computing operators are introduced and then used in

a presentation of Grover’s search and Shor’s factoring algorithms. We present some

fundamental results on limitations as well as strengths of quantum computing involv-

ing the No-Cloning and No-Distinguishability theorems and circuits demonstrating

quantum teleportation and superdense coding. We follow with a brief history of quan-

tum complexity theory, citing results which question the Strong Church-Turing thesis

as well as results which showcase the power of quantum computers.

The paper concludes with results on finding the generators of an abelian group.

Three algorithms are presented which treat the case of a finite abelian group, of which

two employ the efficient quantum solution to Simon’s Hidden subgroup problem. An

algorithm is presented for the case of the torsion-free abelian group and partial results

on its running time analysis are discussed. We conclude with a brief review of the

merits of quantum computation.

ii

Acknowledgements

I owe a great deal to professors, friends, and members of my family, all too numerous

to list fully, for help in writing this thesis and for their support and suggestions

throughout the process. I would like to thank my thesis committee members Michael

Bergman and Paul Shields for their invaluable comments and advice; in no small

part thanks to them the subject matter is far more comprehensible than it would

be otherwise. I am grateful to Mary, Daniel, and Caroline for providing balance in

my life and keeping me in touch with sanity. Without you guys, I would have fallen

apart. I am forever indebted to my parents who have always stood by me with sound

advice, encouragement, and moral support. Without them, I would never be where

I am today. Most thanks, however, should go to Allen for not only tirelessly working

with me throughout the whole process, but also for providing me with an endless

supply of encouragement, counsel, and inspiration. One could not possibly hope for

a better advisor and friend.

The results presented in Chapter 6 were developed jointly with John Basias, Alex

Eustis, and Ashley Kent at the 2004 summer REU at SUNY Potsdam and under the

supervision of professor Kazem Mahdavi. I have learned much from working with

them and owe them a debt of gratitude. Last, but certainly not least, I would like

to thank the Simon’s Rock Community for being my home for these past four years.

The things I have learned and experiences I have had will remain with me for the rest

of my life. Thank you.

iii

Contents

1 Fundamentals 1
1.1 Introduction . 1
1.2 Linear Algebra . 3
1.3 Quantum Computing Postulates . 5
1.4 Quantum Operators . 9

2 Grover’s Search Algorithm 13

3 Shor’s Factoring Algorithm 19

4 On the Power and Limitations of Quantum Computing 28
4.1 Distinguishability . 28
4.2 Cloning . 30
4.3 Quantum Teleportation . 32
4.4 Superdense Coding . 35

5 Complexity Theory 37
5.1 A Selected History . 37
5.2 Quantum Complexity Theory . 41

5.2.1 Church-Turing Thesis . 42

6 Finding Generators of Abelian Groups 46
6.1 Finite Abelian Group . 46

6.1.1 Using Simon’s Hidden Subgroup Problem 48
6.1.2 Semi-Structured Random Algorithm 50
6.1.3 Unstructured Random Algorithm 52

6.2 Torsion-Free Abelian Group . 53
6.2.1 Preliminaries . 53
6.2.2 The Algorithm . 56

6.3 Ideas for Further Research . 60

7 Conclusion 61

Bibliography 63

iv

Chapter 1

Fundamentals

1.1 Introduction

Quantum computation is the study of the information processing that can be done

on a system operating on quantum particles. The introduction of quantum mechanical

phenomena to the computational model produces a structure quite different from the

traditional Turing machine model. A Turing machine is a finite state machine with a

finite alphabet of symbols and an infinite tape of memory. The Church-Turing thesis is

the conjecture that anything we might consider computable is computable by a Turing

machine. This conjecture has become widely accepted by researchers in the field and

is not challenged by the introduction of quantum phenomena. Another conjecture

driven by practical results, however, concerns the issue of efficient computation. There

is no known efficient algorithm, for instance, enabling Turing machines to factor

large numbers efficiently (several key cryptography schemes depend on this fact).

The Strong Church-Turing thesis expresses the belief that all efficiently computable

functions can be efficiently computed by a Turing machine. Quantum computation

directly challenges the Strong Church-Turing thesis as fast algorithms have been found

for problems, like the factoring problem, that have resisted all attempts at efficient

solutions on a Turing machine. Because of the difficulty of proving lower bounds on

running time it is not yet known whether the class of all efficiently solvable problems

on a quantum computer is larger than its Turing machine counterpart – although this

is widely believed to be the case.

There are a couple of significant differences between classical and quantum com-

1

puters that make the latter seem capable of more computing power. Whereas in a

classical computer a representative state is an n-bit string of zeroes and ones, the cor-

responding general n-qubit state in a quantum computer is represented by a vector

in a 2n-dimensional vector space. The quantum mechanical phenomenon of having

a system of particles be in a superposition of several states at once allows a quan-

tum computer to perform an exponential number of computations in a single step.

The results, however, remain in a superimposed state and clever quantum computing

algorithms find ways to disentangle this state to extract the information sought.

We present Shor’s celebrated factoring algorithm and work out the details of

the computation as well as the running time. The algorithm is significant in that if

implemented it could be used to break several encryption algorithms which depend on

the infeasibility of factoring large numbers. We also present an algorithm by Grover

which exploits an inherent geometry in quantum states to perform an unstructured

search in square root of the time expected. Because of the ubiquitous presence of

unstructured search in common classical algorithms, Grover’s algorithm holds much

potential to be used to improve the running times of existing algorithms.

Superpositions in quantum computing are an endless source of surprising results.

We present the No-Cloning and No-Distinguishability theorems which limit the in-

formation we may have about our states. We also present the teleportation and

superdense coding circuits which, on the other hand, exhibit the great power of quan-

tum computers to transmit information reliably and compactly. We provide a brief

history of complexity theory and how it applies to quantum computing, as well as

some thoughts on the Strong Church-Turing thesis and its influence on the direction

of research.

The last section of the paper consists of research done over the summer of 2004 at

an REU at SUNY Potsdam. This work was done in conjunction with three other un-

dergraduate students and under the supervision of Professor Kazem Mahdavi, faculty

in mathematics at SUNY Potsdam. The research presented aims to find generators of

an abelian group through the efficient quantum computing solution of Simon’s Hid-

den Subgroup problem. Results for both the finite abelian group and the torsion-free

abelian group are presented.

2

1.2 Linear Algebra

To define all the necessary terms used would be cumbersome and unnecessary, so

we instead refer the reader to one of the numerous linear algebra texts out there, such

as Lang’s “Introduction to Linear Algebra” [Lan94]. Instead we focus on introducing

just the main concepts used throughout quantum computing. We consider complex

vector spaces of the form V = Cn, which are n-tuples of complex numbers. As is

done throughout all the literature on quantum computing, we adopt Dirac notation

to represent vectors in V , as well as their outer and inner products.

If v is the label for a vector in V , then we write |v〉 to denote the n × 1 column

vector referred to by v and 〈v| to denote |v〉†; that is, if |v〉 = (z1, . . . , zn) is an n× 1

column vector then 〈v| is the 1 × n row vector |v〉† = [z∗1 , . . . , z
∗
n], where z∗i denotes

the complex conjugate of zi. Note that v itself is not the row or column vector, it

is simply a label. For example, |v〉, |1〉 and |0〉 are all valid vectors, as long as the

context makes it clear what the labels v, 1, and 0 stand for.

Having Dirac notation and thinking of vectors in V as n× 1 matrices makes the

inner product very natural. Let |v〉 = (z1, . . . , zn) and |w〉 = (y1, . . . , yn). We write

〈v||w〉, or simply 〈v|w〉, to mean the matrix multiplication of 〈v| and |w〉; that is

〈v|w〉 =
∑

z∗i yi. We define this to be the inner product of |v〉 and |w〉. We define the

norm of a vector labeled by v to be
√
〈v|v〉. We say that a vector is a unit vector

if its norm is 1, and that the two vectors v and w are orthogonal, or equivalently,

perpendicular, if 〈v|w〉 = 0. A set of unit vectors {vi} is said to be orthonormal if

each pair {vi, vj} for i 6= j is orthogonal. An orthonormal set {vi} of n elements in

V is said to be an orthonormal basis for V , and every element v ∈ V can be written

|v〉 =
∑

〈vi|v〉|vi〉 (1.1)

in Dirac notation. For the vector space V = Cn we will use the set |0〉, |1〉, . . ., |n−1〉
to denote the standard orthonormal basis of V .

The other concept we need is that of linear operators. A linear operator on V is

defined as a function A : V → V such that A(
∑

zivi) =
∑

ziAvi where zi ∈ C and

vi ∈ V . It is easy to see that if {vi} is an orthonormal basis of V , then the values

Avj uniquely define A on all of V . As we saw above, since {vi} is an orthonormal

basis, Avj =
∑〈vi|Avj〉vi. If we let Aij = 〈vi|Avj〉 then we may think of A as acting

3

on elements of V by way of matrix multiplication with composition of operators

corresponding naturally to products of matrices. This is a standard idea in linear

algebra, and we use it here often. We also define the outer product of two vectors |v〉
and |w〉 to be the operator |v〉〈w| which acts on another vector, say |y〉, naturally:

(|v〉〈w|)|y〉 = 〈w|y〉|v〉. It is useful to note that if |i〉 and |j〉 are basis vectors in V

with i and j labels in {0, 1, . . . , dim V − 1}, then |i〉〈j| represents an operator whose

matrix representation consists of all 0’s except for a 1 in the ith row and jth column.

Given an operator A define A† such that 〈v|Aw〉 = 〈A†v|w〉. We call A† the adjoint

of A, and in terms of matrix representation A†
ij = A∗

ji. Note that (A†)† = A and so

〈Av|w〉 = 〈v|A†w〉. Of importance in quantum computing are unitary operators,

which are defined as operators A such that A†A = I, where I is the identity operator.

In particular this implies that 〈Av|Av〉 = 〈v|A†Av〉 = 〈v|v〉, so unitary operators

preserve the norm. We also define A to be a projection operator if A = A† = A2. The

importance of these two types of operators stems from the postulates of quantum

physics and will be explained in the next section.

Without going into much detail it will suffice here to say that given W = Cn and

V = Cm there is a natural mapping, denoted by ⊗, W × V → Cmn such that, for

w, w1, w2 ∈ W , v, v1, v2 ∈ V and z ∈ C the following four properties are satisfied:

I z(w ⊗ v) = (zw)⊗ v = w ⊗ (zv)

II (w1 + w2)⊗ v = w1 ⊗ v + w2 ⊗ v

III w ⊗ (v1 + v2) = w ⊗ v1 + w ⊗ v2

IV 〈w1 ⊗ v1|w2 ⊗ v2〉 = 〈w1|w2〉〈v1|v2〉

We call the new vector space formed in such a way from W and V the tensor product

of W and V and denote it W ⊗ V . It is clear from the above rules that if {vi} is a

basis for V and {wj} is a basis for W , then {vi ⊗ wj} is a basis for V ⊗W . Lastly,

given A and B operators on V and W respectively, we define the operator A⊗ B to

be (A⊗B)(v ⊗ w) = Av ⊗Bw.

4

1.3 Quantum Computing Postulates

Quantum mechanics is the theory of the behavior and interaction of atomic and

subatomic particles, hereafter referred to as quantum particles. Quantum computing

seeks to utilize quantum particles and their peculiar interactions according to the

rules laid out by quantum mechanics to perform computational work. Therefore

before we get into the details of quantum computing we first introduce four postulates

of quantum mechanics that will serve as the foundation for our formal quantum

computer. The formulation of quantum computing as presented here is known as the

circuit model of quantum computing. The statements of the following postulates are

taken from Nielsen and Chuang [NC00, p. 80-97] and a more thorough discussion of

them may be found there.

Postulate 1. Associated to any isolated physical system is a complex vector space with

an inner product known as the state space of the system. The system is completely

described by its state vector, which is a unit vector in the system’s state space.

It must be noted that this postulate refers to an isolated physical system, which

in the strictest sense may only be applied to the whole universe. However, practically

significant degrees of isolation within a system may be achieved so that this distinction

ceases to be of concern. The simplest such system, and also the one taken to be the

fundamental building block for quantum computing, is when V = C2. Such a system

has two basis vectors, usually denoted |0〉 and |1〉, and is called a qubit. The previous

postulate places a restriction on how we may describe a physical system, but it does

not say that any system so described is achievable. In fact, there are real physical

systems which may be described by qubits, a common example is the spin property

of an electron, and it is this attainability in addition to the overall simplicity that

make a qubit a good starting point for a quantum computer.

From a simple glance the qubit resembles the classical computer bit which rep-

resents the two states 0 or 1, a weak or strong electrical signal. On the other hand

as stated in the postulate, any unit vector |φ〉 of V is a state, and therefore any

|φ〉 = a|0〉 + b|1〉 with a, b ∈ C such that |a|2 + |b|2 = 1 is a valid state for a qubit

to be in. We call such a state a superposition of the basis states |0〉 and |1〉, and

more generally we call a state |φ〉 =
∑

ai|φi〉 the superposition of the states |φi〉 with

amplitudes ai. The fundamental ability of quantum particles to be in a superimposed

5

state is what accounts for the radically different behavior we get when compared to

classical computer operations. As we will see later, superposition accounts for both

a drastic speed up in operations, and an increased difficulty in extracting valuable

information.

Postulate 2. The evolution of a closed quantum system is described by a unitary

transformation. That is, the state |φ0〉 of the system at time t0 is related to the state

|φ1〉 of the system at time t1 by a unitary operator U which depends only on the times

t0 and t1,

|φ1〉 = U |φ0〉 (1.2)

Once again the system described must be a closed one, yet once again it has

been found that closed quantum systems may be achieved to good approximation.

Quantum mechanics dictates that in such a closed system any change that occurred

could be described by the application of a unitary operator. The primary reasons

the operator is chosen to be unitary are to preserve norms and to take valid states

to valid states. In addition, a unitary operator is linear, and therefore satisfies the

superposition principle, which states that the evolution of a superposition must be

the superposition of the individual evolutions. Postulate 2, which deals with discrete

evolutions in time, can in fact be derived from a more inclusive postulate which deals

with a continuous time evolution of a quantum system. For a brief introduction and

discussion of this see Nielsen and Chuang [NC00, p. 82]. Because in practice exact

precision is not possible, we may not assume that any given unitary operator is easily

and accurately constructible. The viability of constructing a given unitary operator

and examples of common quantum computing unitary operators will be discussed

shortly.

Before presenting the next postulate we first introduce what are called measure-

ment operators. Measurement operators are a collection of operators {Mm} indexed

by some indexing set m such that

∑
m

M †
mMm = I. (1.3)

Postulate 3. Quantum measurements are described by a collection {Mm} of mea-

surement operators acting on the state space of the system being measured. The index

m refers to the measurement outcomes that may occur in the experiment. If the state

6

of the quantum system is |φ〉 immediately before the measurement then the probability

that result m occurs is given by

p(m) = 〈φ|M †
mMm|φ〉, (1.4)

and the state of the system after the measurement is

Mm|φ〉√
〈φ|M †

mMm|φ〉
. (1.5)

The evolution of a closed quantum system in time is described by postulate 2, but

once a researcher decides to measure a given system it is no longer closed. Postulate

3 deals with this issue by formalizing the operations that one is allowed to perform

to measure a quantum system. It also introduces another fundamental difference

between quantum mechanics and classical physics, that of uncertainty.

In subsequent discussions of measurements, we will be further restricting Mm to

be projection operators satisfying

MmMn = δm,nMm, (1.6)

where δm,n is the Kronecker delta. It turns out that taken together with the rest

of the postulates of quantum mechanics, the extra restriction of measurements to

be projective operators is just as powerful as the more general case described in

postulate 3 [NC00, p. 87]. It is projection operators that we use most often as they

make calculations of the probabilities particularly simple. Since a projection operator

satisfies M = M † = M2, the probability of outcome m is simply

p(m) = 〈φ|M |φ〉. (1.7)

Note also, that from equation 1.3 we get that even for the most general measurement

operator, the sum of the probabilities of all outcomes is
∑

m p(m) =
∑

m〈φ|M †
mMm|φ〉 =

〈φ|I|φ〉 = 1, as one would expect.

From now on we’ll use projection operators as our measurement tools, we follow

suit with notation and refer to them as Pn. A commonly used example of applying

a measurement operator is that of measuring a qubit in its computational basis. Let

P1 = |0〉〈0| and P2 = |1〉〈1| and apply it to the general qubit state of |φ〉 = a|0〉+ b|1〉
with |a|2 + |b|2 = 1 as usual. Accordingly, the probability of outcome 1 occurring

7

is 〈φ|P1|φ〉 = |a|2 and of outcome 2 occurring is 〈φ|P2|φ〉 = |b|2. The resulting new

states would be P1|φ〉
|a| = a

|a| |0〉 and P2|φ〉
|b| = b

|b| |1〉 respectively.

The resulting phenomena brought about because of superpositions and projective

measurements have some surprising consequences which will be discussed in a later

section. Results such as the no clone theorem which states that an arbitrary qubit may

not be copied, and the no distinguishability theorem which states that two arbitrary

states may not be determined to be different with 100% certainty are cornerstones in

the limitations of quantum computing and stem from the restrictive definition of its

measurement operators.

Postulate 4. The state space of a composite system is the tensor product of the state

spaces of the component physical systems. Moreover, if we have systems numbered

1 through n, and system i is in state |φi〉, then the joint state of the total system is

|φ1〉 ⊗ |φ2〉 ⊗ · · · ⊗ |φn〉, oftentimes abbreviated |φ1〉|φ2〉 · · · |φn〉.

The physical system representing one qubit is a rather simple one, and it is natural

to want to combine more than one of these types of systems to construct a larger

computational machine. This is the postulate that allows us to do exactly that. There

are a variety of ways we may denote elements of a composite system. Oftentimes

it is convenient to consider the computational basis of V = C2n
and denote it by

|0〉, |1〉, . . . , |2n − 1〉. Sometimes it will be effective to write out every number in

binary, with the ith digit of the binary representation comprising the state of the

ith composite system. For example, a joint system of 2 qubits with one qubit in the
|0〉+|1〉√

2
state and the other in the |0〉−|1〉√

2
state can be represented together as a 2-qubit

in the state |0〉+|1〉√
2
⊗ |0〉−|1〉√

2
= |00〉−|01〉+|10〉−|11〉

2
, or likewise, |0〉−|1〉+|2〉−|3〉

2
.

A fundamentally new kind of state can be created through the use of postulate

4: one that is not a tensor product of any two smaller systems of the composite

system yet is still a valid state. A simple example of this is in a 2 qubit system,

in which |φ〉 = |00〉+|11〉√
2

is such a state. It is certainly convincing, and also a simple

exercise to check by just assuming the opposite and seeing what happens, that |φ〉
cannot be written as a tensor product of two qubits. This type of state is called

an entangled state, and its peculiarities, as we will see, make it incredibly useful in

quantum computation and quantum information.

8

1.4 Quantum Operators

Unitary operators acting on a state of n-qubits are called quantum gates. A

finite collection of quantum gates and measurement operators, all acting on the same

n-qubit system, is defined to be a quantum circuit. A quantum computer is then

defined as a quantum circuit used for the purpose of computation. Just as in classical

computing where we build arbitrarily complicated logical gates from a few simple

gates acting on a small number of bits (such as the NOT, OR, and AND gates), in a

quantum computer we want to consider only quantum gates which can be built from

simpler quantum gates acting on only a few qubits at a time. Note that even though

quantum gates act on any valid qubit, which can be a superposition of several basis

states, to define them it is sufficient to define their operation on only the basis states

as the rest would follow from linearity. Thus, often when defining quantum gates we

speak only of their action on the basis states.

We begin by considering the simplest of all quantum gates, those which act on a

single qubit. Of these, the most important are the Pauli matrices:

X :=

(
0 1

1 0

)
Y :=

(
0 −i

i 0

)
Z :=

(
1 0

0 −1

)
, (1.8)

and the Hadamard (H), phase (S), and π/8 (T) gates:

H :=
1√
2

(
1 1

1 −1

)
S :=

(
1 0

0 i

)
T :=

(
1 0

0 eiπ/4

)
. (1.9)

Remember that a|i〉〈j| is the operator whose matrix has the term a in the ith row and

jth column, so in outer product notation the Hadamard transform can be written as

H =
1√
2

∑

x,y∈{0,1}
(−1)x·y|x〉〈y|. (1.10)

It is useful to note the effect of the Hadamard transform on |0〉 and |1〉, namely:

H|0〉 =
1√
2
(|0〉+ |1〉) H|1〉 =

1√
2
(|0〉 − |1〉). (1.11)

The ability to perform controlled operations, that is operations of the type ‘if

this occurs, then do that,’ is useful in both classical and quantum computing. The

simplest such gate is the controlled NOT, or CNOT, gate. As you may know, the

9

NOT gate takes |0〉 to |1〉 and vice versa (the X Pauli matrix accomplishes this).

Accordingly, the CNOT gate operates on 2 qubits and applies the NOT gate to the

second qubit if the first one is |1〉. This can be represented by saying that the CNOT

gate takes |x〉|y〉 to |x〉|x ⊕ y〉, where ⊕ denotes addition mod 2. Using the CNOT

and Hadamard gates we may construct the Bell states for a 2-qubit system. Denoting

the CNOT gate by C, the Bell states are:

C(H ⊗ I)|00〉 = C
1√
2

(|0〉+ |1〉)⊗ |0〉 = C
1√
2

(|00〉+ |10〉) =
1√
2

(|00〉+ |11〉) = |β00〉;

(1.12)

C(H ⊗ I)|01〉 = C
1√
2

(|0〉+ |1〉)⊗ |1〉 = C
1√
2

(|01〉+ |11〉) =
1√
2

(|01〉+ |10〉) = |β01〉;

(1.13)

C(H ⊗ I)|10〉 = C
1√
2

(|0〉 − |1〉)⊗ |0〉 = C
1√
2

(|00〉 − |10〉) =
1√
2

(|00〉 − |11〉) = |β10〉;

(1.14)

C(H ⊗ I)|11〉 = C
1√
2

(|0〉 − |1〉)⊗ |1〉 = C
1√
2

(|01〉 − |11〉) =
1√
2

(|01〉 − |10〉) = |β11〉.

(1.15)

Bell states are also called EPR states or pairs after Einstein, Podolsky, and Rosen

who worked out many of their strange properties. They are entangled; that is, they

are not a tensor product of qubits of a smaller dimension. Clearly, Bell states form an

orthonormal basis. As we will see later, they pop up in interesting places to produce

surprising results.

In classical computing, logic gates play the role of quantum gates. Practically one

desires to construct logic gates of arbitrary complexity. The way to do this is not

to devise an electronic circuit from scratch that will produce the necessary outputs

given the necessary inputs, but rather to produce a few simple electronic circuits that

simulate simple logic gates with few inputs and outputs, and then to construct more

complex logic gates out of the simpler ones. There are a few simple logic gates such

as NAND, OR, AND and NOT, which are easily constructed in the laboratory and

from which any logic gate of arbitrary complexity may be built out of. What we

desire is a similar result dealing with quantum gates.

It turns out that there is a similar result for quantum computing. It says that to

construct an arbitrary gate on n qubits requires only CNOT gates and gates acting

10

on only 1 qubit at a time. At first this may seem to be an analogous result to the

classical case, however one must note that in the classical case we build arbitrary

gates starting with only a finite number of simpler ones whereas here we’ve required

access to an arbitrary 1-qubit gate, the number of which is not finite. If one allows a

small error ε of measuring a different result than you would if you applied the gate

exactly, then an arbitrary gate may be simulated using only the CNOT, Hadamard,

phase, and π/8 gates. For clarity, we restate the two results, which are both proved

in Nielsen and Chuang [NC00, p. 188].

Universal Quantum Gates. An arbitrary gate on n qubits may be constructed out

of CNOT and 1-qubit gates.

Approximate 2-qubit Gates. An arbitrary 2-qubit gate may be approximated to ε

precision by CNOT, Hadamard, phase, and π/4 gates. Measuring the output of the

approximated gate guarantees that the probability of each event differs from the desired

probability by at most ε.

As a final note it must be said that practically we are only concerned with gates

which we can approximate in a polynomial in the input size number of simpler gates.

This requires quantum algorithms to verify that the proposed gates can be imple-

mented efficiently. Nielsen and Chuang [NC00, p. 198] show that this is in fact not

possible for most gates.

Given an arbitrary unitary operator U on an n-qubit, it is possible to construct

efficiently a controlled version of the operator on k additional qubits. The new op-

erator then acts on an (n + k)-qubit and applies U to the last n qubits if the first

k qubits are in some specific state, usually all |1〉. A simple application of this is to

construct the controlled X Pauli matrix with 2 control bits. The gate would apply

the Pauli matrix to the last qubit if and only if the first 2 qubits are both |1〉. This

gate is called the Toffoli gate. Recall that X|0〉 = |1〉 and X|1〉 = |0〉 and so the

Toffoli gate would take |a〉|b〉|c〉 → |a〉|b〉|c ⊕ ab〉, where ⊕ denotes addition mod 2,

as usual. Notice that ab is 1 only if both a and b are 1, so c is only changed from

1 to 0 or from 0 to 1 if the first two qubits were both |1〉. Momentarily letting T

denote the Toffoli gate, T |a〉|b〉|0〉 and T |1〉|1〉|a〉 simulate the classical AND, and

NOT gates, respectively. The AND and NOT gates are classically universal; that is,

any arbitrarily complex logic gate may be built up of repeated applications of NOT

11

and AND gates. Thus one immediately gets the result that quantum computers are

computationally at least as powerful as their classical counterparts, as expected.

Another very useful quantum gate that we will encounter is the quantum Fourier

transform. The most general definition of the quantum Fourier transform isn’t always

constructible in a polynomial in n number of gates and will not be discussed here.

Two special, yet nevertheless very powerful, cases are defined for the groups Zn
2 and

ZN , where ZN is short for the cyclic group on N elements Z/NZ. For Zn
2 we get the

Hadamard transform tensored with itself n times:

H⊗n =


 1√

2

∑

x,y∈{0,1}
(−1)x·y|x〉〈y|



⊗n

=
1√
2n

∑

x,y∈{0,1,...,2n−1}
(−1)x·y|x〉〈y| (1.16)

where x·y is defined as the dot product when x and y are expressed in binary notation

(i.e. for 2-qubits 1 ·3 = 01 ·11 = 0 ·1+1 ·1 = 1). The case of ZN is called the discrete

Fourier transform, and for |x〉 in the computational basis |0〉, . . . , |N − 1〉

F |x〉 =
1√
N

N−1∑
y=0

e2πixy/N |y〉. (1.17)

If we set N = 2n and let x = x1x2 . . . xn be the binary representation of x, and

0.xl . . . xm denote xl/2+xl+1/2
2 + · · ·+xm/2m−l+1, then we can also write the Fourier

transform in a very useful product representation:

F |x1, . . . , xn〉 =
(|0〉+ e2πi0.xn|1〉) (|0〉+ e2πi0.xn−1xn|1〉) · · · (|0〉+ e2πi0.x1x2...xn|1〉)√

2n

(1.18)

This can be easily verified with some simple algebra. This form for the discrete

Fourier transform is oftentimes useful and may lead to a clearer understanding of

its effects. There is also a way to use this decomposition to construct an equivalent

quantum circuit for the Fourier transform which employs only O(n2) gates from our

discrete set.

12

Chapter 2

Grover’s Search Algorithm

Designing quantum computing algorithms which perform strictly better than their

classical counterparts is a hard problem. When an algorithm becomes available that

does just that, it is worthwhile to study its methods for generalizations and ways to

apply these methods to other scenarios. Grover’s search algorithm takes advantage

of the beautiful geometry inherent in the representation of qubit states to achieve a

result which seems inconceivable classically.

The Grover search problem is formulated in terms of a black box function f . Let

X be a set and S ⊂ X be a subset, called the solution set. Assume we have a function

f on X such that f(x) = 1 if and only if x ∈ S. We take X as input and think of

the input as containing N = |X| different elements and having M = |S| of them be

solutions. Our goal is to find an element of the solution set. At first one might find

formulating the problem in terms of a black box function to be awkward. It might

seem that the black box function already knows what the solutions are and that there

is in fact no need for a search algorithm. What the black box function does however

is only provide us with a way to recognize the solution. Knowing the solution is

quite another matter. For example, given a large number n one might wish to find

its factors. A naive algorithm is to simply test all the numbers from 2 to
√

n and

see if they divide n. In this case, the black box function is easy to compute: given

k it would employ the division algorithm to test if k divides n. Classically then, it

would take O(
√

n) invocations of the black box function to go through testing n for

primality. As we will see however, employing Grover’s algorithm we would need to

evaluate the black box function only O(4
√

n) times.

13

The factoring example is not practically useful as there exist much faster classical,

as well as quantum, algorithms to deal with this problem. However, it illustrates the

conceptual point that there are cases when knowing how to calculate the black box

function is an easy matter, yet the solution set remains unknown. The techniques

used in Grover’s algorithm together with the techniques from Shor’s factoring algo-

rithm comprise the foundation for modern quantum computing algorithm design. In

addition, there are many other areas where applying Grover’s algorithm directly in-

side classical algorithms yields a practical speedup, such as speeding up the findings

of solutions to certain NP-complete problems [NC00, p. 263].

We begin with a slight simplification of the general search algorithm, one where we

assume we know the size M of the solution set. We also assume that M < N/2, since

if that were not true, then we could pick a random state and find an element of the

solution set at least one out of every two times. We assume the implementability of

an Oracle operator, F , which is simply the black box function expressed as a quantum

operator. Given that |x〉 is an n-qubit and |y〉 is a qubit, F|x〉|y〉 = |x〉|y ⊕ f(x)〉,
where ⊕ denotes addition mod 2. A useful trick that Grover’s algorithm employs is

that

F|x〉
(|0〉 − |1〉√

2

)
= |x〉

(|0⊕ f(x)〉 − |1⊕ f(x)〉√
2

)
= (−1)f(x)|x〉

(|0〉 − |1〉√
2

)
.

(2.1)

This formula simply expresses the fact that the |x〉
(
|0〉−|1〉√

2

)
are eigenvectors of F

with corresponding eigenvalues (−1)f(x).

Before describing the algorithm, we first define the Grover operator G as the

composition of four simpler operators. It is helpful to note that in general, the

operator 2|x〉〈x| − I is a reflection across the unit vector |x〉. This is easily seen by

applying the operator to an arbitrary vector α|x〉+ β|y〉 where 〈x|y〉 = 0:

(
2|x〉〈x| − I

)(
α|x〉+ β|y〉) = α

(
2|x〉〈x|x〉 − |x〉) + β

(
2|x〉〈x|y〉 − |y〉) = α|x〉 − β|y〉.

The result is that the perpendicular component, the coefficient of |y〉, changes sign.

With this result in mind we define G as the composition of the following four opera-

tors.

1 Apply the oracle F to the n + 1-qubit.

2 Apply the Hadamard transform H⊗n to the first n qubits.

14

3 Apply a reflection across the vector |0〉 to the first n qubits.

4 Apply the Hadamard transform H⊗n to the first n qubits.

The Hadamard transform is easily constructible in the laboratory, and the reflec-

tion across the |0〉 vector can be constructed with an O(n) number of gates acting on

2 qubits at a time. By our previous remarks in the quantum operators section, this

makes the operators comprising the Grover operator all feasible. The only concern is

the Oracle operator, but since that is assumed to be based on a black box function

we don’t concern ourselves with its implementation in the general case.

We start the algorithm with an n-qubit tensored with a 1-qubit, both in the 0

basis state. We first modify the starting state into one which will set up for a more

natural application of the algorithm. We apply the Hadamard transform to the first

n qubits to get a uniform distribution of states

|φ〉 = H⊗n|0〉 =
1√
N

N−1∑
x,y=0

(−1)x·y|x〉〈y||0〉 =
1√
N

N−1∑
x=0

|x〉. (2.2)

We also apply HX to the last qubit to get our desired |0〉−|1〉√
2

state. At this point

we can begin to analyze the effect of the Grover operator. Keeping in mind that the

Hadamard transform is its own inverse, we have that

G = H⊗n(2|0〉〈0| − I)H⊗nF = (2H⊗n|0〉〈0|H⊗n −H⊗nIH⊗n)F = (2|φ〉〈φ| − I)F .

(2.3)

To see more clearly what the Grover operator does it will be helpful to define unit

vectors

|α〉 =
1√

N −M

∑

x|f(x)=0

|x〉, (2.4)

|β〉 =
1√
M

∑

x|f(x)=1

|x〉, (2.5)

where f(x) is our old black box function. We can now write |φ〉 as

|φ〉 =

√
N −M

N
|α〉+

√
M

N
|β〉, (2.6)

and think of |φ〉 as being in the space spanned by |α〉 and |β〉. Now, applying the

15

oracle F to |φ〉(|0〉 − |1〉)/√2 we get, by 2.1,

F|φ〉
(|0〉 − |1〉√

2

)
= F

(√
N −M

N
|α〉+

√
M

N
|β〉

)
|0〉 − |1〉√

2
(2.7)

=

(√
N −M

N
|α〉 −

√
M

N
|β〉

)
|0〉 − |1〉√

2
. (2.8)

This is simply a reflection across |α〉 in the plane spanned by |α〉 and |β〉, and subse-

quently applying 2|φ〉〈φ| − I will reflect across the vector |φ〉. The end result is that

applying G once will first reflect across |α〉 and then across |φ〉, producing a rotation

in the plane spanned by |α〉 and |β〉. If we let
√

N−M
N

= cos θ/2 and
√

M
N

= sin θ/2,

then we can see that the angle between |φ〉 and |α〉 is θ/2. After the reflection done

by F , the angle between |φ〉 and F|φ〉 is θ, and so reflecting across |φ〉 produces a

rotation of θ radians. The conclusion is therefore that

G|φ〉 = cos
3θ

2
|α〉+ sin

3θ

2
|β〉, (2.9)

and that after applying the Grover operator k times in a row we get

Gk|φ〉 = cos

(
2k + 1

2
θ

)
|α〉+ sin

(
2k + 1

2
θ

)
|β〉. (2.10)

With this result in mind, we can state Grover’s search algorithm.

Step 1 Start with the (n + 1)-qubit state of |0〉⊗n|0〉.

Step 2 Apply (H⊗n ⊗ H)(I ⊗ X) to the initial state, where X is the Pauli matrix

mentioned in 1.8.

Step 3 Apply the Grover operator k times to the resulting state, where k will be

determined as part of the running time analysis.

Step 4 Measure the final answer in the computational basis and apply the black box

function to see whether it is part of the solution set. If not, apply the algorithm

again.

16

The last step of the algorithm involves measuring the first n qubits in the compu-

tational basis. This is easily achieved by letting the measurement operators be the

collection of projection operators {Pi}, where Pi = |i〉〈i|, for i = 0, 1, . . . , 2n − 1.

We haven’t seen yet why Grover’s algorithm is in fact better than plain classical

algorithms designed to solve this problem. What one is interested in is the number of

times, k, you need to apply the Grover operator, which is essentially an application

of the black box function, to achieve a state that you can measure to come up with

an element of the solution set. In a classical algorithm it is easy to see that since

the set of elements is unordered, we must choose on average N
M

, or O
(

N
M

)
, elements

before we pick one from the solution set. As we shall see however, Grover’s algorithm

requires only k = O
(√

N
M

)
calls to the Oracle. Additionally, the probability of not

picking an element of the solution set out of our final state is at most
√

M
N

.

As we saw, we have that Gk|φ〉 = cos
(

2k+1
2

θ
)|α〉+ sin

(
2k+1

2
θ
)|β〉, and so we want

to find a k such that

cos

(
2k + 1

2
θ

)
= 0. (2.11)

Solving this, we get 2k+1
2

θ = π
2
, or

k =
π

2θ
− 1

2
=

π

4 arcsin
√

M/N
− 1

2
. (2.12)

Practically, we would round k to the nearest integer and apply the Grover operator

that many times. To find an upper bound for k in simpler terms, note that k ≤ π
2θ

and recall that θ
2
≥ sin θ

2
=

√
M
N

. Putting these two inequalities together, we get that

k ≤ π

4

√
N

M
. (2.13)

Note that for the appropriate k we have that
∣∣2k+1

2
θ − π

2

∣∣ ≤ θ
2
, and so the probability

of measuring an element which isn’t part of the solution set is

(
cos

2k + 1

2
θ

)2

≤
(

sin
θ

2

)2

=
M

N
. (2.14)

Keeping in mind that the number of Grover operator applications every time the

algorithm is run is O
(√

N
M

)
, that M

N
≤ 1

2
, and that the probability of not getting a

solution is at most M
N

, we can conclude that the expected number of Grover operator

applications is still O
(√

N
M

)
.

17

The novel approach of Grover’s algorithm is to take a starting superposition, and,

viewed as a vector, rotate it closer and closer towards a vector which is the super-

position of only the solutions. Earlier, however, we assumed that M , the number of

solutions in our set, was known to us. This is not necessary as there exists a quan-

tum algorithm, known as phase estimation, which can determine M in an expected

O(
√

N) Oracle calls. The presentation of such an algorithm would take us too far

afield, but we note that no classical algorithm exists which can determine the number

of solutions in a similar scenario in faster than O(N) time.

Because of its generality Grover’s algorithm may be used to speed up many existing

algorithms which depend on finding a verifiable solution out of an unordered database

of possible solutions. As a more concrete example recall the naive factoring algorithm

we discussed at the beginning of this section. It is simple to check whether k is a

factor of a given n, and the possible candidates range from 2 to
√

n. This is a

natural set up to apply Grover’s algorithm. Whereas classically all we could do is

go through every candidate and check for divisibility, taking up O(
√

n) time, since

O
(√

N
M

)
= O

(√
N

)
and N =

√
n, using Grover’s algorithm we could implement

the search in expected O(4
√

n) time.

18

Chapter 3

Shor’s Factoring Algorithm

Shor’s factoring algorithm demonstrated the potential practical importance of

quantum computing. Given N an odd number which isn’t the power of a prime,

Shor’s factoring algorithm is capable of finding a factor of N in time polynomial in

log N , which is a significant improvement over the best known classical algorithm

today. There are no known classical algorithms which achieve this task in faster than

superpolynomial time. Several encryption algorithms depend on the fact that it takes

a long time for all known algorithms to factor a large natural number N , and if a

computer was built capable of implementing Shor’s factoring algorithm, then these

encryption schemes would be broken.

Shor’s algorithm is based upon the following number theoretic facts, which are

stated without proof. For a detailed discussion of these ideas see any Number Theory

text, such as Hardy and Wright [HW68, p. 48]. Given an N and y, we define (y, N) to

be the greatest common divisor of N and y. Euclid’s division algorithm can be used

to compute this value in O(log2 N) time [Knu97, pp. 333-379]. Therefore if we pick

a y such that (y, N) > 1 we’re done since we’ve found a factor of N . Because of this

we may assume that (y, N) = 1. We define y (mod N) to be the positive remainder

when y is divided by N . There exists a smallest positive integer r, called the period

of y, such that yr = 1 (mod N). Now if r = 2s, we can write yr = 1 (mod N) as

(ys−1)(ys+1) = 0 (mod N). Clearly ys−1 6= 0 (mod N) because otherwise s would

be the period. If ys + 1 6= 0 (mod N), then either (y2 + 1, N) > 1, or (ys− 1, N) > 1

and we may use Euclid’s division algorithm to find the common factor.

For reference, we restate the necessary variables and conditions used in Shor’s

19

algorithm.

• We begin with an odd natural number N which is not the power of a prime

• We randomly pick a y < N such that (y,N) = 1

• We let r be the period of y (mod N)

• For Shor’s algorithm to succeed we require the following two necessary condi-

tions

r = 2s; (3.1)

ys + 1 6= 0 mod N. (3.2)

Shor’s algorithm proceeds by first choosing a y relatively prime to N , or else

we’re done, and attempting to calculate its period r. Classically calculating r is hard

and essentially requires raising y to powers and checking to see if it’s 1 (mod N).

However on a quantum computer it is possible to apply an exponentiation operator

to a superpositioned state and effectively calculate yk for all k in one step. The task

then becomes to manipulate this result to attempt to magnify the amplitudes of the

states which can tell us something about r. Once we’ve determined what r is, if

conditions 3.1 and 3.2 are satisfied then a factor of N can be calculated efficiently

through the use of Euclid’s division algorithm. An analysis of the algorithm shows

that the output yields the correct value of r with a high probability, and that the

above conditions are also satisfied with a high probability so that an overall reasonable

running time is expected.

We first present the steps of Shor’s algorithm without much explanation, and then

follow them through with more detail and an analysis of running time. We are given

an odd N , which we suspect can be factored, and we would like to find one of these

factors. We proceed as follows:

Step 1 Choose an n such that N2 ≤ S = 2n < 2N2, and pick an arbitrary y < N .

If (y, N) > 1, then we’re done, so we assume (y,N) = 1.

Step 2 Start with 2 n-qubits tensored together, both in their 0 basis state.

20

Step 3 Apply H⊗n to the first n-qubit, and then unitarily (to be explained shortly)

evaluate the function

f(k) = yk (mod N).

Step 4 Apply the discrete Fourier transform (see 1.17) to the first n-qubit.

Step 5 Measure the first n-qubit in its computational basis and attempt to extract

r from the result.

Step 6 If r cannot be determined, then return to Step 1. If r is odd, then return to

Step 1. If r = 2s is even but ys = −1 (mod N), return to Step 1. Otherwise,

use the Euclidean algorithm to compute (ys−1, N) and (ys +1, N) and if either

is bigger than 1, quit. Otherwise, go back to Step 1 and repeat.

Our first consideration is the feasibility of implementing the given operators. The

discrete Fourier transform is implementable in O(n2) quantum gates acting on only 2

qubits at a time. For an implementation, see almost any book on quantum computing,

for example [Pit00]. In Step 3 we apply the function f(k) = yk (mod N) unitarily.

What we mean is that we apply the unitary operator Uf to two n-qubits which takes

a basis state |x〉|y〉 to |x〉|y ⊕ f(x)〉,

Uf |x〉|y〉 = |x〉|y ⊕ f(x)〉, (3.3)

where ⊕ denotes addition mod 2n. In our particular case, we apply the operator

to a state |x〉|0〉 and therefore get as our result |x〉|f(x)〉. As is standard in most

quantum algorithms, we first apply the Hadamard transform to the first qubit to

create a uniform superposition of all the basis states. After this is done, applying

the unitary implementation of f(k) applies the function to every basis state in the

superposition. As for the feasibility of implementing the function yk (mod N), see

Vedral et al. [VBE96]

After choosing an appropriate n, start with the tensor product of two n-qubit

states, |φ0〉 = |0〉|0〉. Step 3 calls for the application of the Hadamard operator on

the first n-qubit, followed by an application of the unitary operator implementing

f(k). We obtain

|φ1〉 = Uf (H
⊕n ⊗ I)|φ0〉 = Uf

1√
S

S−1∑

k=0

|k〉|0〉 =
1√
S

S−1∑

k=0

|k〉|f(k)〉. (3.4)

21

So now that we’ve applied f(k) to every state, we attempt to exploit f ’s periodicity to

magnify the amplitudes of states which can tell us something about r. The operator

which does this is the discrete Fourier transform, mentioned in Step 4. Remember that

the discrete Fourier transform acts by taking a basis state |k〉 to 1√
S

∑S−1
u=0 e2πiku/S|u〉.

Applying this to |φ1〉 we get

|φ2〉 = (F ⊗ I)|φ1〉 = (F ⊗ I)
1√
S

S−1∑

k=0

|k〉|f(k)〉 =
1

S

S−1∑

k=0

S−1∑
u=0

e2πiku/S|u〉|f(k)〉 (3.5)

=
1

S

S−1∑
u=0

|u〉
S−1∑

k=0

e2πiku/S|f(k)〉 (3.6)

Set

sm =

⌈
S −m

r

⌉
(3.7)

and note that f(k) is periodic with period r, so if we write k = m+ rj for 0 ≤ m < r

and 0 ≤ j < sm, then f(k) = f(m + rj) = f(m). We can therefore rewrite |φ2〉 as

|φ2〉 =
1

S

S−1∑
u=0

|u〉
S−1∑

k=0

e2πiku/S|f(k)〉 =
1

S

S−1∑
u=0

|u〉
r−1∑
m=0

sm−1∑
j=0

e2πi(m+rj)u/S|f(m + rj)〉

(3.8)

=
1

S

S−1∑
u=0

|u〉
r−1∑
m=0

e2πimu/S|f(m)〉
sm−1∑
j=0

e2πirju/S

(3.9)

=
S−1∑
u=0

|u〉
r−1∑
m=0

bume2πimu/S|f(m)〉 (3.10)

where bum = 1
S

∑sm−1
j=0 e2πirju/S.

This is the final state of the quantum algorithm, and we measure this state in the

computational basis of the first n-qubit; that is, the set of measurement operators

that we use is {Pi = |i〉〈i| ⊗ I}. Before we begin the measurement however, we

might wonder, even if the algorithm correctly calculates r, how often can we expect

to have r be even and ys + 1 6= 0 (mod N). Through an elementary but slightly

involved procedure it can be shown that picking y randomly and uniformly among

values relatively prime to N yields the above two conditions at least 9/16 of the time,

given that N is odd and not a power of a prime [Hir04]. Consequently, the only

remaining concern is whether we can determine the value of r given the result of our

22

measurement. Shor’s algorithm works by being able to compute the value of r with

probability at least δ
log log N

if the state measured, |u〉, is such that

|ur − dS| < r

2
(3.11)

for some integer d. This result is practical as δ is large. In fact δ > 1
4

if r is at least 19.

This means that we want u to be the nearest integer to dS
r

, while still being within

the bounds of 0 ≤ u < S, which results in about r such u’s (in fact r + 1 if S
r

is not

an integer, and r if it is).

The next step then is to calculate how likely we are to pick such a u as described

above. Before that however, we work out a few simple lemmas that will be used in

the calculations ahead.

Lemma 3.0.1. With the notation described above

|bum|2 =
1

S2

sin2 (πursm/S)

sin2 (πur/S)
(3.12)

where we use limiting values if sin
(

πur
S

)
= 0.

Proof. Recall that bum = 1
S

∑sm−1
j=0 e2πirju/S and so

bum =
1

S

sm−1∑
j=0

e2πirju/S =
1

S

e2πirusm/S − 1

e2πru/S − 1
, (3.13)

using limiting values if e2πur/S = 1. Also note that |bum|2 = bumb∗um, and so

|bum|2 =
1

S2

(
e2πirusm/S − 1

e2πru/S − 1

)(
e2πirusm/S − 1

e2πru/S − 1

)∗
=

1

S2

2− (e2πiursm/S + e−2πiursm/S)

2− (e2πiur/S + e−2πiur/S)

(3.14)

=
1

S2

1− cos (2πursm/S)

1− cos (2πur/S)
(3.15)

=
1

S2

sin2 (πrusm/S)

sin2 (πur/S)
.

Lemma 3.0.2. The function g(y) = sin y
y

is decreasing on the interval [0, π]. In

particular, if |y| ≤ δ then g2(y) ≥ g2(δ).

Proof. It will suffice to show that g′(y) < 0 in the appropriate domain. The statement

about g2(y) is easily seen from the fact that g2(−y) = g2(y). We have

g′(y) =
y cos y − sin y

y2
(3.16)

23

It is clear that this derivative is negative for the range [π
2
, π], so it remains to show

that y cos y − sin y < 0 for y ∈ (
0, π

2

)
. In this range both cos y and sin y are positive,

so it is equivalent to show that y < tan y. These two functions are equal at 0, and

once again taking a derivative we can reduce it to showing that 1 < 1 + tan2 y, which

is obvious.

Lemma 3.0.3. With the notation described above assume |ur − dS| ≤ r
2

for some

integer d, and set t = ur
S
− d. Then

−π

2

(
1 +

1

N − 2

)
< πsmt <

π

2

(
1 +

1

N − 2

)
(3.17)

Proof. Using the assumption, multiplying by sm and dividing by S, we obtain

−smr

2S
≤ ursm

S
− dsm = tsm ≤ smr

2S
. (3.18)

Recall that sm was defined as sm =
⌈

S−m
r

⌉
, and since m < r, we must have

sm − 1 <
S −m

r
≤ S

r
≤

⌈
S −m

r

⌉
+ 1 = sm + 1. (3.19)

Inverting 3.19 and multiplying by sm, we obtain

sm

sm + 1
≤ smr

S
<

sm

sm − 1
= 1 +

1

sm − 1
. (3.20)

From Step 1 of Shor’s algorithm we know that N2 ≤ S, and since r < N , we conclude

from 3.19 that

N − 2 <
S

r
− 2 ≤ sm − 1. (3.21)

Putting 3.18, the right-hand side 3.20 and 3.21 together and multiplying by π, we get

−π

2

(
1 +

1

N − 2

)
< πsmt <

π

2

(
1 +

1

N − 2

)
. (3.22)

Lemma 3.0.4. For x > 0

sin2 π

2
(1 + x) > 1−

(π

2
x
)2

. (3.23)

Proof. At 0 both sides are 1. It then suffices to show that the derivative of the

difference is always positive. This derivative is

π sin
(π

2
(1 + x)

)
cos

(π

2
(1 + x)

)
+

π2

2
x =

π

2
sin

(
π(1 + x)

)
+

π2

2
x (3.24)

= −π

2

(
sin(πx)− πx

)
> 0 (3.25)

since sin y < y for all positive y.

24

Lemma 3.0.5. Given a procedure which succeeds with probability P (success) = 1
f(N)

,

where f(N) > 1, repeating the procedure f(N) times guarantees achieving success at

least once with a probability at least P f(N)(success) ≥ 1− e−1 ≈ .63.

Proof. The probability that the procedure fails for every one of the f(N) repetitions

is
(
1− 1

f(N)

)f(N)

, and so the probability that it succeeds at least once must be

P f(N)(success) = 1−
(

1− 1

f(N)

)f(N)

. (3.26)

By elementary calculus we know that
(
1− 1

M

)M
is an increasing sequence and ap-

proaches e−1 as M goes to infinity, so
(

1− 1

M

)M

≤ e−1. (3.27)

Combining equations 3.26 and 3.27 we get that

P f(N)(success) ≥ 1− e−1. (3.28)

We now return to the measurement of our final state. We want to consider the

probability P (u) of measuring a state |u〉 such that |ur− dS| ≤ r
2
. Recall that |φ2〉 =

∑S−1
u=0 |u〉

∑r−1
m=0 bume2πimu/S|f(m)〉, and that the probability of measuring a state |u〉

using the standard basis projection Pu = |u〉〈u| is

P (u) = 〈Puφ2|Puφ2〉 =
r−1∑
m=0

|bum|2 =
1

S2

r−1∑
m=0

sin2
(

πursm

S

)

sin2
(

πur
S

) (3.29)

by lemma 3.0.1. By periodicity we know sin2(x + yπ) = sin2 x for any integer y, and

so the above can be rewritten as

P (u) =
1

S2

r−1∑
m=0

sin2 (π(ur − dS)sm/S)

sin2 (π(ur − dS)/S)
=

1

S2

r−1∑
m=0

sin2 (πtsm)

sin2 (πt)
(3.30)

where t = ur−dS
S

. Because sin y ≤ y for y ≥ 0, we can conclude that

1

sin2(πt)
≥ 1

(πt)2
. (3.31)

Likewise, for g(y) = sin y
y

, we obtain

sin2 (πtsm) = (πtsm)2 g2(πtsm) ≥ (πtsm)2 g2

(
π

2

(
1 +

1

N − 2

))
(3.32)

= (πtsm)2 4

π2

(
N − 2

N − 1

)2

sin2

(
π

2

(
1 +

1

N − 2

))

(3.33)

25

by lemmas 3.0.3 and 3.0.2. Then, by lemma 3.0.4

sin2 (πtsm) ≥ (πtsm)2 4

π2

(
N − 2

N − 1

)2 (
1− π2

4

1

(N − 2)2

)
. (3.34)

Putting all of this together then, by 3.30, 3.31 and 3.34 the probability P (u) of

measuring state |u〉, given that |ur − dS| ≤ r
2

is

P (u) ≥ 1

S2

r−1∑
m=0

1

(πt)2
(πtsm)2 4

π2

(
N − 2

N − 1

)2 (
1− π2

4

1

(N − 2)2

)
. (3.35)

So, since sM ≥ S
r
− 1 and 4

π2 ≥ .4 we get

P (u) ≥ .4

r
(3.36)

for N bigger than about 1000. This is the probability of picking one particular u

satisfying 3.11, but as we noted in the paragraph following 3.11, there are about r

such u’s. We may conclude then that the total probability of picking an arbitrary u

satisfying 3.11 is at least .4.

So once we’ve measured an appropriate u, we must extrapolate a value for r. It

turns out this isn’t always possible even if all the above conditions are met, but it

happens often enough that the running time of the algorithm is still satisfactory. If we

measure a state |u〉 such that |ur−dS| ≤ r
2
, then, rewriting this and keeping in mind

that N2 ≤ S, we have that | u
S
− d

r
| ≤ 1

2S
≤ 1

2N2 ≤ 1
2r2 . This says that the fraction

d
r

approximates the known fraction u
S

to within 1
2r2 . However, there can be at most

one such approximation of u
S
, and it can be found in time polynomial in log N using

a continued fraction expansion of u
S
. For a proof of the previous claim and details on

continued fractions, see for example Hardy and Wright [HW68, p. 129].

The correct fraction approximating u
S

can be found through a continued fraction

expansion, and then the denominator can be extracted. However, this denominator

will only be r if d
r

is in lowest terms. The problem then comes down to seeing how often

d is relatively prime to r. This can be summarized by asking for a lower bound of φ(r)
r

,

where φ is Euler’s totient function and φ(n) equals the number of positive numbers

less than r and relatively prime to r. It turns out that φ(r)
r

≥ δ
log log r

≥ δ
log log N

,

for some constant δ (where δ is at least 1
4

if we restrict r > 19). The reader is

once again referred to Hardy and Wright [HW68, p. 267] for the details. What this

result implies is that by lemma 3.0.5 for an appropriate y, we need only repeat the

26

procedure log log N times to get a high probability of determining the correct r. Since

we can pick an appropriate y at least 9
16

of the time [Hir04], and the procedure yields

an appropriate u with a probability of at least .4, we need only run the algorithm

O(log log N) times.

As a wrap up, we summarize the previous discussion.

1. Given an N to factor, choose y < N.

2. Compute d = (y,N) using Euclid’s division algorithm. If d > 1, return d as a

factor.

3. Compute the order r of y using Shor’s factoring algorithm.

4. If the computed value of r is correct, even, and y
r
2 +1 6= 0 (mod N) then proceed

to compute d1 = (y
r
2 +1, N) and d2 = (y

r
2−1, N) and output whichever is bigger

than 1.

Step 2 can be done O(log2 N) time. Step 3 involves implementing the Hadamard

transform, which takes O(log N) time, the function yk, which takes O(log3 N) time

[VBE96, p. 5], the Fourier transform which takes O(log2 N) time, and computing the

continued fraction convergents, which takes O(log2 N) time. Step 4 once again takes

only O(log2 N) time. Overall the algorithm is guaranteed a success probability of

at least O
(

1
log log N

)
and so by lemma 3.0.5 repeating the whole procedure log log N

times produces an algorithm which takes O
(
log3 N log log N

)
time and yields a factor

of N with probability at least 1− e−1.

27

Chapter 4

On the Power and Limitations of

Quantum Computing

In addition to algorithms which are capable of significantly faster computing times

on classical problems, quantum computers are also capable of achieving results which

wouldn’t even seem plausible classically. However, because of the peculiar nature of

superpositions of states along with the increased flexibility there come fundamental

limitations as well.

4.1 Distinguishability

The first result we present is known as the No-Distinguishability Theorem. It

helps to phrase the setup in terms of an information game between two players, A

and B, Alice and Bob. Suppose that there is a set of states {|φi〉} for 1 ≤ i ≤ n

known to both players. Alice picks one of these states, |φj〉, and Bob’s task is to

determine the value of j reliably, that is with probability 1. In other words, Bob

must find which state was picked. Classically this problem is one we never even

bother to consider. All Bob would really have to do is test the state he got from Alice

for equality against the known set of all states by looking at the component bits. In

quantum computing however, the equivalent to looking at the component bits of a

state is to look at the magnitudes of basis states making up any given state. This

however is an impossibility, as measuring a state doesn’t illuminate much about the

magnitudes of the component basis states.

28

Nevertheless, one might think that even given this limitation there might exist

a set of measurement operators which would allow Bob to identify Alice’s state. It

turns out that as long as the given set of states that Alice can pick from is mutually

orthogonal, then Bob can identify every state. All he needs to do in this case is

simply apply the measurement operators Pi = |φi〉〈φi| and P0 = I −∑
Pi to Alice’s

state since 〈φi|Pjφi〉 = δij where δij is the Kronecker delta. This isn’t surprising

since if all the |φi〉 are mutually orthogonal then they can be thought of as a subset

of an orthonormal basis, and the states of an orthonormal basis are in a one to one

correspondence with the simple bit states of a classical computer. As soon as the

game ventures into quantum territory however, all hope of distinguishability is lost.

It turns out that having just a pair of nonorthogonal states is enough to ensure that

Bob cannot win. We now state and prove this result more formally [Gud03, p. 191].

No-Distinguishability Theorem. Given a state |φi〉 taken from a set of two nonorthog-

onal states |φ1〉 and |φ2〉 there can be no measurement which will determine i to be 1

or 2 with probability 1.

Proof. Suppose that such a measurement exists, and let it be {Pi : 1 ≤ i ≤ n}. If

the outcome of a measurement is j, then it must be possible to say with certainty

whether state |φ1〉 or |φ2〉 was measured. Therefore there must exist a function f(j)

such that f(j) = 1 if the outcome j implies that |φ1〉 was measured, and f(j) = 2 if

the outcome j implies that |φ2〉 was measured. Define

Qi =
∑

j|f(j)=i

Pj (4.1)

for i = 1, 2. Note that by 1.6 we have

Qi = Q†
i = Q2

i . (4.2)

Since the measurement is assumed to be able to tell one state from the other with

probability 1, we must have that

〈φ1|Q1φ1〉 = 〈φ2|Q2φ2〉 = 1. (4.3)

However, by the definition of a quantum measurement, we must have that Q1+Q2 = I

and so

〈φ1|Q1φ1〉+ 〈φ1|Q2φ1〉 = 〈φ1|Iφ1〉 = 1. (4.4)

29

By 4.2 and 4.4 we get that

〈Q2φ1|Q2φ1〉 = 〈φ1|Q†
2Q2φ1〉 = 〈φ1|Q2φ1〉 = 0. (4.5)

Hence |Q2φ1〉 = 0. Write |φ2〉 = a|φ1〉 + b|ψ〉 where 〈ψ|ψ〉 = 1, 〈ψ|φ1〉 = 0, and

|a|2+|b|2 = 1. Then |b| < 1 since a = 〈φ1|φ2〉 6= 0. On the other hand Q2|φ2〉 = bQ2|ψ〉
and

〈ψ|Q2ψ〉 ≤ 〈ψ|Q2ψ〉+ 〈ψ|Q1ψ〉 = 1. (4.6)

Hence

〈φ2|Q2φ2〉 = 〈Q2φ2|Q2φ2〉 = |b|2〈ψ|Q2ψ〉 ≤ |b|2 < 1. (4.7)

This is in direct contradiction with 4.3. Therefore no such measurement exists.

Though simple, this is an important and fundamental result. No measurement

exists which can reliably distinguish two nonorthogonal states from each other. On

the other hand, as we saw, it is quite simple to construct a measurement which

distinguishes orthogonal states from each other. What this implies is that in terms

of distinguishability, a quantum computer is as powerful as a classical one, but not

more so.

4.2 Cloning

The No-Distinguishability Theorem is closely related to another fundamental lim-

itation theorem of quantum computing, the No-Cloning theorem. In classical com-

puting, given a bit |i〉 where i is either 0 or 1, it is easy to make a copy of i by

simply applying the CNOT gate to |i〉|0〉. If i were 0, then the second bit wouldn’t

get flipped and would remain 0, whereas if i were 1, then the second bit would get

flipped and become 1 as well. The result is then that we take as input |i〉|0〉 and get as

output |i〉|i〉. It’s illuminating to consider what happens when one tries to apply the

same procedure to copy an arbitrary quantum qubit state. If we let |φ〉 = a|0〉+ b|1〉,
then applying the CNOT gate to |φ〉|0〉 we get a|0〉|0〉 + b|1〉|1〉, which is almost al-

ways not equal to |φ〉|φ〉 = a2|0〉|0〉 + ab|0〉|1〉 + ab|1〉|0〉 + b2|1〉|1〉. In fact, with the

No-Distinguishability Theorem in mind, one gets the suspicion that it should be fun-

damentally impossible to clone an arbitrary state. If this were not so, then given an

arbitrary state |φi〉 out of two known nonorthogonal states |φ1〉 and |φ2〉, we would

30

be able to first clone |φi〉 as many times as we wanted and then estimate |a| and

|b|, where |φi〉 = a|0〉 + b|1〉, to arbitrary precision by simply measuring the cloned

states in the computational basis. Through this procedure we could then determine

which state |φi〉 was to arbitrary precision. This isn’t the same as saying that we

can distinguish the states with probability 1, but it is sufficiently close to make one

suspect that such a result is not possible. This suspicion is warranted, and we now

state the formal result.

No-Cloning Theorem. It is impossible to clone an unknown quantum state |φ〉.

Proof. Assume that we begin with a quantum machine that has two slots, an input

and an output slot. The input slot takes the unknown state |φ〉 and the output slot

starts in some standard state |s〉 and attempts to reproduce |φ〉 without modifying

the original input. More formally, we assume we have a unitary operator U such that

U |φ〉|s〉 = |φ〉|φ〉. Suppose that this unitary operator works for at least two different

input states, |φ〉 and |ψ〉, so

U |φ〉|s〉 = |φ〉|φ〉 (4.8)

U |ψ〉|s〉 = |ψ〉|ψ〉. (4.9)

Taking the inner product of 4.8 with 4.9 we get

(〈φ|ψ〉)2
= 〈s|s〉〈Uφ|Uψ〉 = 〈Uφ|Uψ〉 = 〈φ|ψ〉 (4.10)

which implies that 〈φ|ψ〉 = 0 or 1, or in other words, either |φ〉 = |ψ〉 or |φ〉⊥|ψ〉.

It is important to pay attention to exactly what this result says. It is specific in

noting that an arbitrary state cannot be cloned. It is conceivable that a state out of

a certain collection of orthogonal states may be cloned. In particular, the proof of

the theorem suggests that a cloning operator which clones |φ〉 has no fundamental

objection to cloning any other state which is orthogonal to |φ〉. This is fortunate

since we’d like to be able to reproduce as many copies of some orthonormal basis

as we want, and this theorem does not pose a threat to our ability to do so. In

fact, in the algorithms so far presented, we usually assume that we start with the

state |0〉⊗n and then proceed to carry out the algorithm and measure the result. If

we don’t get a satisfactory solution, we repeat the algorithm. What remains unsaid

however is our ability to repeatedly start with the state |0〉⊗n. It is in fact rather

31

simple to design quantum circuits to copy any state in an orthonormal basis (CNOT

gate equivalent for the basis as described above), as is expected, since an orthonormal

basis is equivalent to classical bits.

4.3 Quantum Teleportation

Just as superposition presents fundamental limitations on our ability to distinguish

and produce arbitrary states, it also provides us with surprising new techniques of

information processing. The first result presented is known as quantum teleportation.

It is a lofty title, but it is well deserved. Through the use of an entangled EPR pair

or Bell state it is possible to transmit classical information which would let Bob

reproduce an arbitrary qubit of Alice. We proceed to discuss this procedure more

fully.

Suppose Alice and Bob meet and together produce |β00〉 = |00〉+|11〉√
2

as defined in

1.12. Alice takes the first qubit and Bob takes the second, and then they go their

separate ways. At some subsequent time Alice receives an unknown qubit |φ〉 that

she wants to transmit to Bob. She doesn’t, however, have a quantum information

channel to simply send the qubit and can only send Bob classical information, bits.

Is this even possible? As we’ve seen by the no cloning theorem, Alice has no way of

determining what |φ〉 is as she’s restricted to only one copy of it. Also, not only does

Alice not know the state of |φ〉 but even if she did, |φ〉 is described in C2, and she

would only be able to transmit the data to a fixed precision. The surprising answer

however is that yes, this is in fact possible due to the peculiar behavior of quantum

states, and in particular EPR states.

We examine what occurs when one measures an EPR state like |β00〉 = |00〉+|11〉√
2

.

Because all 2-qubit states are physically made up of two qubits, the qubits can be

physically separated. Yet the state these two particular qubits are in is mathemati-

cally inseparable into the product of the individual states. Recall that when the joint

state of several qubits cannot be expressed as the tensor product of their individual

states, the qubits are said to be in an entangled state.

Assume that Alice has the first qubit and that Bob has the second qubit. Since β00

is an entangled state the fate of Alice’s qubit is tied to that of Bob’s. Consider what

happens when Alice measures her qubit in the computational basis. Alice applies the

32

measurement made up of the projections P0 = |0〉〈0| and P1 = |1〉〈1|. Since her qubit

is part of an entangled state however, Alice essentially applies the measurements

P0 = |0〉〈0| ⊗ I and P1 = |1〉〈1| ⊗ I. From Postulate 3 we can conclude that the

only possible states of the entangled state after the measurement is applied are |00〉
or |11〉. Notice then that if Alice measures a |0〉 then Bob’s qubit also degenerates

into |0〉, and likewise for |1〉. So if Bob were to measure his qubit after Alice had

measured hers, he would always get the same answer that Alice had gotten, whereas if

he made the measurement before she did he would have a 1
2

probability of measuring

|0〉 and 1
2

probability of measuring |1〉. It is exactly this property of entangled states

which makes them useful, as well as rather mysterious. As we now exhibit, quantum

teleportation exploits this useful feature of EPR states to accomplish the task of

sending Bob Alice’s unknown state.

The Procedure We start off with Alice taking the first qubit and Bob taking

the second qubit of the state

|β00〉 =
|00〉+ |11〉√

2
(4.11)

Then Alice receives an unknown qubit

|φ〉 = a|0〉+ b|1〉 (4.12)

that she wants to transmit. The system is then defined by a 3-qubit state of which

the first qubit is the unknown qubit |φ〉 that Alice received, the second qubit is part

of the Bell state and is owned by Alice, and the third qubit is also part of the Bell

state and is owned by Bob. Our initial state is therefore

|ψ0〉 = |φ〉 ⊗ |β00〉 = a|0〉
(|00〉+ |11〉√

2

)
+ b|1〉

(|00〉+ |11〉√
2

)
(4.13)

The next step is for Alice to send her two qubits through a CNOT gate.

|ψ1〉 = (CNOT ⊗ I)|ψ0〉 =
1√
2

[
a|0〉(|00〉+ |11〉) + b|1〉(|10〉+ |01〉)

]
(4.14)

The next step involves applying the Hadamard (see 1.11) transform to the first qubit.

|ψ2〉 = (H ⊗ I ⊗ I)|ψ1〉 =
1

2

[
a
(|0〉+ |1〉)(|00〉+ |11〉) + b

(|0〉 − |1〉)(|10〉+ |01〉)
]

(4.15)

=
1

2

[
|00〉(a|0〉+ b|1〉)+|01〉(a|1〉+ b|0〉) + |10〉(a|0〉 − b|1〉) + |11〉(a|1〉 − b|0〉)

]

(4.16)

33

At this point Alice proceeds to measure her two qubits in the computational basis.

Recall that after measurement the quantum state under observation collapses to what

was observed. Given that the result of Alice’s measurement is on the left, the following

represents the state that Alice and Bob’s 3-qubit system collapses to:

00 → |00〉(a|0〉+ b|1〉) (4.17)

01 → |00〉(a|1〉+ b|0〉) (4.18)

10 → |00〉(a|0〉 − b|1〉) (4.19)

11 → |00〉(a|1〉 − b|0〉) (4.20)

At this point notice that after the measurement the information from Alice’s un-

known state has moved to Bob’s state. As soon as Alice transmits the results of her

measurement to Bob, Bob can use the above equations to manipulate his state into

the original |φ〉. The manipulation is simple and uses the X and Z Pauli matrices.

Recall that X flips the qubit from |0〉 to |1〉 and vice versa, and Z changes the sign

of the |1〉 qubit. It is then easy to check that if Alice’s measurement results are xy

then Bob needs to apply the operators ZxXy to his qubit the recover |φ〉.
So what have we achieved? Given a preparatory phase where Alice and Bob get

to share two qubits of an entangled state, we have achieved the transfer of a qubit of

quantum information through the transfer of two bits of classical information. A com-

mon question that arises once one is introduced to quantum teleportation is whether

quantum teleportation allows transmission of quantum states, or information, faster

than the speed of light. After all, given that Bob and Alice are sufficiently far away,

once Alice applies her set of operations Bob’s state has already gained the essential

qualities of Alice’s unknown state. This is not quite so however, because though it

is true that Bob’s state changes accordingly when Alice makes a measurement, Bob

gains no information until Alice transfers to him the two bits of classical information.

This transfer is the bottleneck of the operation and makes sure that the procedure

does not in fact transfer information faster than the speed of light. Also, quantum

teleportation is not in violation of the No-Cloning Theorem because it does not make

a copy of |φ〉 as the original is destroyed in the process.

Quantum teleportation has been a very useful tool in quantum computing. It

has shown that a shared EPR state and two classical bits is a resource containing

34

at least as much information as one qubit. In this sense it exhibits the ability of

quantum computing to employ different resources in carrying information around.

Many other methods of resource exchange have been developed based on quantum

teleportation. In addition, quantum teleportation has proved useful in both error

correcting codes as well as the construction of quantum gates which are a priori

resistant to noise [NC00, Ch. 10,12].

4.4 Superdense Coding

While quantum teleportation demonstrated the ability to carry a qubit of infor-

mation through a shared EPR state and two bits, superdense coding demonstrates

how to carry 2 bits of classical information through the use of 1 qubit (and easily

generalizes to 2n bits through n qubits). Alice would like to send Bob 2 bits of clas-

sical information and achieves this by first manipulating and then sending him her 1

qubit of information, which he then measures for the result.

The procedure follows a similar scheme to that of quantum teleportation but in

reverse. We start with Alice and Bob sharing the two qubits that make up

|φ〉 = |β00〉 =
|00〉+ |11〉√

2
. (4.21)

Arbitrarily, say that Alice and Bob have agreed on the same numbering scheme for

the Bell states that we have presented. The idea is for Alice to manipulate her qubit

locally so as to produce one of the four Bell states, then to send her qubit over to Bob

who would measure the 2-qubit state to determine which Bell state was produced

and thus determine the 2 bits of information that Alice sent. Since Bell states are

mutually orthogonal this measurement is possible. Below are the specifications for

which operations to apply depending on which information Alice wants to send. Refer

back to 1.8 and 1.12 for definitions of the Pauli matrices and Bell states.

00 → (I ⊗ I)|φ〉 =
|00〉+ |11〉√

2
= |β00〉 (4.22)

01 → (X ⊗ I)|φ〉 =
|10〉+ |01〉√

2
= |β01〉 (4.23)

10 → (Z ⊗ I)|φ〉 =
|00〉 − |11〉√

2
= |β10〉 (4.24)

35

11 → (iY ⊗ I)|φ〉 =
|01〉 − |10〉√

2
= |β11〉. (4.25)

As we noted, this same technique can be used to send 2n bits of classical informa-

tion by transmitting n qubits. All Alice and Bob have to do is share n EPR pairs all

tensored together. Through exactly the same operations Alice can operate on each

EPR pair to produce one of the four Bell basis states, together producing one of 4n

basis states, which translates to a 2n bit of information. This result is fascinating but

by no means unique as there are many more like it in quantum information theory.

For more detail and a good list of further reading, see Nielsen and Chuang [NC00, Ch.

12].

The previous results on distinguishability, cloning, teleportation, and superdense

coding give a good preliminary overview of some of the fundamental properties that

arise from the superposition of quantum states. As we saw, the No-Cloning Theorem

restricts us to starting with only known orthonormal basis states. Superdense coding

exhibits the utility of EPR pairs in transmitting information while working under

the restrictions of the No-Distinguishability Theorem. Quantum teleportation also

employs EPR pairs, but this time in order to pass quantum information through

classical channels with minimal preparation beforehand.

36

Chapter 5

Complexity Theory

5.1 A Selected History

Before complexity theory there was the theory of computation. In 1936 Turing

introduced his model for theoretical computation, what is now known as a Turing

machine, which has stood the test of time as the commonly accepted definition of

what a computable function is. Turing’s model was a machine with access to infinite

sequential memory, a finite alphabet of data, and a finite number of possible states.

The machine would function by having a head read off and manipulate symbols on the

tape, one entry at a time. Though seemingly limited at first, the Turing machine has

captured everything that we have so far considered computable, and has been shown

to be at least as powerful as every reasonable model of computation ever suggested.

It has become the de facto definition of computable.

It took some time, however, before complexity theory would evolve from Turing

machines. Complexity theory owes its beginnings to a 1965 paper by Hartmanis and

Stearns, “On the Computational Complexity of Algorithms” [HS65]. This paper in-

troduced the notions of time and space complexity based on the size of the input. It

also used these notions to show that, roughly, given more time and space, more can be

computed. Before the paper by Hartmanis and Stearns there had been minimal work

done on complexity, but once the general definition for time and space complexity

became available a slew of work ensued. Many results over the next few years dealt

with exhibiting hierarchies of time and space complexity. For example Hennie and

Stearns showed in a 1966 paper titled “Two-tape simulation of multitape Turing ma-

37

chines” [HS99] that if t1(n) log t1(n) = o
(
t2(n)

)
, then there are problems which could

be done in O
(
t2(n)

)
time but not in O

(
t1(n)

)
time. Many variations on the Turing

machine, such as multitape and nondeterministic Turing machines, were examined.

Though all of these variations had already been shown to be equivalent in their power

of computation to the standard Turing machine, much work was now being done in

examining the related time and space complexities of the different models.

Almost immediately after Hartmanis and Stearns’ paper researchers began devel-

oping formulations of efficient computation. It was noted that all reasonable deter-

ministic models of computation could be reduced to the standard Turing machine

in polynomial time. In a 1965 paper entitled “Maximum matchings and a polyhe-

dron with 0,1-vertices” [Edm65a] and a subsequent one entitled “Paths, trees and

flowers” [Edm65b] Edmonds noted the wide array of problems solvable in polynomial

time and provided an informal discussion of those solved in non-deterministic polyno-

mial time. His papers began what evolved into a guiding force in complexity theory,

the P vs NP problem.

One of the most elegant ways of formulating many complexity classes is through

what are called decision problems. Decision problems are simply problems with only

a yes or no answer. Many of these are stated through the use of a formal language.

A formal language L is a subset of all finite strings formed given some finite alphabet

Σ. Usually, we take Σ = {0, 1}, and so an example of a language L might be the

language of all primes L = {10, 11, 101, 111, . . .}. Many common and interesting

problems can be rephrased as decision problems. For example, factoring is captured

in the following:

Factoring. Given two integers m and n with m < n, does n have a non-trivial factor

less than m?

Given the decision problem formulation, it is easy to define P and NP. If we

associate a language L with its decision problem, then problems in P, which stands

for polynomial, are simply those for which there exists a Turing machine which can

recognize whether a string x is in L or not in time polynomial in the length of x.

Problems in NP then, are those for which if x is in L then there exists a string w,

called the witness, which can ease the verification that x is in L. A witness string is

thought of as a string which is used to quickly verify whether x is a member of L.

38

Stated a little more formally, the requirements for a language to be in NP is that

given a string x and a string w there must exist a Turing machine which can recognize

whether w proves that x is in L or not, and does so in polynomial time. Note that if

w proves that x is in L then x is, in fact, in L. However, if w doesn’t prove that x

is in L, we don’t know whether x is in L or not, and so this witness scheme doesn’t

actually provide a polynomial time algorithm to solve the decision problem associated

with the language.

As an example we can apply the above definition of NP to see that the factoring

problem is a member of this class. If we are asked if there is a factor of n which is

less than m and we are given w as a witness, then all we have to do is check to see

that w < m and that w|n. Both of these operations can be done in time linear in the

input size, and so factoring must be in NP. As noted, if we are given a witness w for

which either w 6< m or w 6 |n, then we still don’t know if the factoring problem for m

and n is a yes or no, but only that w doesn’t work as a witness.

The biggest question in complexity theory right now, and perhaps all of theoretical

computer science, is whether P = NP. That is, are there any problems in NP which

cannot be solved in polynomial time? The problem looks like it should have a quick

and simple answer, but turns out to have deep subtleties that make proofs hard to

come by. An important subclass of NP are the NP-complete problems. NP-complete

problems are those to which any NP problem can be reduced in polynomial time.

What this means is that if an NP-complete problem is solved in polynomial time,

then performing an additional polynomial number of steps one can use this solution to

solve any other NP problem, also in polynomial time. This essentially makes the NP-

complete problems the hardest problems of the NP class and practically speaking,

once a problem is recognized as being NP-complete, all attempts at solving it exactly

are abandoned and instead partial and approximating solutions are attempted.

It is not obvious that there should even be any NP-complete problems, but it

turns out there are. In 1971, Cook, in a paper titled “The complexity of theorem-

proving procedures,” [Coo71] proved that the satisfiability problem (SAT), which asks

whether a Boolean expression containing and, not, or and parentheses, is satisfiable

(whether there is an assignment of variables to make the expression evaluate to true)

is NP-complete. Proving that at least one problem was NP-complete made proving

others much simpler. Instead of showing that any NP problem can be reduced to

39

some given problem one now only needed to show that some NP-complete problem

can be reduced to the given problem. Similar results soon flooded in and Karp in

1972 in his paper titled “Reducibility among combinatorial problems” [Kar72] proved

the NP-completeness of 8 central combinatorics problems, such as the traveling sales-

man, clique, and set cover problems. Karp’s paper served as a template for many,

now standard, techniques of proving NP-completeness, and since then thousands of

problems have been proven to be NP-complete.

A few natural problems have been found which are not in NP and in 1976 Stock-

meyer defined the polynomial time hierarchy (PH) in his paper “The polynomial-time

hierarchy” [Sto76]. The lowest level is defined as P, and the second level is NP. You

get to a subsequent level by requiring problems on that level to have witnesses which

are verifiable on the current level. It is believed that the hierarchy is strict and that

every level is a proper subset of the one above it; however this hasn’t been proved.

Another big and central complexity class introduced was PSPACE, which is the class

of all problems solved in a polynomial amount of space, regardless of the amount of

time taken.

It is clear that P is in PSPACE since if you only take a polynomial number of

steps you can only traverse a polynomial amount of space. NP is also in PSPACE.

To see this, note that for any given input size n there must be a polynomial p(n)

that bounds the size of the witness. The size of the witness must be polynomial since

by definition of the NP class the witness must be verified in P, and as we noted,

P ⊆ PSPACE. So then for an input of size n we may simply test all 2p(n) possible

witnesses, making sure we reuse the space after each witness is tested. Since each

witness runs in P, it must also run in PSPACE, so NP ⊆ PSPACE. This same

argument can be used inductively to show that the whole polynomial hierarchy PH

is in PSPACE.

There are many more complexity classes and a plethora of partial results about

them. However, not many fundamental questions have been resolved. Two more

basic complexity classes are L, for logarithmic space with no time constraints, and

EXP, for exponential time with no space constraints. Together, the classes all satisfy

L ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP. (5.1)

It is known according to space and time hierarchy theorems that L is a proper subset

40

of PSPACE and that P is a proper subset of EXP. This implies that at least one

of the inclusions above is strict. Which one, however, is still an open question.

5.2 Quantum Complexity Theory

Compared with the rest of complexity theory quantum complexity theory is still

very young. It was not until 1985 that Deutsch even introduced a theoretical frame-

work for quantum computers in the form of a quantum Turing machine (QTM). In

that paper Deutsch showed the existence of a universal QTM, one which can take as

input both another QTM and an input string, and run the input string through the

given QTM. This showed that a QTM model was sufficiently powerful to capture its

own description and could be used analogously to the Turing machine.

Deutsch’s paper was principally concerned with showing that the QTM was a

valid model for computation and did not provide an efficient implementation of a

universal QTM. It was not until Bernstein and Vazirani’s 1993 paper (updated ver-

sion [BV97]) that quantum computational complexity became a full fledged topic.

Bernstein and Vazirani showed an efficient universal QTM construction which was

capable of simulating the work of an arbitrary QTM with only a polynomial time

reduction. They also showed that QTM’s may be treated as discrete devices in that

though theoretically they employ infinite precision amplitudes and transition proba-

bilities, in practice one does not need very precise approximations of these amplitudes

and transition probabilities to achieve the desired outputs. Soon after, in a 1993 pa-

per entitled “Quantum Circuit Complexity” [Yao90], Yao showed that the quantum

circuit model, which is the model used in this paper, can also be polynomially re-

duced to the QTM, thereby equating the computational power and complexity of

both models.

Bernstein and Vazirani’s paper also introduced the BQP complexity class of prob-

lems. BQP consists of all bounded error, quantum, polynomial time algorithms and

is the analog of BPP, which is the class of all bounded error, polynomial time algo-

rithms on a probabilistic Turing machine. Since polynomial time is widely considered

to be the domain of efficiency, BQP is the class of tractable problems on a QTM; that

is, those which can be solved efficiently. Intractable problems are those which do not

fit into either BPP or BQP and are said to run in superpolynomial time. Bernstein

41

and Vazirani exhibited an oracle problem which they proved could be done in poly-

nomial time on a QTM but not in o(nlog n) time on a probabilistic Turing machine.

This served as evidence that BQP is most likely strictly greater than BPP; however

because this was an oracle result assuming the existence of a black box function, it

does not actually prove the above claim in general.

Though it is still an open question whether BQP contains BPP, there have been

three major results that support it. It was Feynman’s 1982 paper “Simulating physics

with computers” [Fey82] which originally brought to attention the problem of the in-

efficient, that is superpolynomial, implementation of quantum mechanics simulations

that classical computers seemed incapable of improving upon. It is partly with this

motivation in mind that Deutsch introduced the theoretical quantum computer. With

the universal QTM, efficient quantum mechanical simulations are possible. In an in-

fluential paper Shor [Sho97] demonstrated efficient quantum solutions to two other

problems which are both widely believed not to be in BPP, the factoring and discrete

log problems.

In their updated paper Bernstein and Vazirani [BV97, def. 8.1.1] introduced the

complexity class EQP, for exact, quantum, polynomial time algorithms. In this class,

algorithms must always return the correct answer, that is, with probability of error

0. It is clear that P ⊆ EQP since quantum computers may always simply operate

on the basis states, never venturing into superpositions. However, as is common

in complexity theory, it is not known whether the inclusion is strict. Brassard and

Høyer [BH97] show that Simon’s hidden subgroup problem, which employs a black box

function, can be solved exactly on a quantum computer in polynomial time, whereas

it is known that the problem can only be solved classically in superpolynomial time.

This is evidence for P being proper in EQP; however it does not prove it because of

the oracle involved in Simon’s hidden subgroup problem.

5.2.1 Church-Turing Thesis

The Church-Turing thesis started out as an attempt to capture the essence of

computable functions by stating that

Church-Turing Thesis Every function which would naturally be re-
garded as computable can be computed by a Turing machine.

42

It is clearly not a precise mathematical statement because of the ambiguity of what

one would consider to be a naturally computable function and thus cannot be proven.

Over the years, however, a substantial quantity of different computational models have

been shown to be equivalent to the Turing machine. This has caused the thesis to be

almost universally accepted, and many view it as the definition of what computable

should mean.

With the extension of the theory of computation to complexity theory, many tried

extending the Church-Turing thesis as well. One of the first things considered was

the idea of efficient implementation. When complexity theory was just starting out,

efficient was taken to mean computable in polynomial time on a deterministic Turing

machine, that is, in class P. However, in 1977 in a paper entitled “A fast Monte-

Carlo test for primality” Solovay and Strassen exhibited a probabilistic algorithm

which answered the primality question with a high probability and ran in expected

polynomial time. Soon after many other algorithms were exhibited to be in this

new class, BPP, of algorithms which ran in expected polynomial time. Because no

proof exists that P = BPP, and in fact most believe that P 6= BPP, the notion

of an efficient algorithm was redefined to mean solvable in polynomial time on a

probabilistic Turing machine with bounded error. That is, the problem must be in

BPP. Bernstein and Vazirani [BV97, p. 1] combined this new idea with an already

existing extension of the Church-Turing thesis:

Strong Church-Turing Thesis Any reasonable model of computation
can be efficiently simulated on a probabilistic Turing machine.

Bernstein and Vazirani take reasonable to mean physically realizable. Though this

statement isn’t as widely accepted as the bare Church-Turing thesis nor was it dis-

cussed by either Church or Turing, it has served as a guiding point for complexity

theory research. It is an important statement which incorporates the concerns of both

theoretical and practical computer science. On the theoretical side the thesis states

that one model of computation, the probabilistic Turing machine, is enough to capture

the notion of efficient computation. This implies that the researcher need only worry

about probabilistic Turing machines when proving the tractability or intractability

of problems. On the practical side, by requiring reasonable to mean physically real-

izable, we exclude esoteric models which might have theoretical advantages but no

43

practical ones. This is an important exclusion. For example, analog computers were

thought to be theoretically superior to digital ones, yet their non-ideal behavior in

the real world eliminated any advantage they held theoretically.

Just as probabilistic Turing machines posed a challenge to the notion of efficient

computation and moved it to the realm of BPP, quantum computers pose a challenge

to this new notion, threatening to move it to BQP. Unlike for analog computers, it

has been shown for quantum computers that in practice if noise can be kept below

a certain threshhold then error correcting codes may be used to efficiently bring the

noise level down even more. Physical realizations of quantum computers have been

fast improving and it is a promising prospect that the theory can be implemented.

Shor’s factoring and discrete log algorithms are both in NP. If it can be shown

that P 6= NP, which is what most researchers believe, then it can be said that

quantum computers are more efficient than deterministic Turing machines. However,

as we’ve said, BPP is now considered to be the real class of efficiently computable

functions, and this would not resolve that issue. Fortunately, no known algorithms

exist that place factoring into BPP, and indeed it is suspected that there are none.

This accurately reflects the state complexity theory as a whole is in: many things are

suspected and strong evidence abounds, yet absolute proofs are hard to come by.

Another indication that proving the superiority of quantum computation would

be hard came when Bernstein and Vazirani [BV97] showed that

P ⊆ BPP ⊆ BQP ⊆ PSPACE.

Optimistically, one might say that quantum computing can be used to show that

P 6= PSPACE, a major open question. Pessimistically however, one could say that

it will be a long time before anyone shows the theoretical superiority of quantum

computing as even P vs PSPACE has proven to be a hard question. In a subse-

quent paper, Bennet et al. [BBBV97] provided strong evidence that NP 6⊆ BQP,

which, if true, would leave many interesting problems out of the realm of efficient

quantum computation. Note that although BQP contains factoring and the discrete

log problems, both are strongly believed not to be NP-complete.

So what happens if quantum computers do indeed turn out to violate the Strong

Church-Turing thesis? Practically speaking, not much. On the theoretical level a

vast amount of research would most likely be dedicated to classifying exactly how

44

big the class BQP is. The whole notion of a computational-model independent

complexity theory would have to be reexamined, and the question must be asked

whether ‘updating’ the Strong Church-Turing thesis as was done with probabilistic

Turing machines would be better than scrapping it altogether.

All the potential of quantum computing comes from the specific algorithms that

can be found. Quantum cryptography processes hold some security advantages over

classical ones and distributed EPR pairs can provide for quick and safe information

transfer. Unfortunately the main interest in Shor’s algorithms stems from the neg-

ative effects these algorithms would have on the current cryptography situation and

one cannot expect much long term practical use out of them. Perhaps the most impor-

tant application, though, is to quantum mechanics simulations themselves. Classical

algorithms have been excruciatingly slow in simulating quantum mechanics whereas

quantum computers hold much potential in this area. Efficient circuits for quantum

mechanical simulations have been demonstrated, and quantum computers may one

day be an indispensable tool of the experimental physicist.

45

Chapter 6

Finding Generators of Abelian

Groups

This chapter presents some of the results found during a Research Summer Ex-

perience at SUNY Potsdam over the summer of 2004. The work was done by of

undergraduate students under the supervision of Dr. Kazem Mahdavi, a professor of

Mathematics at SUNY Potsdam. The focus was on applications of quantum comput-

ing in group theory, and we attempted to extract a minimal generating set from an

abelian group.

We first present three algorithms for finding generators of a finite abelian group.

We make use of a quantum algorithm known as Simon’s Hidden Subgroup Problem

and some classical results about generating sets that we state without proof. We then

proceed to consider the problem of finding generators of a torsion-free abelian group

and present some probability results.

6.1 Finite Abelian Group

We denote by Zn the cyclic group {0, 1, 2, . . . , n− 1} with addition modulo n. We

now state more clearly the problem we intend to solve.

Finite Abelian Group Problem. Let G be a finite abelian group. Assume that we

know the decomposition of G into cyclic groups

G = Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmn , (6.1)

46

and possess a function φ which, given an element of G, returns that element’s decom-

position into components based on the group structure. Given a black box addition

operator M defined as

M |j〉|k〉 = M |j〉|j + k〉 (6.2)

for j, k ∈ G, where + denotes addition in G, find a minimal generating set for G.

Clearly, M embodies addition inside G.

Before we proceed we introduce some elementary notation. For any set S, let |S|
denote the cardinality of S. For any set X ⊂ G let 〈X〉 denote the subgroup of G

generated by the elements of X, and for a ∈ G let 〈a〉 = 〈{a}〉. Also, for a ∈ G, let

|a| denote the order of a in G, and also note that |a| = |〈a〉|.
Two of the presented algorithms will attempt to reconstruct the generating set for

G by first computing generating sets for each p-subgroup of G. In order to do that

we will need the following result.

Proposition 6.1.1. Let G be a finite abelian group such that

G = Ap1 ⊕ Ap2 ⊕ · · · ⊕ Apk

where each Api
is a pi-subgroup of G for distinct primes pi. Assume that we are given

a minimal generating set Xi for each Api
. Then there exists a procedure to construct

a minimal generating set for G requiring time linear in max(|X1|, |X2|, . . . , |Xk|).

Proof. Let Xij denote the jth element of Xi. It is a standard result of group theory

that given two elements a and b of an abelian group such that (|a|, |b|) = 1, we

have 〈a〉 ⊕ 〈b〉 ∼= 〈a+ b〉. Using induction we can then show that {X11, X21, . . . , Xk1}
generates the same subgroup as does the single element

∑k
i=1 Xi1 since the orders

of the elements are powers of distinct primes. Similarly, we can add the second

elements of each Xi (when they exist) together, and so on. In fact, it is clear that

the number of generators required to generate G using this method is the same as

for the p-subgroup of G that requires the greatest number of generators, namely

max(|X1|, |X2|, . . . , |Xk|).

We proceed to present three algorithms to solve the stated problem. The first

algorithm to be presented computes the generators of each p-subgroup by employing

the quantum solution to Simon’s Hidden Subgroup problem and then combines the

47

generators via the method presented in Proposition 6.1.1. The second algorithm also

computes the generators of the p-subgroups but this time through a random sampling

of each p-subgroup. The third algorithm is based entirely on unstructured random

sampling of G, but produces comparable results to the first two.

6.1.1 Using Simon’s Hidden Subgroup Problem

One strategy for finding the generators of a finite abelian group is to employ the

algorithm used to solve Simon’s Hidden Subgroup problem. Simon’s Hidden Subgroup

problem when applied to abelian groups solves the following:

Simon’s Hidden Subgroup Problem. Given an abelian group G which is isomor-

phic to Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmn, and a function f : G → G with H0 ⊆ G such that f

is constant on H0 and distinct on its cosets, find the generators for H0.

This problem is solved in part using two classically available results which are

useful to us as well and we state without proof [BH97]. The second of these results

is concerned with an orthogonal subgroup to a given subgroup. What this means

precisely is not important to us, and we content ourselves in knowing that constructing

the orthogonal subgroup is well defined and self-inverting.

Proposition 6.1.2. There exists a classically deterministic algorithm that, given

a subset X of an abelian group G, returns a linearly independent subset of G that

generates the subgroup 〈X〉, provided we are given a decomposition of G into cyclic

subgroups. The algorithm runs in time polynomial in n, where n is the number of

cyclic groups in G’s decomposition, and linear in |X|.

Proposition 6.1.3. There exists a classical deterministic algorithm that, given a

linearly independent subset X of an abelian group G, returns a linearly independent

subset of G that generates the orthogonal subgroup of 〈X〉, provided a decomposition

of G into cyclic subgroups is given. The algorithm runs in time polynomial in n, the

number of cyclic groups in G’s decomposition.

Simon’s Hidden Subgroup Problem is solved through a quantum circuit which

employs the Fourier transform and the given function f to achieve, in one invocation

of each, a state which is the superposition of all the elements of H⊥
0 , which is the

48

orthogonal subgroup to H0. The algorithm then proceeds to sample from this set of

elements of H⊥
0 and employing Proposition 6.1.2 finds a minimal generating set for

H⊥
0 . Then, applying Proposition 6.1.3 we end up with a minimal generating set for

(H⊥
0)⊥ = H0.

Our algorithm proceeds according to the following steps, which we explain more

thoroughly afterwards.

Step 1 Construct a function which is constant on a given p-subgroup Ap of G and

distinct on its cosets.

Step 2 Apply the methods in Simon’s Algorithm to find a superimposed state of the

elements in A⊥
p .

Step 3 Measure the superimposed state enough times to guarantee with desired

probability that we have a generating set for A⊥
p .

Step 4 Apply the algorithms described in Propositions 6.1.2 and 6.1.3 to find a

generating set for the p-subgroup Ap.

Step 5 Repeat the above process for all p-subgroups to find the generating sets for

each. Then use the procedure described in Proposition 6.1.1 to find a minimal

generating set for G.

Beginning with Step 1, we’d like to construct a function which is constant on Ap

and distinct on its cosets. The first step is to identify the identity element |e〉 of

G. This is done simply by applying the black box addition operator M to some

initial state |j〉|j〉 enough times. Once we’ve identified the identity element we let

f |j〉 = M |Ap||j〉|e〉 = |j〉|j|Ap|〉. Since Ap is the subgroup of elements whose orders are

a power of p, clearly |Ap| is also a power of p. So the kernel of f is exactly Ap and f

satisfies the appropriate conditions.

At this point we apply the procedure in Simon’s Hidden Subgroup Problem to find

a superposition of all the elements in A⊥
p . For details of this procedure see Brassard

and Høyer’s paper [BH97]. According to Step 3 we would like to measure our state.

A natural question is then how many times might we expect to measure this state

before arriving at a generating set for A⊥
p . Given a set of elements X such that 〈X〉 is

a proper subset of A⊥
p , we must have that |〈X〉|

|A⊥p | ≤
1
2

and so we expect to sample twice

49

before increasing our generating set. If w 6∈ 〈X〉 then |〈w, X〉| ≥ 2|〈X〉|, and so we

only have to increase our generating set at most log |A⊥
p | ≤ log |G| times. We apply

Proposition 6.1.2 every time we measured an element to deduce whether it, along

with the already measured set X, generated a larger subgroup. Once we’ve found a

generating set for A⊥
p , we apply Proposition 6.1.3 and produce a minimal generating

set for Ap.

To wrap up we repeat the procedure for all the p-groups that make up G and then

apply Proposition 6.1.1 to piece together their generating sets.

Running Time

According to Step 5 we must repeat the algorithm as many times as there are

p-groups. Since the product of orders of the p-groups is equal to the order of G,

there are at most log |G| of them. Steps 1 and 2 run in constant time but require

implementing the Fourier transform as well as the function f = M |Ap|. Step 3 needs

to be repeated an expected at most log |G| number of times and Step 4 involves using

the Propositions, which also run in time polynomial in log |G|. The total running

time then remains polynomial in log |G|.

6.1.2 Semi-Structured Random Algorithm

Using Simon’s Hidden Subgroup Problem as a tool in the solution to our problem

might not be desirable because it involves using the Fourier Transform. The Fourier

transform can’t be implemented exactly for an arbitrary abelian group and must

instead be estimated. If we wish to eliminate our dependence on it, and still calculate

the generating sets of each p-group as well, there is another choice. The following

algorithm works similarly to the one above, but instead of employing Simon’s Hidden

Subgroup Problem to extract generators for each p-group it instead uses the addition

operator to directly sample from Ap. The advantage is the loss of dependency on

the Fourier transform and the disadvantage is the heavier reliance on the addition

operator.

Step 1 Take a n-qubit just large enough to represent all the elements in G. Set

N = 2n and start off with the state |0〉|e〉 where |e〉 is the identity element of

50

the group. Apply the Hadamard transform to the first qubit to end up with

|ψ〉 =
N−1∑
g=0

|g〉|e〉.

Step 2 Apply the operator M
|G|
|Ap| to get the superposition

N−1∑
g=0

|g〉|g
|G|
|Ap| 〉

and measure the first n-qubit to obtain a random element of Ap, adding it to

the set X.

Step 3 Apply the classical algorithm described by Proposition 6.1.2 to set X. If X

is still too small (according to the cyclic decomposition of G) return to Step 1.

Step 4 Repeat the above process for all p-subgroups to find the generating sets for

each. Then use the procedure described in Proposition 6.1.1 to find a minimal

generating set for G.

The algorithm starts off with the standard superposition of all elements. You might

note that some of the elements in the superposition aren’t members of G, but that is

of no concern as the overhead in running time is at most by a constant factor of 2.

By applying M
|G|
|Ap| to the superposition, we end up with a superposition of elements

which are just in Ap. Just as in the first algorithm, we proceed to measure these

elements, and in expected log |G| running time we come up with a generating set for

Ap.

Running Time

Step 1 is easy to implement and takes constant time. Note that the Hadamard

transform is efficiently and accurately implemented in log N time and is thus much

better than the more unwieldy Fourier transform. Steps 2 and 3 are just like the ones

in the previous algorithm and so require time polynomial in log |G|, whereas Step

4 is identical to Step 5 from the previous algorithm and also takes at most log |G|
repetitions. The difference in running time will be in the constants and the fact that

this algorithm calls for the implementation of M
|G|
|Ap| whereas the previous algorithm

only needs M |Ap|.

51

6.1.3 Unstructured Random Algorithm

This particular algorithm is here simply to demonstrate the effectiveness of a

näıve random search for a generating set. It is based on selecting elements randomly

from G without any prior manipulation. It might at first seem that this algorithm in

fact bypasses all mention of the addition operator M , but in fact it makes implicit

use of it through Propositions 6.1.2 and 6.1.3, as well as G’s breakdown into cyclic

groups and the decomposition function φ. Eventually the set X of elements that have

been selected so far will be large enough to generate all of G. Each iteration of the

algorithm is as follows:

Step 1 Begin with a uniform superposition of all elements in G, select one element

randomly by measurement, and add it to the set X. Alternatively, select n

random elements at a time and add them all to X. This could improve the

running time of the algorithm, but by at most the constant factor n, so we will

just consider the case where n = 1.

Step 2 Apply the algorithm described by Proposition 6.1.2 to X. Use the resulting

linearly independent set in place of X from now on.

Step 3 Apply the algorithm described by Proposition 6.1.3 to X. If the orthogonal

subgroup of 〈X〉 is just {0}, then X is a linearly independent subset of G that

generates G, hence we are finished. Otherwise, go back to Step 1.

Running Time

At Step 1, we wish to select an element of G that is not already in the subgroup

〈X〉. As long as 〈X〉 is a proper subgroup of G, the probability that this will happen

is at least 1/2. If it does happen, then 〈X〉 will be enlarged by a factor of at least 2.

The number of times that 〈X〉 needs to double in size is log |G|, hence the expected

number of times that Step 1 needs to be repeated is O(log |G|). Since the classical

algorithms from Propositions 6.1.2 and 6.1.3 are polynomial in time log |G|, the overall

algorithm is polynomial in log |G|.

52

6.2 Torsion-Free Abelian Group

Before presenting our algorithm for finding the generators of a Torsion-Free Abelian

Group we first prove some results in probability which are then useful in discussing

the efficacy of our algorithm.

6.2.1 Preliminaries

Given an event A, we write P (A) to be the probability that event A occurs. We

also write (a1, a2, . . . , an) to denote the greatest common divisor of a1, a2, . . . , an.

Theorem 6.2.1. For a, b ∈ Z we have P
(
(a, b) = 1

)
= 6

π2 = ζ(2)−1. In general for

a1, . . . , an ∈ Z we have P
(
(a1, . . . , an)=1

)
= ζ(n)−1.

Proof. Consider the probability that the numbers a1, a2, . . . , an are divisible by a

prime p. Since the numbers picked are independent of each other, this is simply 1
pn

and so the probability that at least one of these numbers is not divisible by p is 1− 1
pn .

If p and q are different primes, not being divisible by q and not being divisible by p

are independent events, and therefore not being divisible by both p and q is just the

product of the individual probabilities. We may then conclude that

P
(
(a1, . . . , an)=1

)
=

∏
p prime

(1− 1

pn
)

Dropping the subscript ‘p prime’ for convenience we then have

P
(
(a1, . . . , an)=1

)−1
=

∏ (
1− 1

pn

)−1

=
∏ 1

1− 1
pn

(6.3)

=
∏ ∞∑

i=0

(
1

pi

)n

=
∞∑

k=1

1

kn
= ζ(n). (6.4)

So then P
(
(a1, . . . , an)=1

)
= ζ(n)−1.

We may think of picking numbers as picking 1 × 1 matrices and asking for the

probability that their determinants are relatively prime. In the following theorems

we will be discussing randomly chosen matrices from Mn(Z). What we mean by

this is that for any entry a of this matrix, any modulus m, and any integer k with

0 ≤ k < m, the probability that a is congruent to k (mod m) is always 1/m. This

condition can be achieved if we bound a and then take the limit as that bound tends

53

to infinity. We would like to extend the above result to n × n matrices, but first we

need a lemma.

Lemma 6.2.2. Given A ∈ Mn(Z) the probability that det A 6= 0 (mod p) for p a

prime is
n∏

i=1

(
1− 1

pi

)
.

Proof. We proceed by counting possibilities. For the first row of our matrix we have

pn -1 possibilities where we exclude only the 0 vector. We will show that the number

of possibilities for the ith row of our matrix, where i ≥ 1, given that we have already

chosen all the prior rows is pn − pi.

Let cj denote the jth row, where 0 ≤ j < i. Now it follows that the ith row

cannot be any of the vectors of the form
∑i−1

k=0 akck where each of the ak ∈ Zp. Since

det A 6= 0 (mod p) we have that all the ck are linearly independent. Since p is a

prime all the linear combinations of ck are distinct, and therefore there are exactly pi

vectors in {∑i−1
k=0 akck | ak ∈ Zp}. It follows that we have pn − pi choices for the ith

row, and therefore the total number of possible matrices such that det A 6= 0 (mod p)

is
∏n−1

i=0 (pn − pi). Since the total number of different matrices modulo p is pn2
the

probability that det A 6= 0 (mod p) is

∏n−1
i=0 (pn − pi)

pn2 =
n−1∏
i=0

pn − pi

pn
=

n∏
i=1

(
1− 1

pn−i

)
=

n∏
i=1

(
1− 1

pi

)
.

We can now calculate the probability that a determinant of an n × n matrix is

divisible by p, namely

Dn(p) = 1−
n∏

i=1

(
1− 1

pi

)
. (6.5)

With that done we prove the equivalent of Theorem 6.2.1 for n× n determinants.

Theorem 6.2.3. Given k matrices A1, A2, . . . , Ak ∈ Mn(Z) we have that

P
(
(det A1, det A2, . . . , det Ak)=1) =

∏
p prime

(1−Dn(p)k)

Proof. It should be clear that just as p|n and q|n are independent events for n ∈ Z,

if p and q are distinct primes, then p| det A and q| det A are independent events for

54

n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10
k=2 0.609 0.453 0.397 0.374 0.364 0.359 0.356 0.355 0.354 0.354
k=3 0.832 0.692 0.629 0.6 0.587 0.58 0.577 0.575 0.575 0.574
k=4 0.924 0.821 0.766 0.739 0.726 0.72 0.716 0.715 0.714 0.714
k=5 0.964 0.894 0.85 0.827 0.815 0.81 0.807 0.805 0.805 0.804
k=6 0.983 0.936 0.902 0.883 0.874 0.869 0.867 0.865 0.865 0.864
k=7 0.992 0.961 0.936 0.921 0.913 0.909 0.907 0.906 0.906 0.905
k=8 0.996 0.976 0.957 0.946 0.94 0.937 0.935 0.934 0.934 0.933
k=9 0.998 0.985 0.972 0.963 0.958 0.955 0.954 0.954 0.953 0.953
k=10 0.999 0.991 0.981 0.974 0.971 0.969 0.968 0.967 0.967 0.967
k=11 1. 0.994 0.987 0.982 0.979 0.978 0.977 0.977 0.977 0.976
k=12 1. 0.996 0.991 0.988 0.986 0.984 0.984 0.984 0.983 0.983
k=13 1. 0.998 0.994 0.992 0.99 0.989 0.989 0.988 0.988 0.988
k=14 1. 0.999 0.996 0.994 0.993 0.992 0.992 0.992 0.992 0.992
k=15 1. 0.999 0.997 0.996 0.995 0.995 0.994 0.994 0.994 0.994

Table 6.1: Probabilities

A ∈ Mn(Z). Since Dn(p) is the probability that a determinant is divisible by p,

clearly 1−Dn(p)k is the probability that k determinants don’t all share p as a factor.

Using lemma 6.2.2, the probability that these k determinants don’t all share any

prime factor, or in other words, that they’re relatively prime, is simply

∏
p prime

(
1−Dn(p)k

)
=

∏
p prime


1−

(
1−

n−1∏
i=0

(
1− 1

pi

))k

 (6.6)

Though we were not able to get useful and rigorous estimates for the lower bound

on this probability, we did calculate some values up to a point where it seemed like

the product was converging. The values in table 6.2.1 are evaluations of expression

(6.6) up to 30 distinct primes. The table is arranged by number of matrices picked

determined by the row, and number of dimensions determined by the column. If this

is to be taken as an indication of the limiting values, then even at a small number

of matrices picked, the probabilities are already very close to 1. Notice that the first

column, since it’s simply 1× 1 matrices should look like ζ(n)−1.

We now come to why it was useful to consider the probability with which picking

random matrices would produce relatively prime determinants.

55

Lemma 6.2.4. Let a1, a2, . . . , an represent the standard basis vectors of Zn. Given n

column vectors in Zn whose determinant is k, the vectors ka1, ka2, . . . , kan are all in

the subgroup generated by the n column vectors.

Proof. Let A be the matrix composed of the n given column vectors. A given vector

a is a linear combination of the given n column vectors if and only if there exists a

column vector w such that Aw = a. Now let Ã denote the adjunct of the matrix A;

that is, the matrix such that ÃA = (det A) I where I is the identity matrix. From

basic linear algebra we know that if A ∈ Mn(Z) then Ã ∈ Mn(Z), so we can solve for

wi in the equation Awi = kai for i = 1 . . . n, namely

Awi = kai;

ÃAwi = kÃai;

kwi = kÃai;

wi = Ãai.

Theorem 6.2.5. Adopt the notation of the previous lemma. If given m sets of n

vectors {vi}j, for i = 1 . . . n and j = 1 . . . m, such that the n× n matrices formed for

each j have determinants k1, k2, . . . , km respectively, and (k1, k2, . . . , km) = 1, then

together the mn vectors generate all of Zn.

Proof. By Lemma 6.2.4 we know that each set {vi}j can generate kjal for l = 1 . . . n.

From basic number theory we also know that if (k1, k2, . . . km) = 1 then there exists

a linear combination such that x1k1 + x2k2 + · · · + xmkm = 1 for x1, x2, . . . xm ∈ Z.

It is clear then that for all l the vector al lies in the space generated by {vi}j and

therefore this space is all of Zn.

6.2.2 The Algorithm

First we introduce our assumptions, which are not all that different from the finite

case of our problem. Say our abelian group is Zn. Then we assume that we’re given a

function φ that can break down an element into its components. We also assume that

given two elements we are able to compute their sum. Since the group is infinite and

therefore choosing an element randomly is impossible, we assume that we’re given

56

a large subset of the group, S ⊂ Zn, that we know generates it. Our task is to

find elements of this subset that form a minimal generating set. The algorithm once

again relies on randomly choosing elements. As we will see the success and favorable

running time of the algorithm depends on Theorems 6.2.3 and 6.2.5.

Step 1 Choose m = kn random elements from S, for some integer k.

Step 2 Perform a variation of Gaussian elimination to reduce the set of m elements

to a smaller set of n elements that span the same space.

Step 3 Measure the determinant of the n elements. If the determinant is ±1 then

we’re done, otherwise, go back to Step 1 and pick more elements.

There are two crucial steps in the algorithm. The first is the ability to perform Step 2

above, and we describe that shortly, and the second is verifying that the running time,

which is determined by Step 3, is reasonable in n. The motivation for the algorithm

comes from Theorems 6.2.3 and 6.2.5, and the running time analysis depends on the

probabilities derived therein. We now further describe the implementation of Step 2.

Our strategy is to place the m selected elements into an n×m matrix A based on

the decomposition of each element that we can get from φ. Note that every column in

this matrix represents one of the randomly chosen elements, and the rows represent

the elements’ components according to φ. Via the following theorems we will show

how to reduce this matrix to one in upper triangular form A′. That is, all entries to

the left of the rightmost diagonal will be 0, and the columns of A′ should span exactly

the same space as the columns of A. Since A′ will have at most n nonzero columns,

we will have completed Step 2.

Lemma 6.2.6. If A is an n×m matrix, and B is an m×m matrix whose determinant

is ±1, then the columns of AB generate the same subgroup of Zn as the columns of

A.

Proof. The subgroup of Zn generated by the columns of any n×m matrix X is the

set of all Z-linear combinations of the columns, which is just the set {Xz | z ∈ Zm}.
It is clear that {ABz | z ∈ Z} ⊆ {Ay | y ∈ Z}, just take y = Bz. However, the

reverse inclusion is also true, because B−1 exists and has integer entries, so we can

take z = B−1y.

57

We will make use of the following proposition, which allows us to insert zeroes

into A.

Theorem 6.2.7 (Alex Eustis). If A is an n × m matrix and i, j are integers with

1 ≤ i ≤ n and 1 ≤ j ≤ m, then there exists an m×m matrix Bij such that:

(i) det B = 1.

(ii) (AB)ij = 0.

(iii) Multiplication on the right by B does not alter any of the columns of A the

jth and (j + 1)st columns.

(iv) If the entries Ai′j and Ai′(j+1) are both zero for some i′ with 1 ≤ i′ ≤ n, then

ABi′j and ABi′(j+1) are also zero.

Proof. Let Aij = a and Ai(j+1) = b. If a = 0 then just let B = I. Otherwise, let

g = gcd(a, b) (hence we know that g 6= 0), and let u, v ∈ Z be integers such that

au + bv = g. We know that u and v can be determined efficiently using Euclid’s

Algorithm.

We define B using block notation in the diagram below, where Ik represents the

k × k identity matrix.

B =




Ij−1 0 0

0
b/g u

−a/g v
0

0 0 Im−j−1




It should be noted that det B = bv
g

+ au
g

= 1, and that right multiplication of A

by B only changes the jth and (j + 1)st columns of A; it leaves the other columns

unchanged. In fact, the matrix product AB will give the following

AB =




· · · ...
... · · ·

a b

· · · ...
... · · ·

0 0

· · · ...
... · · ·







Ij 0 0

0
b/g u

−a/g v
0

0 0 Im−j−1




=




· · · ...
... · · ·

0 g

· · · ...
... · · ·

0 0

· · · ...
... · · ·




58

where · · · represents arbitrary integers that do not concern us. It is clear then that

with B defined as above all four conditions stated in the theorem are satisfied.

To complete the process called for by Step 2, let A be the n×m matrix of sampled

elements of S, and let Bij denote the m×m matrix defined above that annihilates the

entry Aij. We can put A into upper right triangular form by computing the following

matrix product:

A′ = A(Bn1Bn2 . . . Bn(m−1))(B(n−1)1 . . . B(n−1)(m−2)) . . . (B11 . . . B1(m−n)) (6.7)

That is, we annihilate the whole bottom row from left to right except for the rightmost

entry. Then we annihilate the next row up except for the rightmost two entries,

and continue in this manner up to the top row, which we annihilate except for the

rightmost n entries. Parts (iii) and (iv) of Theorem 6.2.7 guarantee that none of the

zeros created by the previous Bij’s will be disturbed by the ones later on. Therefore

A′ is a matrix whose columns generate the same subgroup of Zn as the columns of

A, and only the rightmost n columns of A′ can be nonzero. If we identify A′ with

its rightmost n columns, then we can easily compute its determinant as the product

along its main diagonal, since it is in upper triangular form. If det A′ = ±1, then the

columns of A′ form a minimal generating set for Zn, and we are done. If any other

determinant is obtained, we know that the m elements that we began with do not

generate Zn, so we must go back and choose some more.

Running Time

Each multiplication by Bij requires finding the greatest common divisor of two

integers, which runs in O(log2 N) if the integers are bounded by N , and also requires

four multiplications of columns, which amounts to 4n integer multiplications, which

runs in O(n log2 N) time, once again if N is a bound for the size of the integers. The

number of Bij’s required is less than mn, and recall that m = kn where k is a constant.

So we must multiply O(n2) number of Bij’s to determine A′, and therefore the whole

elimination algorithm runs in time O(n3 log2 N). Though we don’t have a good bound

yet, Theorem 6.2.3 seems to suggest that the probability of choosing matrices with

relatively prime determinants doesn’t decrease fast with n and is perhaps related

logarithmically. Even a probability decrease as high as 1
n

would seem reasonable and

would leave the running time at O(n4 log2 N).

59

6.3 Ideas for Further Research

The first outstanding problem would be to calculate an efficient lower bound for

the probability of picking relatively prime determinants, equation 6.6, as that would

determine a running time order of growth for our algorithm. Further research could be

done on ways to make our algorithms deterministic. As it stands all of the algorithms

have good expected running times, yet because they’re all based on random choosing

of elements, there’s always a chance that a particular case might take a very long

time. Another problem to consider is constructing an efficient algorithm for finding

generators for a finitely-generated abelian group. This was a problem we worked on

but did not get sufficient results on. One might attempt first to find the generators

for the torsion free part of the group using a method similar to our modification of

Gaussian elimination, and then to employ the finite group algorithms on the finite

group components of elements to get generators for the torsion group. However since

the sample set of elements given is so large, in fact most likely orders of magnitude

larger than the order of the torsion group, the finite group algorithms would not be

efficient. Either a modification or an altogether different approach must then be used

to extract the generators for the torsion group, at which point the torsion and torsion

free group generators may be combined.

60

Chapter 7

Conclusion

We have described numerous remarkable results regarding quantum computers.

The circuit model for quantum computation has been rigorously defined and employed

in the construction of Shor’s factoring and Grover’s search algorithms. Fundamental

limitations as well as information processing feats of quantum computers have also

been detailed. All of these results and others were placed in their proper settings

during a discussion of complexity theory, and the Strong Church-Turing thesis was

mentioned as the guiding light for research. Finally, the paper concluded with research

on the problem of finding generators for an abelian group and presented several

algorithms to solve that and a similar problem.

The techniques presented in Shor’s and Grover’s algorithms remain the most

widely used in designing quantum algorithms. The reason so much focus has been

placed on these algorithms is that it is a generally hard problem to design quantum

computing algorithms. This is not necessarily because quantum computers are more

complicated to work with than classical ones, but rather because a quantum algo-

rithm is only interesting if it runs faster than any known classical counterpart. In

fact, generally, even polynomial time increases are not interesting unless they are to

already fast, fundamental problems, like an unstructured search. Most of the em-

phasis in quantum computing, especially from a complexity theory point of view, is

bridging the gap between classically tractable and intractable problems.

As was seen however, complexity theory has a lot left to accomplish. Results

which seem as though they should be obvious, for example P ⊂ PSPACE, prove to

be incredibly subtle. It might be a long time before quantum computers are proved

61

to be theoretically more powerful, in terms of efficient algorithms, than probabilistic

Turing machines. Practically speaking however, the observed differences are real. If

a quantum computer could be built right now and Shor’s algorithm implemented, it

would have a tremendous impact on encryption algorithms regardless of whether we

have a theoretical result that says that factoring is in BPP or not. As we have said,

Shor’s algorithm isn’t the only advantage to quantum computers. Grover’s algorithm

can be used to speed up thousands of commonly used algorithms, and quantum

simulation would become tractable. Physical realizations of quantum computers are

battling with the noise introduced when one tries to operate on more than a few

qubits, but error correcting codes have achieved promising results of how to increase

robustness and avoid the fate of the analog computer.

As time goes on more and more experimental methods for building quantum com-

puters are found and improved upon. Though theoretical complexity results showing

the superiority of quantum computers would cause quite a stir in the community and

have, deep, long lasting effects on the notion of what is efficiently computable, the

real impact of quantum computers is already here. Nielsen and Chuang [NC00, p.

46-50] give a good overview of small, medium, and large scale applications of quantum

computing that could be pursued. Such applications as quantum state tomography,

distribution of information through quantum teleportation, speeding up of algorithms

via Grover’s algorithm, and quantum simulation are just some of the already theo-

retically realizable achievements of quantum computing. None of these applications

can at present be resolved with efficient classical algorithms, and, in fact, the lack

of said algorithms demonstrates that these problems are hard classically, and even if

theoretically possible, it will be a long time before efficient classical algorithms may

be developed. Indeed, we stand to benefit greatly from quantum computers.

62

Bibliography

BBBV97. Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazi-

rani. Strengths and weaknesses of quantum computing. Special issue on

Quantum Computation of the Siam Journal of Computing, Oct. 1997. Also

available as http://arxiv.org/abs/quant-ph/9701001.

BH97. G. Brassard and P. Høyer. An exact quantum polynomial-time algorithm

for simon’s problem. In Proceedings of the Fifth Israeli Symposium on The-

ory of Computing and Systems - ISTCS, pages 12–23, 1997. Also available

as http://arxiv.org/abs/quant-ph/9704027.

BV97. Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. SIAM

J. Comput., 26(5):1411–1473, 1997. Also available as citeseer.ist.psu.

edu/bernstein97quantum.html.

BW92. Charles H. Bennet and Stephen J. Wiesner. Communication via one- and

two-particle operators on einstein-podolsky-rosen states. Physical Review

Letters, 69(20):2881–2884, 1992.

Cle99. Richard Cleve. An introduction to quantum complexity theory. http:

//arxiv.org/abs/quant-ph/9906111, 1999.

Coo71. S. Cook. The complexity of theorem-proving procedures. In Proc. 3rd

ACM Symp. Theory of Computing, pages 151–158, 1971.

Edm65a. J. Edmonds. Maximum matchings and a polyhedron with 0,1-vertices.

Journal of Research at the National Bureau of Standards (Section B), pages

125–130, 1965.

63

Edm65b. J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics,

17:449–467, 1965.

Fey82. R. Feynman. Simulating physics with computers. International Journal of

Theoretical Physics, 21, 1982.

FH02. Lance Fortnow and Steve Homer. A short history of computational com-

plexity. http://citeseer.ist.psu.edu/fortnow02short.html, 2002.

Gas02. William I. Gasarch. The P =?NP Poll. www.cs.umd.edu/~gasarch/

papers/poll.ps, 2002.

Gud03. Stan Gudder. Quantum computation. Mathematical Association of Amer-

ica Monthly, 110(3):181–201, 2003.

Hir04. Mika Hirvensalo. Quantum Computing. Springer, Berlin, 2004.

HS65. J. Hartmanis and R. Stearns. On the computational complexity of algo-

rithms. Transactions of the American Mathematical Society, 117:285–306,

1965.

HS99. F. Hennie and R. Stearns. Two-tape simulation of multitape turing ma-

chines. Journal of the ACM, 13(4):1364–1396, August 1999.

HW68. G. H. Hardy and E. M. Wright. An Introduction to The Theory of Numbers.

Oxford University Press, fourth edition, 1968.

Kar72. R. Karp. Reducibility among combinatorial problems. In Complexity of

Computer Computations, pages 85–104. Plenum-Press, New York, 1972.

Knu97. Donald Knuth. The Art of Computer Programming, volume 2. Addison-

Wesley, third edition, 1997.

Lan90. Serge Lang. Undergraduate Algebra. Springer, 1990.

Lan94. Serge Lang. Introduction to Linear Algebra. Springer, 1994.

NC00. Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and

Quantum Information. Cambridge University Press, 2000.

64

Pit00. Arthur O. Pittenger. An Introduction to Quantum Computing Algorithms.

Birkhäuser, 2000.

Rig04. Gustavo Garcia Rigolin. Superdense coding using multipartite states.

http://arxiv.org/abs/quant-ph/0407193, 2004.

Sho97. Peter W. Shor. Polynomial-time algorithms for prime factoriza-

tion and discrete logarithms on a quantum computer. SIAM

J.SCI.STATIST.COMPUT., 26:1484, 1997. Also available as http://

arxiv.org/abs/quant-ph/9508027.

Sto76. L. Stockmeyer. The polynomial-time hierarchy. Theor. Computer Science,

3:1–22, 1976.

VBE96. Vlatko Vedral, Adriano Barenco, and Artur Ekert. Quantum networks for

elementary arithmetic operations. Physical Review Letters, 54(1):147–153,

1996. Also available as http://arxiv.org/abs/quant-ph/9511018.

Yao90. A. Yao. Coherent functions and program checkers. In Proceedings of the

22nd ACM Symposium on the Theory of Computing, pages 84–94, New

York, 1990. ACM.

65

