
Package Manager: The Core of a GNU/Linux Distribution

by

Andrey Falko

A Thesis submitted to the Faculty

in partial fulfillment

of the requirements for the

BACHELOR OF ARTS

Accepted

Paul Shields, Thesis Adviser

Allen Altman, Second Reader

Christopher K. Callanan, Third Reader

Mary B. Marcy, Provost and Vice President

Simon’s Rock College

Great Barrington, Massachusetts

2007

Abstract

Package Manager: The Core of a GNU/Linux Distribution

by

Andrey Falko

As GNU/Linux operating systems have been growing in popularity, their size has also

been growing. To deal with this growth people created special programs to organize the

software available for GNU/Linux users. These programs are called package managers.

There exists a very wide variety of package managers, all offering their own benefits and

deficiencies.

This thesis explores all of the major aspects of package management in the GNU/Linux

world. It covers what it is like to work without package managers, primitive package man-

agement techniques, and modern package management schemes. The thesis presents the

creation of a package manager called Vestigium. The creation of Vestigium is an attempt to

automate the handling of file collisions between packages, provide a seamless interface for

installing both binary packages and packages built from source, and to allow per package

optimization capabilities. Some of the features Vestigium is built to have are lacking in

current package managers. No current package manager contains all the features which

Vestigium is built to have. Additionally, the thesis explains the problems that developers

face in maintaining their respective package managers.

i

Acknowledgments

I thank my thesis committee members, Paul Shields, Chris Callanan, and Allen Altman

for being patient with my error-ridden drafts. Thank you for the feedback, the encourage-

ment, and being diligent in responding to my questions.

I thank my most excellent friend, Rigels. You have encouraged me throughout this

whole process. Every time I stop and think about how much work I need to complete, I say

to myself, “Rigels is working really hard to become a dentist. I need to work hard to learn

computers inside out”. I will always cherish how you would greet me and ask, “What’s

this? Where are the commits [to the thesis project subversioning repository]? I want to see

more commits”. I thank you for being so interested in my project and sometimes forcing

me to bounce complicated ideas off of you. I also thank you for coming to my residence

one day and helping me debug the most difficult pieces of code of Vestigium. I would not

have enjoyed writing this thesis without your presence.

I thank Daniel Villarreal for sacrificing his time to proofread the thesis to help me

prepare it for its final draft. I thank Ryan Hoffman for showing interest in the project and

for sacrificing his time to proofread the third chapter. I thank Evan Didier for showing

interest in my thesis and pointing out errors in the final draft. I thank Fedor Labounko,

Mike Haskel, and my uncle Leo for showing interest in my thesis project and allowing

me to bounce some ideas off of you all. I further thank Fedor for answering many of my

questions about the thesis formatting and writing process.

I thank the open source software developers who volunteer their free time to develop

software that I use free of charge and almost free of problems. Your work inspires millions

of people, including me.

Finally, I thank my father for instilling in me the discipline, will, and patience necessary

for completing projects of this magnitude. I thank you for providing the resources to make

everything possible. I also thank you both for showing interest in my work and for helping

me overcome all of the hardships that I had to overcome in life.

ii

Contents

0.1 Introduction . 1

1 Optimization 8

1.1 Linux . 8

1.1.1 File Systems . 12

1.2 Toolchain . 13

1.2.1 Glibc . 14

1.2.2 Gcc . 14

1.2.3 Binutils . 18

1.3 Benchmarking . 19

1.3.1 Scimark . 20

1.3.2 Bashmark . 22

1.3.3 Lame . 24

1.3.4 Povray . 25

1.3.5 Kernel Benchmarks . 26

2 Package Managers: Making Life Easy 27

2.1 Linux From Scratch . 28

2.2 Package Management Techniques . 37

2.2.1 Directory and PATH Method . 38

2.2.2 Directory and Link Method . 39

iii

2.2.3 Timestamp Method . 39

2.2.4 Users method . 40

2.2.5 LD PRELOAD Method . 42

2.2.6 Temporary Build Directory Method 43

2.3 Binary Packages . 43

2.4 Primitive Package Managers . 44

2.4.1 Pkgtool . 45

2.4.2 RPM . 47

2.4.3 Dpkg . 51

2.5 High-level Package Managers . 52

2.5.1 Apt . 53

2.5.2 Swup . 55

2.5.3 Pacman . 57

2.6 Centralized Package Managers . 58

2.6.1 Portage . 60

2.7 Maintaining Package Managers . 66

2.7.1 Keeping Up To Date . 66

2.7.2 ABI Changes . 67

2.7.3 Toolchain Weaknesses . 67

2.7.4 Branches . 68

2.7.5 Bug Reporting Systems . 70

2.7.6 Optimization . 71

2.8 Frontends . 72

3 The Birth of a Distribution: Developing the Package Manager 74

3.1 Determining Features . 75

3.2 User Interaction . 77

3.3 Implementation . 85

iv

3.3.1 Libraries . 88

3.3.2 User Requests . 90

3.3.3 Queues . 92

3.3.4 Subroutines . 96

3.3.5 File Tracking . 101

3.4 Strengths and Weaknesses of Implementation 106

4 Maintaining a Distribution 110

4.1 Using Simulation to Estimate Personnel Requirements 112

4.2 The Maintainer Scheme: Pros and Cons 114

4.3 Attracting and Keeping Developers . 116

4.4 Attracting and Keeping Users . 118

5 Conclusion 120

5.1 Further Research . 123

A Understanding Levels of Optimization 125

B Circular Dependencies 126

C Source Code 127

C.1 Vestigium . 128

C.1.1 vestigium . 128

C.1.2 cont.lib . 139

C.1.3 names.lib . 140

C.1.4 search.lib . 141

C.1.5 cp . 145

C.1.6 install . 147

C.1.7 ln . 149

C.1.8 mkdir . 151

v

C.1.9 mv . 152

C.1.10 vestigium.conf . 154

C.1.11 subarchs . 156

C.1.12 vesport . 157

C.2 Sysmark . 162

C.2.1 sysmark . 162

C.2.2 parse . 166

C.2.3 README . 167

C.2.4 Makefile . 168

C.3 Simulation . 169

C.3.1 main . 169

C.3.2 maintainers-create . 174

C.3.3 pkg-comp-times-retrieve . 175

C.3.4 retrieve-pkg-commit-times . 176

vi

0.1 Introduction

Contrast a small village with a large city. In the village, everyone knows everyone else,

what everyone does, the conflicts between people, who is friends with whom, etc. In a city,

the opposite is the case. One does not know the names of every person one passes. No

one knows whether two individuals might argue if they are in close proximity. The village

people can manage themselves without needing a large bureaucratic order, while the city

remains standing only because of such a bureaucratic order.

GNU/Linux distributions are like a city. A GNU/Linux distribution is made up of thou-

sands of pieces of software. It is nearly impossible to have a usable distribution with less

than three hundred packages. To manage all of the pieces in a distribution, some sort of

structure is needed. This structure is centered around the idea of package management. The

purpose of package management is to allow the tracking of all the pieces of software that

comprise a distribution. In this way, civil order can be maintained and conflicts avoided.

Most GNU/Linux distributions differ from proprietary operating systems, such as Mi-

crosoft’s Windows and Apple’s Mac OS, by how much control a user can have. GNU/Linux

operating systems, depending on how their package management systems are organized, al-

low the user greater flexibility in shaping the operating system. This flexibility can address

significant needs and preferences – more significant than, for instance, merely being able

to change the background picture on a desktop. The needs in this context might include

things like bug fixes, security upgrades, and hardware constraints; while preferences might

involve, say, a user’s like or dislike for having a minimal versus maximal set software, or

their desire to optimize the system for particular hardware.

This thesis examines package management in GNU/Linux distributions and explores

almost every aspect of package management. We examine the intricacies of optimizing

software as well as bootstrapping compilers. We probe and describe just about all theoreti-

cal and practical ways to manage software on a system. We go as far as creating a package

manager and outlining how distributions can manage their personnel.

1

The first chapter delves deeply into how a GNU/Linux system is optimized. This chap-

ter introduces the reader to most aspects of optimization that can be done on GNU/Linux

systems, including optimizing software code with compilers, choosing file systems, and

choosing kernels. A large part of the chapter explains benchmarking techniques and presents

benchmarks of optimized software and code.

The second chapter allows the reader to learn about the inside of a GNU/Linux system

and appreciate the amount of time and effort a package manager saves. This chapter ex-

plains the details of a number of package managers and package management techniques.

Furthermore, it describes the problems that developers face when maintaining a package

manager, and provides the reader with an overview of package management from both the

developers’ and users’ perspectives.

The third chapter explains the requirements to create a package manager. It describes

the process from the preliminary theoretical stages to the practical design of code. Docu-

mentation for the implementation of a package manager forms a large portion of the chap-

ter. Its purpose is to show, on a practical level, the strengths and weaknesses of current

package management systems.

The fourth and final chapter discusses how developers can maintain a package manager.

This chapter is less technical and focuses on the big picture: how a GNU/Linux distribution

fits into the real world, how it can survive, and perhaps even earn a profit.

Before we can begin, we must define what a GNU/Linux distribution is. A GNU/Linux

distribution is simply an operating system. We say “GNU/Linux” instead of “Linux” or

“GNU” by itself in order to be more precise about the fact that the distribution consists of

a combination of the Linux kernel and the GNU user space.

GNU is a recursive acronym that expands to “GNU is Not Unix”. The short history

behind the development of GNU software is that a group of software enthusiasts came

together in the early 1990s and re-wrote the core user space applications contained within

2

the Unix operating system. Beyond re-writing these applications, they kept their code open

to the public under a new license called the GPL.1 The main point of the GPL is that users

can distribute the source of GPL licensed software in any way they like, so long as they

keep the distributed package also under the GPL.

Linux is an operating system kernel. We can think of it as a software package licensed

under the GPL. The presence of “Linux” in “GNU/Linux distribution” is due to the fact that

the kernel is an extremely vital part of a GNU/Linux operating system. It is what connects

the software to the hardware and manages how applications take advantage of the resources

provided by hardware.

We can now more rigorously define a GNU/Linux distribution as an operating sys-

tem which organizes existing software licensed under the GPL license2 and distributes it,

whether for profit or not. There are over three hundred and fifty active GNU/Linux distri-

butions.3 Just about all of them offer some sort of distinct advantage or advantages over

other distributions in terms of how they organize and bring all of the software together.

The major distributions can be distinguished by how they build what is called the

toolchain. The toolchain is the most vital part in the development of a distribution. A

toolchain consists of the gcc package which in turn consists of, but is not limited to, the

C/C++ compiler; the glibc package, which contains the libraries for the C/C++ languages;

and the binutils package, which is used by gcc for dynamic linking. The three packages of

the toolchain are often patched for bug fixes and enhancements by distribution developers.

Along with adjustments to the default build options, the collection of these packages makes

toolchains unique to a particular distribution.

Many distributions can also be distinguished by how they patch and build the kernel

package. It is often difficult to package an efficient kernel that will work on a wide range of

1General Public License.
2In practice it is difficult for many distributions to meet this definition since there are other open source

licenses, as well as distributions that package non-open source licensed software.
3http://distrowatch.com shows statistics on distributions. It currently compares a total of three hundred and

fifty nine. There are currently one hundred and ninety three distributions pending to be added to DistroWatch.

3

hardware. Developers of distributions have to package the kernel so that it will load only

the modules needed to make all the hardware of a given machine available to the operating

system. Loading support for every possible hardware configuration wastes memory.

Most distribution developers manually write the scripts, which are small, high-level

programs needed in order for the operating system to initialize after the kernel loads. These

scripts are called “initialization scripts” or simply “init scripts”. Different init scripts often

do the same things, but differ in how the user can control and manage them. Since the

user can always manually edit the scripts, they are always under his control. However,

the user must first learn some shell scripting to do this. Many distributions provide users

with tools to control which scripts load and how. These tools are usually in the form

of documented configuration files, additional command line scripts, or GUI4 programs.

In general, differences between the init scripts have to do with configuration file syntax,

since few distributions are able to create GUIs or command line scripts for configuring init

scripts.5

A novice GNU/Linux user will usually value distributions for their installation proce-

dure. Many distributions create state-of-the-art GUIs which users can use to install a full

scale distribution (with more office productivity and media applications than they will ever

use) in under twenty minutes. Distributions focused on more advanced users have menu-

based installation procedures, which often allow a user to have more configuration power.

Some distributions offer only a guide with the general shape of the commands that a user

must run and which files the user must edit. The general trend seems to be that the more

advanced the GUI, the less configurable the installation. Some distributions do not even

install themselves onto a user’s hard disks, but run right off of a bootable CD-ROM or

DVD.

Last, but certainly not least, distributions distinguish themselves by how they manage

software packages. There are more than eleven thousand packages that are available to a

4Graphical User Interface.
5It is not that developers do not have the skill to create such tools, but rather that they have other priorities.

4

GNU/Linux operating system.6 This large pool of packages can be useful to just about any

type of user, from the video editor to a large corporation. The majority of these packages

are available only by download off the Internet. Furthermore, just about every one of

these packages is free. To keep track of all of these packages, distributions create package

managers, which, depending on their sophistication, allow the user to search for packages,

install them, update them, and uninstall them with one or a series of commands.

We have gone over the major components that make up a distribution. Now let us ob-

serve the major ways in which distributions differ. Perhaps the greatest difference among

distributions consists in their respective orientation toward particular user types. For exam-

ple, a distribution might focus on creating a distribution that can be maintained and used

by a novice. Other distributions do not care if you are a novice or an expert, so long as you

are interested in, for instance, maximum security.

Depending of the type of user that a distribution is oriented toward, distributions will

have correspondingly different installation methods, package management systems, init

script configuration, and documentation. Distributions oriented toward a novice will usu-

ally have GUIs for all of these components, while distributions oriented toward experts will

usually have a lot of documentation in the form of “How-tos”. Package managers might

support a larger or smaller number of packages. Those oriented toward the advanced user

expect the user to create packages for the package manager if the package is not packaged

by the distribution. Some distributions’ package managers might even include the ability

to install paid-for, proprietary software. Some, novice-oriented distributions even provide

functionality and look and feel similar to Microsoft’s Windows or Apple’s Mac OS.7

As with just about any sufficiently complicated piece of software, GNU/Linux distri-

butions are not all perfect. They often suffer from a number of inefficiencies. One of the

major inefficiencies has to do with the optimization of software packages. When a dis-

6This figure is based on the number of packages currently in Gentoo Linux’s package management system,
which can be found at http://gentoo-portage.com/Newest.

7Linspire: http://www.linspire.com/ is an example of such a distribution.

5

tribution creates a binary package,8 it compiles it with a set of optimizations. In general,

optimizations are flags that are set before compile time and used by the compiler to compile

the package’s source code in such a way that the resulting assembly code will execute faster

on a particular processor. For example, a Pentium IV processor has newer, more efficient

functions than a Pentium III, although the Pentium III has all of the functions of a Pentium

IV. We can therefore compile something for a Pentium III, and it will work on a Pentium IV.

However, if we do so, we will not be taking advantage of all the capabilities of the Pentium

IV, and thus not making the program run as fast as it can. If we compile something for the

Pentium IV, though, we will be faced with the problem that our binary will not work on

the Pentium III. Distributions try to make their binaries as compatible as possible, so that

they can be used on older systems. As a result, the binaries often do not take advantage of

the newer, improved functions of later processors. Some distributions compile for newer

processors, but as a result do not work on older machines. Some distributions do not even

create binaries, but instead provide users with ways of compiling packages from source,

for themselves, and for their own processor.

To make matters even more complicated, there also exist compiler optimizations that

apply to any processor. For example, the gcc compiler allows the setting of the flag:

-funroll-all-loops. This flag takes all loops in the source code and unrolls (in as-

sembly) as many as it can. Doing this gets rid of many branch instructions in the assembly

code, theoretically improving a processor’s pipeline. This optimization is not processor

dependent because it can be done on just about any processor used today. Whether it im-

proves performance on a particular processor is another question. Many distributions do

not like to do too many compile-time optimizations due to the fear of uncovering bugs in

programs that would not have appeared, had the optimizations not been used. Because time

does not generally allow the stress testing of applications using variations of compile-time

optimizations, distributions tend to be conservative at the expense of building packages that

8A pre-compiled package, which a user can extract and use without compiling.

6

run at less than maximum speed. In general, distributions tend to gravitate toward decisions

that will potentially prevent bugs, rather than increase speed.

Another big problem facing distributions is how to keep a user’s systems stable while at

the same time supplying up-to-date versions of software. Updating software in GNU/Linux

is very vital. First of all, with every release of a software package, bugs are fixed and new

features are added. Secondly, a distribution does not want to ignore any security holes that

may be fixed in a newer version of software. The problem arises that software cannot be

too new. If it is too new, it is untested, and thus may contain new bugs, may have breakage

with other applications, or have changes that affect other applications.

The other major problem is making distributions easy to use. Even if a distribution

claims to be developed for an advanced user base, it still should not make things unbearably

complicated; it has to document how features are to be used. Advanced users usually find

editing configuration files faster and better than doing the same thing in a GUI. Most of

the time they do not wish to make their lives complicated, but rather easier.9 Furthermore,

distributions need to keep their configuration style as consistent as possible or else find a

good way to communicate configuration style changes to users. Distributions for novice

users need to create an easy way for users to fix things from the GUI. Distributions often

have to decide between configurability and saving the users from themselves. Users with

GUIs, for instance, often get the confidence to mess with things that they are not supposed

to mess with, and then ask for support to bring things back to normal.

9Due to the freedom to customize, for example.

7

Chapter 1

Optimization

Optimization is a word derived from the Latin word “optimum”, meaning “the best”.

Thus the act of optimizing something is making it be the best that it can be. For our

purposes, we view the best as the fastest. An operating system that handles a wide variety

of tasks fastest is one that is optimized. But in our eagerness to optimize, we have to

keep in mind that stability is a form of optimization. Stability is the measure of how

consistent something is. An operating system that locks up from time to time is not stable.

Furthermore, if an operating system boots one day and not another, it is not stable.

There are a number of choices that a developer of a GNU/Linux distribution can make

regarding how to optimize the distribution. Stability optimizations usually come from poli-

cies enforced by the package management system. Speed optimizations usually come from

a developer’s experience with configuring a system with a number of various patches, op-

tions, and packages. We will first look at the options that a GNU/Linux developer is faced

with regarding speed optimization.

1.1 Linux

The first form of speed optimizations can come from the Linux kernel. There are cur-

rently three main branches of the Linux kernel. To be more precise, there is one Linux

8

kernel package, and two fairly large patch sets that are designed to patch the main Linux

kernel. The main Linux kernel is referred to as the vanilla-sources. It is labeled by ker-

nel developers, most notably by Linus Torvalds,1 as the stable branch. With every version

of vanilla-sources, extra care is taken to test all of the code changes for proper function-

ality. Most new features are not committed to vanilla-sources, but to Andrew Morton’s

experimental mm-sources. The mm-sources are released as a collection of patches called

“a patch set”. Patches are files that contain a listing of lines to add to or drop from files

in source code. Due to the more conservative nature of vanilla-sources, mm-sources

are usually faster in benchmarks and observation. The vanilla-sources developers usu-

ally end up committing mm-sources’ patches, but only after sufficient testing has been

completed on each patch. The objective of the mm-sources branch is to provide a test-

ing ground for considerably risky changes. There also exists the ck-sources, which are

maintained by Con Kolivas.2 These sources are considered experimental, but contain a

different variation of patches than mm-sources. Some consider ck-sources to be a stable

patch set. The ck-sources are mostly known for having a different CPU scheduler, called

“staircase”. At the time of this writing, Con Kolivas has introduced a scheduler called

RSDL, which he touts as solving some of the biggest problems with CPU schedulers.3

We are now aware that three kernel branches exist. The question now becomes, what

do these branches offer over one another? The answer to this question changes with time

rather quickly. A month before this was written, ck-sources offered a different processor

scheduler than the other two. Its scheduler, staircase, has proven to be rather stable and

impressive in benchmarks. The developers of vanilla-sources and mm-sources used

a scheduler developed in the mm-sources branch. Both schedulers are designed to work

well under what are called interactive workloads. If the scheduler is a simple round-robin

1The creator of the Linux kernel and current lead developer. See http://kernel.org for more information.
2Con Kolivas is not directly affiliated with the vanilla-sources or mm-sources developers. In fact, he

is a practicing doctor who allegedly learned how to program in C by reading Linux code, according to an
interview by Kernel Trap: http://kerneltrap.org/node/465.

3One can find archives of his correspondences at the Linux Kernel Mailing List archives: http://lkml.org/.

9

implementation, then the user, when attempting to switch to another task, will have to wait

for whatever is in queue to finish before being able to switch to the task. In other words,

interactivity is the measure of how fast a user can jump from one task to another and back.

At the time of this writing, mm-sources and ck-sources come with a memory man-

agement feature, called swap-prefetching. This feature makes use of the cpu’s idle time

to copy to swap space4 tasks stored in a machine’s random access memory, thus saving

the time which would have been lost by doing this only when the memory had become

full. This feature helps a user when his memory gets filled by saving the time that it takes

to swap something out of memory. There are countless other tweaks that are contained

within mm-sources and ck-sources, but are not contained within vanilla-sources.

Sometimes ck-sources or mm-sources can become slower than vanilla-sources.5 A

situation recently occurred where there were changes in a file related to the disk scheduler,

which caused ck-sources’ staircase to fail whenever disk load became very high. The

system would lose a lot of interactivity under high disk load. As a result, a user would have

been better off using vanilla-sources.

Some of the more popular GNU/Linux distributions compile their own kernel patch

sets, with their own custom optimizations and features. Distributions that have a small

number of developers tend to use the vanilla-sources. Most distributions, however,

have methods of optimizing any kernel, regardless of the patch set. These methods are

designed to reduce the amount of memory a kernel consumes.

The Linux kernel consists of parts responsible for providing various functions to the

overall kernel. For example, we can configure a kernel to lack the support for swap. Like-

wise, we can configure it to contain support for a hardware device. Many kernel parts can

be disabled or enabled. The kernel is big. If we enable all of its parts and boot into our

system, the kernel will probably fill up more than fifty megabytes, a tremendous waste of

4Hard drive space allocated to store currently unused tasks in memory.
5We are considering the situation where the base version of the kernels is the same, i.e. if vanilla is at

2.6.12, mm provides patches against 2.6.12.

10

resources, because normally a machine only needs roughly ten percent of all the kernel

has to offer. For example, we can enable support for network drivers. The kernel contains

drivers for over one hundred distinct network cards. Normally, a machine has no more

than two network cards and it would be a waste to build the kernel to support any more

cards than the ones the machine has. The ideal kernel is one that has support for all of the

functions that the user will use, but that does not use up any more memory than is required

for the functionality of the functions.

Distribution developers are faced with the problem of making their distribution usable

on a wide range of hardware, while preventing the kernel from being larger than it has to

be for an individual user. There are two good solutions to the problem at hand. The first is

to utilize the kernel’s ability to configure features as modules. A module is something that

is not part of the kernel that boots, but is loaded to the kernel after the kernel has booted.

Currently there exists an application called udev, which is able to detect a user’s hardware

and load the necessary modules for it.6 There is one drawback with the modular approach

however: the kernel must come with a basic set of drivers for a system’s hard drive bus

in addition to support for file systems. That means that the kernel will have to be built

with dozens of drivers for ATA and SATA disk controllers, when it will only need one or

two of them. In addition, it will need support for all half-dozen file systems instead of just

one. Once such a kernel boots, all of these unusable parts can be unloaded. The amount of

useless parts is nevertheless significantly less than there would be if everything were built

into the kernel.

The second solution is to build everything as a module, but boot the kernel with the

help of what is called an “initrd image”. This image contains support for all the needed

disk controller drivers, file system support, and system commands. The initrd image is

loaded only for the time required for the kernel to load all of its needed modules. The

strategy called “bootstrapping” is simular to the purpose of initrd. Once the initrd loads, it

6There is more to what udev does, but it is not relevant to our discussion.

11

mounts the root file system, loads the modules needed by the kernel, delicately pivots its

root to the system root, and unloads everything not in use. The end result is a kernel that

can boot with the help of the initrd image into a wide variety of systems and take up no

more memory than it needs.

1.1.1 File Systems

Most distributions offer their users a chance during the installation procedure to choose

between file systems. Some distributions, however, do not provide users an easy way to

choose. There are six major file systems available in the Linux kernel. The first one, con-

sidered the most tested and fail safe, is called ext2. The second one, ext3, is a journalized

version of ext2, considered and shown in benchmarks to be somewhat faster than ext2. A

third one, ext4, came out very recently. It is in experimental stages of development and

is being designed to overcome some major limitations of ext2 and ext3. The fourth one

is reiserfs. It is also a journalized file system, but shown to exceed all other file systems

with its performance when working with small files. The fifth is XFS (also a journalized

file system), which has proven to work well with large files. Finally, there is JFS, which

shows excellent balanced performance. JFS is not better than XFS at working with big files

and not as good at working with small files as reiserfs, but is good at both. Distributions

that try to limit a user’s file system choice often choose ext3 due to its reputation for being

derived from the stable ext2 and being journalized like the other file systems. The choice

of an optimal file system depends on what type of work the user needs to do. Therefore

many distributions leave that for the user to decide. Some distributions focus their attention

toward users with specific work loads. These distributions might encourage their users to

use a specific file system.7

7The benchmarks referred to are from the Linux Gazette January 2006 Issue. It can be viewed at
http://linuxgazette.net/122/TWDT.html.

12

1.2 Toolchain

Although the Linux kernel contributes very significantly to the performance of a GNU/Linux

operating system, there exist other contributors. These performance contributors are inter-

connected with the Linux kernel. The contributors are the packages that compile the code

that the kernel and other tools are written in. How the code is compiled can be optimized

in a number of different ways. Before we discuss these methods, we must be familiar with

the main packages that allow us to compile C/C++ code. We must keep in mind that C and

C++ are used to write a large portion of major GNU/Linux software.

There are three packages that comprise what is termed the toolchain. The toolchain

is the set of programs required to compile software. These three packages are gcc (GNU

Compiler Collection), glibc (GNU C Library), and binutils. Gcc contains compilers for the

C, C++, Fortran, Objective C, Ada, and even Java programming languages. A compiler

is a program that translates a given language into machine (assembly) code. Glibc is the

library for the C, C++, and Objective C languages. It is developed to maintain a standard

Application Programming Interface for all programs that are compiled with gcc. Further-

more, glibc serves to provide “runtime facilities” to programs which directly or indirectly

use the C library in such a way that they can communicate with the kernel or “access the

underlying operating system”.8 Just about every language in a GNU/Linux operating sys-

tem in some way uses the C Library. Therefore any program, no matter what language it

was written in, indirectly uses the C library. Binutils is the dynamic linker and assembler.

It allows the binaries in the system to execute properly by linking them to the correct C

Library as well as organizing the assembly code.

8README document in the source code for glibc-2.4.

13

1.2.1 Glibc

A prime example of the function of glibc is how it allows tasks to initiate threads.9

Before version 2.4 of the Linux kernel, glibc used LinuxThreads, an implementation of the

standard POSIX threading library. LinuxThreads would call the kernel’s clone() function,

which would copy the task within the task’s address space. The new task would then act

as the task’s thread. There were many problems with the way this worked, including the

lack of compliance with the POSIX standard itself. The solution to LinuxThreads came

with the development of NPTL,10 which worked in conjunction with new calls created in

the kernel to create threads in a manner compliant with the POSIX standard required, but

with tremendous improvements in performance. Ingo Molnar, in his NPTL design paper,

wrote that “In one instance starting and stopping 100,000 threads formerly took 15 min-

utes; this now takes 2 seconds”.11 At the time of this writing, a number of distributions

are attempting to optimize their systems by making their toolchains support NPTL. A de-

veloper carefully watching developments such as NPTL, can more quickly improve his

distribution’s performance once such developments become stable.12

1.2.2 Gcc

Gcc is a package that can be used to optimize a system in many different ways.13 When

gcc compiles a C/C++ program, it translates the code into assembly language for a chosen

architecture. A person using gcc to compile something has many compile-time choices that

he can set. These compile-time choices14 determine the outcome of the assembly code. We

can make the assembly code advantageous for a specific processor or set flags that might

have bearing on any processor. Let us discuss some of these flags.

9Sub tasks.
10Native POSIX Threading Library.
11Molnar’s paper can viewed at http://people.redhat.com/drepper/nptl-design.pdf.
12This is not always
the case, as we discuss later.
13And also fail to optimize.
14Commonly called flags.

14

The first option is the CHOST which is also called HOST. This is set to something like

i386-pc-linux-gnu. This is called the target triplet. The first part of that option, i.e. the

i386, interests us most. The 86 stands for the architecture, x86.15 The number before the

86, 3, is the revision of the architecture. For example, an i686 will work on any processor

that is Pentium II or older. This includes the Pentium III, all versions of the Pentium IV,

Athlon, Athlon XP, and Athlon64. An i586 will work on a Pentium or older, including

all of the processors that i686 will work on. The i486 includes other older models and

the i386 includes even older models in addition to models supported by a higher revision.

The target triplet sets the amount of processor related optimizations. When new versions

of a processor come out, they often have new features16 that, if taken advantage of by a

compiler, will produce faster assembly code. Keep in mind, that while new processors

might have new features, all features of yesterday are retained. This is why we can use

i386 optimized assembly code on the latest x86 processors.

The other options are the CFLAGS and CXXFLAGS variables. CFLAGS set the op-

timizations used by gcc, the C compiler, while the CXXFLAGS set the optimizations for

g++, the C++ compiler. It is important to understand that CFLAGS and CXXFLAGS are

conventional names for variables, while the CHOST is applied during the configuration of

gcc, before its compilation and installation. The way that someone would optimize assem-

bly code for C or C++ is by adding the desired optimization flags to the command line

options of g++ or gcc. So, when we refer to CFLAGS, we mean optimizations for the gcc

C compiler. And when we refer to CXXFLAGS, we mean optimizations for g++, the C++

compiler. There are numerous CFLAGS and CXXFLAGS, and it is often difficult to under-

stand the consequences of them individually and combined. There are roughly one hundred

different optimizations to choose from. The gcc manual provides only brief descriptions of

them.

Gcc has optimization shortcuts that developers can utilize. These shortcuts are opti-

15Commonly called “the PC”.
16Usually new assembly options.

15

mization flags that imply a group of optimization flags. The -O0 shortcut means no op-

timization at all. -O1 or -O sets a minimal group of optimizations that reduce code size

and execution time without significantly disabling debugging code or increasing compi-

lation time. -O2 includes the optimizations of -O1, with additional optimizations that do

not increase the code size, but nevertheless increase performance. -O3 includes all of the

optimizations of -O2 and additionally adds optimizations for those who do not care about

binary size or the loss of debugging ability. Finally -Os sets -O2 and subtracts all of flags

that make the binary large, i.e. -Os optimizes for code size rather than performance.

Some believe that -Os is best because the smaller the binary, the faster a machine will

be able to load it into memory. Others believe that -O3 is best and does not produce code

that significantly harms load time. Yet others believe that -O2 is best because it is a balance

between size and performance.17 The best way to decide which flags to set is to consider

what users do most of the time: Do they launch application after application or do they

open a program and expect to use it for an extended period of time? Even if users load

a number of programs, will they be more interested in how fast these load or how crisply

they can get work done with the program for two hours after load time?

Beyond the optimization groups, there are optimizations that do not belong to any of the

groups, notably -ftracer. This optimization allows other optimization to do a better job

optimizing. This flag is not part of -O3, but has proved to have noticeable effects in bench-

mark performance.18 The flag -fsched2-use-traces, which is used in conjunction with

-ftracer, increases performance very slightly. In gcc versions 4.0.0 and higher, a new

flag -floop-optimize2 has appeared, which is a new version of the -floop-optimize

flag enabled at -O1 or above. The second version of -floop-optimize has negative ef-

fects in benchmarks, illustrating its experimental nature. -ftree-loop-linear improves

loading performance in some situations and has slightly positive effects on benchmarks.

An optimization that is not worth testing is -funroll-all-loops. As mentioned in the

17Performance here is viewed as fast loading times and performance while loaded into memory.
18See benchmark results that appear later in this chapter.

16

introduction, this unrolls loops, eliminating branches in the assembly code. The gcc man-

ual cations that this flag sometimes improves performance, sometimes does not, but always

significantly increases the size of binaries. When the gcc manual notes that a flag may have

regressions, it is not a good idea to optimize with it. There are flags that always improve

performance, but force programs to lose precision. Such a flag is -ffast-math. It sig-

nificantly boosts floating point calculations in just about any case, but it forces significant

losses in precision, potentially forcing programs to do unexpected and improper things. In

general, all flags that are not declared by the gcc manual to be performance enhancing are

not worth playing around with. The flags, apart from -Ox, are carefully chosen by gcc de-

velopers who know what they are doing. Usually, only one or two additional flags added to

-O3 are sufficient for maximum performance. Which one or two to add is something that

can be ironed out by trial and error with benchmarking.

There exist other options that can be added to CFLAGS and CXXFLAGS. This group

of options is architecture specific. The options that we discussed above are options that

work for any machine architecture.19 The group of flags for the x86 architecture is of

most interest to us, because the architecture has a diverse choice of processors and is very

popular. There are a number of x86 flags that are available. Shortcuts exist for these

flags. These shortcuts are applied with the -march=[cputype]. If we have a Pentium II

processor, we would apply -march=pentium2. This shortcut applies what is applied by

-march=i686 (or pentiumpro) in addition to the -mmmx flag. -mmmx allows code to compile

for use with the MMX feature that was introduced with the Pentium II. Likewise, if we

apply -march=pentium4, we will get -march=i686 along with support for -mmmx, -msse,

and -msse2, all features included in Pentium IV processors. New Pentium IV processors

come with the SSE3 feature, which a knowledgeable person can use with the following two

flags: -march=pentium4 -msse3. This causes problems if we wish to distribute binaries

optimized for a Pentium IV because either older Pentium IVs will not work or the newer

19Effects potentially vary from architecture to architecture.

17

Pentium IVs will not be optimized.

1.2.3 Binutils

We can add yet more options when compiling. These options however, are more closely

related to the linker and assembler package: Binutils. The linking options are convention-

ally set in the LDFLAGS variable. Not too many optimizations exist for the linker and

assembler. Improvements to the assembler can be noticed in the speed with which appli-

cations load. An independent developer has been working on a feature in Binutils called

Bdirect. This feature was not accepted into the official Binutils package, with the argument

that what Bdirect accomplishes is best accomplished with prelinking.20 Before we can un-

cover the Bdirect optimization and prelinking, we must understand how binaries connect

with libraries on a GNU/Linux system.

Before 1995, GNU/Linux systems used the a.out format for binaries. In 1995, a switch

was made to ELF binaries, which are still used today. The big advantage that ELF had over

a.out was that a.out required a centralized database to keep track of which libraries the

binary would use and where to find them. ELF relies on a dynamic linker to load all nec-

essary libraries at start time. The disadvantage is that it takes the dynamic linker more

time to load the libraries than it takes an a.out to parse its database. Libraries, however,

can be located in different locations on a system. As a result, it was miserably difficult to

maintain the databases in the a.out implementation, especially as the size of applications

grew. In 2003, Jakub Jelnek developed a tool called prelink. This tool was created “to

bring back some of the a.out advantages to the ELF binary format while retaining all of

its flexibility”.21 Without getting into the details of implementation, prelink utilizes the

dynamic linker to collect all of the libraries that will be required by a binary and modifies

the binary so that it knows where to look. Prelinking is not done by setting LDFLAGS

20See the mailing list thread here: http://sourceware.org/ml/binutils/2005-10/msg00436.html.
21Page 2 of Jakub Jelnek’s paper is here: http://people.redhat.com/jakub/prelink.pdf.

18

during compile-time or anything like that. The prelinking tool is run on a system that is

already built and needs to be re-run every time a change occurs. If we prelink the system

and later install program x, we will need to run the prelinking tool over x’s binaries. Pre-

linking has been shown in countless benchmarks22 to provide loading time decreases of at

least fifty percent. Prelinking sounds nice, but Michael Meeks, the developer of Bdirect

for Binutils, disagrees, arguing that prelink does not work well with all binaries23 and that

prelinking must be maintained by the end user. Bdirect works in a similar way as prelink –

we will not get into the technical differences. Its implementation, however, comes during

the compilation of a program. As a result, the Bdirect implementation can definitively work

with dlopen binaries. When we compile a package, it usually allows us to set LDFLAGS.

Bdirect is implemented by the developer by adding -Wl,-Bdirect to the LDFLAGS. Cur-

rently, Bdirect has not made it into the official binutils package, but is added by Gentoo

developers as part of their patches for binutils. Bdirect is not the type of optimization

that a developer would like to add to his distribution in its current state, but it is certainly

something that a developer needs to keep an eye on.

1.3 Benchmarking

Now that we have discussed how a system is optimized, we can cover how to benchmark

a system to ensure its optimization rather than its performance regression. It would be ideal

to optimize packages on an individual basis because each package performs different sets

of instructions which can be organized better under different CFLAGS.24 However, it takes

time to choose CFLAGS, compile a package, benchmark the package, test the package

for bugs, modify CFLAGS, compile, benchmark, compare, modify CFLAGS, compile,

etc. For practical reasons we are forced to choose a set of benchmarks to compile and

22Benchmarking prelink is easy because the loading times of any application can be recorded.
23In particular the dlopen binaries, which are becoming popular.
24From here on, CFLAGS additionally refer to CXXFLAGS.

19

run with the toolchain built for our distribution. Once we test our toolchain with various

configurations of CFLAGS, we choose which flags to apply to all of the packages that

will be compiled with our toolchain. With some of these programs, we might need to make

exceptions and optimize in a special way.25 If we are unlucky, the application will not work

properly. The first thing to do, in the case of a problem not easily traceable, is to recompile

it without optimizations, but experience suggests that such problems rarely occur.

The author has developed a simple program, written in Bash, called sysmark, that al-

lows a developer to test a toolchain with four different benchmarks. There are six bench-

marks in total: four of them test the performance of compiled C and C++ code, while the

other two test the performance – particularly the interactivity – of a kernel. Two of the

four toolchain benchmarks are actual benchmarks, whereas the other two are real programs

whose speed depends on the performance of a processor as well as efficient assembly code

for the processor. Sysmark’s intended use for setting CFLAGS allows sysmark to compile

and run all or a combination of user chosen benchmarks and to save or print the results. The

user can then set another combination of CFLAGS and compare the results to the previous

ones. It is imperative to describe each benchmark and discuss some of their results under

different circumstances.

1.3.1 Scimark

The first benchmark is Scimark. This benchmark was initially written in Java and

later rewritten in C. It is compiled with the gcc compiler and can help determine optimal

CFLAGS. Scimark tests how quickly it can carry out a number of mathematical processes.

It performs five distinct mathematical computations. The first is the Fast Fourier Transform

(FFT). This algorithm is order O(NlogN) and measures floating point arithmetic in addition

to how well a compiler handles loops. This algorithm can be found in a lot of scientific and

media-encoding software and therefore is potentially a measure of real application perfor-

25Usually these packages document which optimizations are inappropriate and appropriate.

20

mance. We use the term “real application performance”, because benchmarks often focus

on algorithms that may never be used in programs and thus are not indicative of anything a

user will ever use. The second algorithm is Successive Over-relaxation (SOR). This algo-

rithm is also a floating point arithmetic benchmark used in mathematical software to solve

partial differential equations. Users normally would not encounter this algorithm. The

third algorithm, Monte Carlo, is like SOR in that it is seen in mathematical software and

measures floating point arithmetic. The fourth algorithm is Sparse Matrix Multiplication.

This algorithm benchmarks integer arithmetic, and is found in mathematical software. The

final algorithm is LU factorization. This is a good algorithm for seeing how well floats, in-

tegers, and arrays are handled, and is also found predominantly in mathematical programs.

Although most of the algorithms fall outside of the “real application performance” cate-

gory, they are excellent for viewing which CFLAGS might improve performance in one

algorithm, and degrade performance in another. For example, on a Pentium IV 3.07 GHz

machine the following results can be noticed:

CFLAGS -O0 -O3 -O3 -O3 -O3

-march=pentium4 -march=pentium4 -march=pentium4

-funroll-loops -ftracer

FFT 141.12 310.36 317.13 317.13 318.29

SOR 446.05 458.80 458.80 450.22 460.99

Monte Carlo 53.90 81.34 167.25 167.77 167.25

SparseMatMult 231.58 782.52 801.66 766.50 804.12

LU 348.30 1054.31 1110.03 1351.82 1128.37

Average 244.19 537.47 570.97 610.69 575.81

All numbers are in mega flops, the compiler version used was gcc-3.4.6 with glibc-2.3.6.

We can see from the results that the unoptimized code with -O0 is the slowest. A

tremendous boost is given with -O3 optimization and additional boosts are provided with

-march=pentium4 and -ftracer. A somewhat significant average boost is given with

-funroll-loops. Observe how the -funroll-loops optimization increased the results

of two algorithms, Monte Carlo and LU, and degraded the performance of another two.

21

-funroll-loops, as predicted by our previous descriptions, optimized performance in

certain areas while degrading it in others. This example shows that -funroll-loops is

not a good optimization flag to build an entire system with. -ftracer, on the other hand,

is a good optimization because, because it boosts the performance of all of the algorithms

tested, even if only slightly.

1.3.2 Bashmark

The next benchmark is Bashmark. Bashmark is written in C and designed to test the

performance of applications. In our terms, it tests the quality of code compiled by the

toolchain packages. Bashmark consists of five relatively simple tests. The first of the

tests includes doing a great deal of integer arithmetic. The second test examines floating

point arithmetic. The third reads and writes to memory with varying amounts of data.

The fourth part tests memory deallocation and allocation, a measure of how well programs

can be loaded into or unloaded from memory, how well they collect garbage, and how

well they clean up when exiting. The last part tests multi-threading, or how well process

threads can be launched. Bashmark is a benchmark whose results do not represent real

application performance. Applications do not purposelessly add and subtract numbers.

Bashmark nevertheless helps us see how various CXXFLAGS affect results. Usually we

keep CFLAGS and CXXFLAGS the same to have a certain level of consistency. On the

Pentium IV machine the following results were recorded:

CXXFLAGS -O0 -O3 -O3 -O3 -O3

-march=pentium4 -march=pentium4 -march=pentium4

-funroll-loops -ftracer

Integer 1109 1209 1603 1601 1512

Floating Point 21 23 23 23 23

Memory r/w 609 1183 2805 2809 2810

Memory de-/alloc 290 506 505 505 505

Multithreading 728 698 701 702 703

The numbers are bashmark’s “score” values. The toolchain is the same as with the previously shown

scimark results.

22

First of all, the floating point test shows very poor results. There are two possible

reasons for this. The first is that the Pentium IV does not handle floating point arithmetic

well, and the second is that the compiler does not produce good floating point code for

the Pentium IV. The results could also be due to a combination of the two. The results

show several unexpected drop offs. For example, the unoptimized code scores 728 in the

multi threading test, while the rest show at least 25 points less than that. The multi threading

benchmark is not always consistent on a symmetric multiprocessing capable processor such

as the Pentium IV that the benchmark had been run on. It probably has something to do

with daemons and other applications that run on the machine and occasionally give up the

extra thread slot for a number of threads. Bashmark is not the most consistent benchmark

out there, but one can really see the differences with optimized and unoptimized code. We

can see slightly more solid results on an Athlon64 1.8 GHz processor using gcc version

4.1.1 and glibc 2.4:

CXXFLAGS -O0 -O3 -O3 -O3 -O3

-march=athlon64 -march=athlon64 -march=athlon64

-funroll-loops -ftracer

Integer 627 1164 1171 1177 1185

Floating Point 172 1149 1148 1148 1154

Memory r/w 1693 1757 1694 1717 1700

Memory de-/alloc 571 701 589 655 662

Multithreading 2339 2430 2415 2357 2345

The numbers are bashmark’s “score” values.

The lack of a drop off with -ftracer on the integer test perhaps indicates that on a

Pentium IV the -ftracer flag should not be used for CXXFLAGS. We do not see much

of a harmful effect with -funroll-loops, but also do not see any benefit either. Also

notable is the lost performance when setting the -march=athlon64 flag. Theoretically,

we would expect that flag to give us a nice lift – especially in floating point arithmetic –

because it takes advantage of Athlon64’s SSE3. However, we saw slightly degraded results.

We have to keep in mind that gcc version 4.1.1 is still a fresh development branch with a

23

large number of regression bugs requiring fixing. If we look at results completed by a

toolchain with gcc version 3.4.6, on the same Athlon64 machine, we can see significant

advantages in memory read and write as well as integer tests. We also see significant

drops in floating point and memory deallocation and allocation tests. The CFLAGS used

under 3.4.6 with the benchmarks were -O3 -march=athlon64 -ftracer. The bashmark

benchmark forces us to really think about what might be going on in all parts of the system.

It is best to take bashmark’s results with a grain of salt.

1.3.3 Lame

The Lame part (no pun intended) of the sysmark benchmark suite takes a real program

and notes the time that it takes to complete an operation. Lame is a wave to mp3 encoding

program. A wave file is a recording of uncompressed audio, while an mp3 file is encoded.26

First, a five hundred megabyte wave file is generated, then Lame is instructed to encode that

file. The file is generated from a section of one of the author’s old essays for a social science

course. The wave file was generated with Festival, a program with the ability to convert

text into audio. The small wave file is copied and assembled into a five hundred megabyte

file. Lame – intelligent program that it is – normally notices that the large file has many

repetitions and encodes only what is not repeated. To force Lame to encode the full five

hundred megabytes, it is passed the -r option. Lame is written in C and compiled with gcc.

Lame produced the following results on the Pentium IV:

CFLAGS -O0 -O3 -O3 -O3 -O3

-march=pentium4 -march=pentium4 -march=pentium4

-funroll-loops -ftracer

Time Taken 8 : 59 4 : 35 4 : 25 4 : 31 4 : 25

Values are in minutes:seconds.

26An encoded file can be thought of as compressed.

24

Lame produced expected results. Notice the regression with -funroll-loops. This

time -ftracer did not improve or degrade anything. This shows that -ftracer can give

us boosts or not change anything at all.

1.3.4 Povray

The next benchmark, Povray, a program written in both C and C++, is a persistence-

of-vision ray tracer. Povray is used for video editing, in particular, creating high quality

three-dimensional graphics. Video editing is a very intensive operation, which involves

countless different algorithms and manipulation of vast amounts of data. Povray comes

with a benchmark settings file along with a collection of scenes to do encoding on. Povray

takes anywhere from thirty minutes to thirty-five minutes on the Athlon64 on which we

conducted benchmarks. As much as we would like to have a comparison of how Povray

responds to various CFLAGS, such data is impractical to gather due to the length of the

benchmark, especially on -O0. The benchmark was conducted on a number of distributions:

Distro Arch Crux Debian Fedora5 Gentoo LFS Slackware Trustix

Toolchain gcc-4.0.3 gcc-4.0.3 gcc-4.0.3 gcc-4.1.1 gcc-4.1.1 gcc-4.0.3 gcc-3.4.6 gcc-3.4.4

glibc-2.3.6 glibc-2.3.6 glibc-2.3.6 glibc-2.4 glibc-2.4 glibc-2.3.6 glibc-2.3.6 glibc-2.3.5

Total Time 31 : 37 32 : 07 31 : 43 31 : 38 32 : 59 31 : 37 33 : 47 33 : 56

The following CFLAGS were identical in all tests: -O3 -march=athlon64 -pipe -ftracer. Values are

in minutes:seconds.

The results yielded by Povray are somewhat surprising. First of all, note that Fedora

Core 5 and Gentoo have identical toolchains, but Gentoo lags in the results. Fedora Core

5 is an i386 optimized system and theoretically should lag significantly behind Gentoo,

which is i686.27 Povray is an extremely consistent benchmark,28 so the margin of error is

a matter of seconds at most. The best explanation for this anomaly is the type of patches

27The Gentoo Linux is the author’s optimized distribution of choice.
28The author has run it over on selected systems and it has always yielded results within a one second

differential.

25

the Fedora and Gentoo developers might have added to the toolchain packages. Fedora

and Gentoo are known to add patches that speed up their toolchains. Note also the results

that came out of two i686 optimized distributions running identical toolchains: Arch and

Crux. The discrepancy in their results is also very odd. Crux does not add too many special

patches – just a few patches that fix bugs. Arch does not add any patches to gcc whatsoever,

but adds a number of them to glibc. We can also see that when Povray was compiled by

older compilers, its performance dropped accordingly.

1.3.5 Kernel Benchmarks

The next two benchmarks are kernel benchmarks. Interbench serves to measure kernel

interactivity, which, as we have mentioned earlier, is how fast a system responds to a user’s

task switching. Lmbench stress tests a GNU/Linux system and outputs detailed results

concerning all sorts of kernel functions. Benchmarking with these two benchmarks would

have yielded interesting results half a year ago, before vanilla-sources adapted a large

number of patches that had set mm-sources and ck-sources apart in their performance.

Currently, not much of a noticeable gap exists between the kernels. We must utilize these

benchmarks when new patches are adopted into the branches to see where the advantage

lies. The developers of vanilla-sources are very wary of introducing new, untested

code into their branch, even if the code induces significant improvements. As a result, the

experimental branches occasionally come out significantly on top in performance.

26

Chapter 2

Package Managers: Making Life Easy

Though many novice users do not agree, package managers make life with GNU/Linux

very easy. Their argument goes: why can’t I just install what I want with the program’s

installer? The problem is that very few packages actually have the type of graphical installer

that these users presume. The vast majority of packages are installed by means of the

command line interface.1 Developers of the packages release their software either as a

source package that needs to be compiled or as a package for some sort of package manager.

If a user wishes to avoid the package manager, most of the time he will have to know his

away around the CLI to unpack the source, run the configure script or scripts, run the make

scripts, and then clean up if desired. If a user does not know which scripts to look for and

run, then he will usually look for documentation provided in the software package. Most

of the time the documentation gives the basic steps for installing a package. However, if

the user needs to do other steps or configure a package to his liking, he will have to read a

lot more documentation and sometimes even the source code itself. Although not always

the case, a package manager is often useful, because it allows a user to get what he wants

without reading any extra documentation.

Another tremendous advantage of a package manager is the ability to uninstall pack-

ages. When a user installs a program from source, half of the time there will not be an
1CLI.

27

uninstall script. Furthermore, any generated uninstall script might be deleted when a user

cleans up the package’s temporary building and extracting directory. A package manager is

usually designed to track which files a package owns and allows users to uninstall the pack-

age with a single command. Before we discuss why a package manager is such a special

piece of software, we will first describe a brutal Linux From Scratch installation procedure.

This procedure shows the main motivation behind the creation of package managers. It

also reveals what a package manager does behind the scenes.

2.1 Linux From Scratch

Linux From Scratch, LFS, is considered by many to be a GNU/Linux distribution. LFS

does not give its users any media to install from or any packages to download, with the

exception of initialization scripts and patches. LFS gives its users instructions in the form

of a book to be downloaded, purchased, or read online. This book contains a full command

by command installation guide. A user who follows the book bootstraps a compiler, builds

a functional toolchain, and then uses it to build vital GNU/Linux system packages. Upon

completion, a user is free to follow the Beyond Linux From Scratch book, where he can

follow further instructions on how to install packages that he might want to use on a day-

to-day basis.2

The LFS procedure is time consuming, even if the user sets all variables in such a way

that he can get away with copy and pasting commands. If a user wishes to deviate even a

little bit from the LFS book, he might end up consuming yet more time.

LFS starts out by setting up a safe building environment. This safe environment consists

of the creation of a new user, partitioning space on a hard drive, mounting it, setting a

variable describing the location of the mount point, customizing the user’s system variables

such as PATH, and fixing permissions in such a way that the user can only write where we

2Like Firefox, OpenOffice, and other applications that require a large number of packages to be installed
on the system as dependencies.

28

want him to. LFS then proceeds first to create a separate, minimal toolchain, which will

be used to build a complete toolchain. Building something small at first to build something

large is referred to as bootstrapping. LFS does a bootstrap of a system because, a user’s

host system might have a compiler unable to build properly a fully functional toolchain. It

can build a minimal toolchain, but problems might arise in building a full toolchain. A user

using ICC3 has no assurance that ICC will compile gcc properly. Bootstrapping assures

that the resulting compiler and tools will not be broken.

Creating a temporary system4 begins with the installation of binutils. The temporary

system is installed in a special directory and, because binutils is the linker, we install it first

so that everything else links to libraries in the special directory instead of to the host sys-

tem’s libraries. When installing binutils – just like most other packages – we first download

its source code.5 We extract the source code as the user created for the LFS install. We

create a build directory outside of where we extracted binutils and run binutils’ configure

script from inside the directory where we plan to build binutils. Had LFS not provided

options to use to the configure script, we would have to read binutils’ documentation. Con-

figure scripts, conventional in GNU/Linux programs, first check whether your system has

the needed tools to compile the package, then generate other scripts, used in later steps to

build and install the program. These generated scripts might vary depending on what the

configure script discovered and also according to what options were passed to the configure

script. These options range from choosing what parts to leave in or out of the program to

specifying the location where the program will install.

If one is fortunate, one can pass the --help option to see what they can change in the

configure script. If the developers of the package updated what the --help option displays,

then the user will see all of the options. If not, then the user will have to search for the de-

veloper’s documentation. Also, since the output of --help is condensed, it is very difficult

3Intel’s C Compiler.
4LFS calls this the minimal system.
5LFS provides links for where to download source code. Had LFS not provided this, we would have to

either use a search engine like Google or know that we can find many of the packages on gnu.org.

29

for an unknowledgable user to understand what the options actually do. Therefore such a

user will have to find the documentation relating to the various options. An inexperienced

GNU/Linux user might spend hours searching for and reading documentation just to install

one relatively small package such as binutils. In a way, LFS reads all of the documentation

for a user and highlights the important parts. When building binutils for a temporary sys-

tem, LFS instructs users to apply two options: --prefix=/tools and --disable-nls.

The first option tells the script to install the program into the /tools directory, the “spe-

cial” directory mentioned earlier. The second option tells the script to generate scripts that

do not install NLS, the native language support feature. The NLS feature allows binutils

to work for users who desire to build a system that works in a language other than Ameri-

can English. Because this is not a permanent binutils, LFS attempts to trim down binutils

as much as possible. Trimming down packages during the installation of the temporary

system is consistent with the spirit of bootstrapping and debugging.

After everything goes well with the configure script (we will later discuss what happens

when it fails), we build the package using the make utility. By convention, the configure

script generates scripts called make files, special scripts run by the make utility. Why not

use an ordinary script and not have to rely on make? The reason lies in the fact that the

make utility is built “to determine automatically which pieces of a large program need to

be recompiled and issue the commands to recompile them”.6 In other words, when make

fails7 and the user makes an adjustment and then resumes make, make will resume from

where it left off, unless the user tells make to do otherwise.

The make utility also makes it convenient for developers to create options for a user

to choose from. Configure scripts are not make scripts because the configure script needs

to run from beginning to end in order to collect the information needed to generate make

files. It is important to keep in mind that configure scripts are written to be compatible

with a multitude of shells and systems that might not use the make utility. This means

6GNU Make Manual Page.
7To be more precise, this is when the command that make invoked failed.

30

that if the programmer modifies it accordingly, a configure script can generate scripts other

than make files.8 After the configure script runs, by convention, running a simple make

builds the package, that is, compiles it. If a developer did not follow conventions, then he

should have specified in the documentation what option to pass to make in order to run all

procedures. After building the package, we then run make with the install option, that is,

make install. This copies the compiled binutils package to the actual directory that we

set as an option to the configure script.

Having installed binutils, we proceed to install gcc. When we install the gcc package for

the temporary system, we install only the compiler for the C programming language. The

reason we only need the C compiler is that all of the software installed for the temporary

system is written in C and so a C compiler is sufficient to compile the compiler that will be

used permanently. After running the configure script, we do not build the package with a

simple make. We pass the bootstrap option to make. The bootstrapping option has nothing

to do with the overall bootstrapping procedure being done. The generated make files in gcc

build gcc by bootstrapping it. Without getting into too much detail, a tiny portion of gcc is

built. This tiny portion is then used to build a larger portion and the larger portion is used

to build yet another larger portion with more functions, et cetera, until we get a compiler

that can compile C programs. After gcc bootstraps, we install it as usual.

Installing binutils and gcc was relatively easy, but getting glibc installed is at least twice

as difficult. First of all, before doing anything with glibc we need to copy a “freeze” of ker-

nel headers to the appropriate place. Without going into details, the Linux kernel used to put

a number of header files into a system’s include directory where header files are convention-

ally placed. The problem was that these headers would change drastically from one kernel

version to the next, and an independent Linux-libc-header project was started “to maintain

an Application Programming Interface stable version of the Linux headers”.9 Second, there

are about eight configure options, most of which trim the resulting package down, but some

8This is a very rare occurrence.
9LFS, 5.5.1.

31

of which would normally require more than the usual amount of documentation reading in

addition to experience. One of the options enables NPTL, described in the first chapter as

something that we want these days. This option is not something like --with-nptl, but

rather --enable-add-ons. Another option is --with-binutils=/tools/bin. This tells

glibc make scripts to compile using the binutils located in our temporary system directo-

ries. As we shall see shortly, this not an obvious option to add. After that, the regular make

and make install is run. However, this is not all. The minimal toolchain is installed, but

needs adjusting. This adjusting step is where LFS users make most of their mistakes. First,

LFS instructs the user to backup ld, an application installed by binutils, and replace it with

an ld which links programs to programs installed in the directory of the temporary system.

Then a user runs a series of commands that locate gcc’s “specs” file, runs a sed command

that enters the specs file, and replaces the directory of the host system with the directory of

the temporary system. This allows the new toolchain to use itself, without relying on the

host system’s toolchain. In other words, anything compiled by the LFS user is compiled

with, and only with, the toolchain just built.

LFS wisely instructs its users to see if the correct toolchain is used by telling them to

create a simple C program, compile it, and read the binary file that results with readelf.

The output of readelf must display that the binary will request the new binutils as the

interpreter. If this is not displayed, then the user either forgot to do something, did not

do something correctly, or deviated from the LFS book without correctly considering what

additional things might need to be done or not done. The slightest of mistakes can be

made. For example, the LFS book has its users set the PATH variable into the shell. The

PATH variable tells the shell where to look for executables. If we make an executable and

wish to launch it from any location without entering the location of the executable, we

either place the executable in a directory contained within the PATH variable or add the

directory in which the executable resides to the PATH variable. The variable looks like

this: /usr/local/bin:/usr/bin:/bin:/opt/bin. It is a list of directories separated by

32

colons. The directories to the left of the colon have precedence over those to the right.

This means that if two executables are both called readelf and are located in /usr/bin

and /bin, the shell will launch the one that is in /usr/bin. If we place /bin in front

of /usr/bin, then the shell will execute the one in /bin. When LFS users set the PATH

variable, the first location in it is supposed to be the temporary system directory. This allows

the new toolchain executables10 to be used when they are available rather than the host

system’s. Using the new executables consequently allows the the user to build a temporary

system linked to its temporary directories.

If the user did not make any mistakes, he then moves on to install a few packages

required to test the toolchain and proper functionality of other packages. When the user

finishes that, he goes on to build a bigger, stronger toolchain. The order of installing the

toolchain package mattered before and continues to matter at this stage. First, gcc needs

to be built, but this time with support for C and C++. Although this is still not the final

compiler that will be built for the final system, it is just as robust. The new gcc will be

built in such a way that it links to the glibc libraries located in the temporary system. After

gcc, binutils is built with the newest gcc. Glibc does not need to be rebuilt, because it was

already linked to the libraries in the temporary system. Here is where the toolchain is solid

enough to be used to install a minimal set of programs that will allow the temporary system

to do everything, without needing any help from the host system. These programs include

the make utility, shell,11 tar utility, patch utility, Perl, and more: about twenty in total.

Once the temporary system is ready, the vital chroot12 procedure is run. The chroot

procedure involves first configuring the temporary system’s shell, providing it necessary

variables such as PATH, mounting devices and random access memory from the host sys-

tem,13 and finally changing root from the host system’s / to where the LFS partition is

10That are installed in the temporary system directories.
11Bash.
12Change root.
13This is so that the temporary system can communicate with the kernel’s memory and task management

correctly and access devices that it might need.

33

mounted and loading the new shell such that it believes that / is /mnt/lfsmountpoint –

or, wherever the partition was mounted, if a partition was even used. The new shell only

sees a /tools directory in which the user has been building. The shell does not see the

host system. PATH is now set such that the /tools executable directory is last and before

it are the conventional /bin, /usr/bin, etc. The idea is that the final system will be built

to gradually replace the temporary system until it becomes an independent system capable

of rebuilding itself and much more.

This is exactly what is done after the directory structure is created; among other things,

glibc is installed – after Linux-headers are copied of course. This time, a number of patches

are applied to glibc,14 localization abilities are built, and a full scale glibc is installed into

the shell’s root, which is the final system. The toolchain adjustment procedure done before

is redone backwards so that everything built links to the final system’s libraries rather than

what is in /tools. Binutils comes next, followed by gcc. Both are patched, built with

full scale abilities, and installed upon the completion of a number of checks. If the new

toolchain does not work and link correctly, the user can usually continue, but will break

the system if and when he deletes /tools. If the user knows about this and starts looking

for where errors were made, he might end up backtracking all the way to the beginning

and basically re-doing everything that was done, which might take at least six hours to

complete.

If everything works as it should, the user proceeds to install the minimal set of programs

required to boot into the new system. Upon building these packages, the user might receive

compile failures or, if he is more fortunate, configure scripts complaining about the lack of

a library. Sometimes the user can find a workaround to get the package working correctly,

but only until the workaround causes a problem much later on. For example, package foo’s

configure script fails because it can not find header bar. The user finds the header in the

normal /include directory and guesses that foo might want the bar in its source directory

14These patches fix bugs and make improvements.

34

where the user is building the package. The workaround works and the package is built.

After three hours of installing additional packages, another package fails. After hours of

troubleshooting, the user determines that although foo found bar and built successfully,

the second package now attempts to use foo, but can not do so properly because foo found

bar in the wrong place. The better workaround would have been to edit foo’s configure

script to search in the /include directory for bar, rather than in the source directory.

If one follows LFS without any deviations or mistakes it is highly unlikely that any

problems will occur. Any customization usually requires a lot of time and hassle. Every-

thing has to be done manually. If, for example, a user wishes to make his final toolchain

with a horde of patches used by other distributions, the user will first have to download

the patches. If he is lucky, the patches will all be in one place. After that, he might want

to read them to see which ones are really needed.15 Applying the patches will be even

more annoying. The LFS book provides links to patches which are all consistent.16 When

a user applies patches originating from different hands, the user has to spend extra time

guessing which strip option to use so that the patch applies. A patch contains a collection

of file names to modify followed by which lines of those files to modify. The file names

can differ depending on how the patch was created. The file name paths might or might

not start from a package’s top level build directory.17 To apply a patch that starts with the

top level directory one would have to add the -p1 option to the patch, which would strip

that leading directory. If the patch does not come with a leading directory, then we would

have to use -p0 with the patch to prevent any stripping. We could open the patch and see

what stripping options to apply, but if many patches are applied manually, it takes a lot of

time – not so much processor time as typing time – to open them, put together the patch

command, and then repeat. It becomes faster to try the patch with -p0 then -p1. This has

15Why do the extra work of applying a patch for gcc relating to flags for the MIPS architecture if the user
will not be using that architecture?

16LFS also provides links to patches downloaded from one location: LFS’s servers.
17If we extracted gcc version 4.1.1, by default it would be in a directory named gcc-4.1.1, its top level

directory.

35

to be done with many patches and becomes very tedious.

When building a GNU/Linux system from scratch, a user might encounter the situation

in which two distinct packages install the same files. Both packages might build two li-

braries for example that are installed in the same exact place, but might function slightly

differently. LFS instructions tell the user when this happens and tell the user what to do in

order to avoid overwriting files that might not be good to overwrite. If a user does not fol-

low the excellent LFS instructions, then he might not notice that files are being overwritten

during installation and never figure out the reason why something broke later on.

All of these things are problems that one faces when using GNU/Linux on one’s own.

However, these are only gripes compared to even larger problems. The first of these prob-

lems has to do with uninstalling packages. Let us say that we installed our system, booted

into it, configured it to our liking, and installed many more programs, but now we want to

uninstall something that we do not like. If we are very lucky, we did not delete the source

directory in which we built the package. If we are even more lucky, a make file in the

directory will contain a listing of uninstall commands. If we are not that lucky, then in the

worst case scenario we will have to install the package and figure out which files it wrote

to our file system. After that we will have to write a script – unless we have the patience

to do it command-by-command – that deletes all of the files. Yet, even this is not the peak

of the troubles we might face. What if we receive information that application foo version

3.4 has security bugs that are fixed in version 3.5? We will want to update foo-3.4 to

foo-3.5. The easiest course of action would be to just install foo-3.5 hopefully overwrit-

ing foo-3.4. Doing it the easiest way might not be the best way, because there might be

files that foo-3.5 does not overwrite because foo-3.5 does not need to use those files.

We would therefore have useless files lying around on our hard disk.

Updating simple packages is not nearly as difficult as updating a toolchain package

such as gcc. Newer versions of gcc have regression and bug fixes. To make use of many

of these fixes, we first will overwrite the files of the old gcc with the newly built ones.

36

Then we will have to recompile every single package compiled with a gcc compiler.18 To

recompile every package, we will have to go through most of Chapter 6 of the LFS book,

followed by reinstalling all packages that we installed afterward. Not surprisingly, this

is time consuming, boring, and even more so if any mistakes require troubleshooting. A

person might have to work eight hours a day just to maintain their system and fix problems

with it. Documentation provided by the LFS project certainly brings this value down, but

not so much so that a person would actually use such a system for serious purposes.

2.2 Package Management Techniques

Luckily, package management provides the solution to the torture brought about by an

LFS system. The package management system just described is perhaps the simplest one:

keep everything in your head.19 This, as we have described, is very inefficient. We can

think of working with GNU/Linux the LFS way as we would view writing programs in

assembly. We can do anything with assembly, it just takes a lot of time. The same is true

with an LFS system – we can do anything with it, it just takes a lot of time. To accomplish

large tasks, higher level languages are created which group functions of assembly together.

Likewise, package management systems are created by grouping together things done on

a primitive level in an LFS system. There are high level programming languages and then

higher level programming languages. Perl, for example, is a higher level language than C

because it groups together much more than C does. The same applies to package managers.

The highest level ones, such as portage, yum, and aptitude, group many more operations

together than rpm, dpkg, and ports. All of these group even more operations than the

package management techniques that we will discuss in the upcoming paragraphs. We

have described the lowest level and now are ready to discuss the higher levels. On the level

18This is to take advantage of fixes to improve resulting assembly code.
19Hopefully memory will be good enough to fix problems when they arise and to remember which pro-

grams wrote which files.

37

just above the LFS level are a number of techniques. These techniques revolve more around

policy than actually writing any helper scripts.

2.2.1 Directory and PATH Method

The first technique is installing every single package in a different directory and modi-

fying variables such as PATH to include all of the individual package directories. This way,

uninstalling packages is easy, as there is no fear that a package might overwrite files that

we do not want to overwrite, and updating a package involves only a fairly simple change

in the PATH variable to point to the new package. Perhaps the greatest benefit to this pack-

age management technique is easily having multiple versions of packages installed on the

same system. Having multiple versions of the same package allows us to quickly revert to

an older version if the new version does not work. This can be very handy if we update a

program that other programs depend on. However, if the program has some ABI20 changes,

it might require that other packages be rebuilt. If we need to use those packages more than

we need to work with the new package, we change our PATH variable to give precedence

to the older package. Uninstalling a program is just a matter of removing references to it in

system variables and deleting the package directory.

This sounds great, but there are drawbacks. A normal user will probably install around

five hundred packages on the system. This means that the PATH variable will have five hun-

dred entries. This also means that the configure options when installing packages will be

very messy. What about libraries and headers that packages usually install into /usr/lib

and /usr/include? We will have to somehow force packages to look for libraries and

headers not in one central location, but all over the place. Therefore, maintaining such a

system can become just as cumbersome as doing so without this technique. We will not

only have to edit a bunch of variables, but also get our ELF binaries to search in appropriate

locations – no easy matter.

20See section 2.7.2.

38

2.2.2 Directory and Link Method

Another technique also involves installing packages in separate directories, but instead

of fixing up a set of system variables, linking everything to the appropriate directories. This

solves any problems with ELF binaries and having to maintain tremendously long PATH

variables. However, it creates other problems. First of all, once we install a program,

we will have to link every single file of that program to the appropriate directories. This

problem is lessened if we are adept at writing scripts that do this for us. However, we

will not get away with just deleting the directory where the program is installed. If we

created hard links, then deleting the directory will not delete the inodes of the files in the

file system, which means that the program will not go away. If the links that we created

were soft links, then what we have left are a bunch of files that point to nowhere. We can

of course delete the symlinks first by automating the process with a script. However, the

problem of programs overwriting files returns if we rely on automated scripts. We do not

overwrite files however, but rather links, which is not so bad, but we will still have to clean

up the mess by pointing a bunch of links to the right places. In short, this technique is also

quite cumbersome.

2.2.3 Timestamp Method

Another technique is designed to improve the ability to update packages. This technique

takes advantage of timestamps. Every file on a GNU/Linux system has three timestamps:

access time, modify time, and change time. The access time is when the file was created.

The modify time is the last time that a file was modified. The change time is the last time

when an external change was made to the file, such as the creation of a hard link. When we

install a package, we record the range of time during which it was installed.21 If we wish to

uninstall it, we can easily write a script which uses the find utility to find all files created

21The best way to do this would probably be to run a script that records the program’s name and its
corresponding start of installation time and then run another script that records the time when the package
finishes installing.

39

during that range of time. We can update any package, in the same manner, by cleaning

out any files installed by the old version which are no longer needed. The only thing that

we have to worry about maintaining is a database of timestamp ranges for everything that

we installed. Although we can not install multiple versions of the same programs with the

same ease as through other techniques, we gain a tremendous advantage in simplifying how

we know which files belong to which package.

The timestamp approach is not without major drawbacks, however. Users may not

install different packages at the same time. This can be done accidentally. For example,

on daylight savings day, the clock shifts back one hour. If the user installs a program one

hour after installing another program, the timestamps for both will be the same and when

updating one of them later, the second one will unexpectedly break. The timestamped

approach also can not be used if there is the possibility that two or more people will log in

to the machine and install packages at the same time or if one person is in the process of

installing a large program, but simultaneously decides to “save” time by installing another,

smaller package.

2.2.4 Users method

There is yet another package management technique. In this one, every package is

installed as a separate user. What this accomplishes is that we can uninstall programs by

using find to track down all files that are owned by a package user. The user name is the

package name, so we do not have to remember any names – nor any passwords, because

no one will log in as them. Installing programs in this manner provides benefits, but is

somewhat involved. We not only have to create a new user every time, but we also have to

set permissions such that incoming packages can write to the system without overwriting

existing files. How this is done is somewhat tricky and we must be on the same page

regarding our understanding of GNU/Linux permissions. Permissions in GNU/Linux are

divided into three sets. There are permissions for the owner of the file, for the group to

40

which the file belongs, and for everyone else. Normally, software is written so that the

owner of the file22 has full privileges, the group the file belongs to has read and execute

privileges while everyone else has also read and execute privileges. There is also the ability

to make things “sticky”. This permissions attribute allows for writing to a location without

overwriting any files . In the user package management technique, package users are added

to an “install”group, which allows the package user to write but not overwrite. This way,

when a package is installed, it prompts when a package is bringing in files that already

exist.23 This gives the person in control of the installation the preemptive warning needed

to decide what to do: either back the file up or delete it.

Updating packages is also a little bit tricky. The person updating can first delete all

files owned by a package, or back them up and then install the new version of the package.

This, however, presents problems for some packages. For example, the Coreutils package

contains programs that allow files to be moved and copied around.24 If we remove this

package for an update, then we will not be able to install the update unless we move files out

in such a way that we can temporarily modify the PATH environmental variable. Updating

a package such as glibc is also a nail-biter because, you have to move out vital libraries.

You first have to build the package before moving the libraries out because otherwise gcc

will not have the libraries needed to build the new version of glibc. These are not really

disadvantages, however. In fact they are advantages, because it allows the person to think

about what is going on and act accordingly. The disadvantages come when a package is

shipped to update its permissions to 4755.25 In such a case, a person using the package

users method has to edit the package’s appropriate scripts: either the configure scripts

or make files. The edit process can be cumbersome, and if it is automated there is the

potential that something other than permissions will be modified. Another disadvantage

is that a number of packages may wish to update /sbin/ldconfig in order for dynamic

22Most packages assume that this is root by convention.
23A permission denied error appears.
24These programs are known as mv, cp, ln, etc.
25Owned by root, writable, executable, readable by root, and executable and readable by everyone else.

41

linking to function properly. However, since the permissions have the “sticky” attribute,

the packages can’t write to /sbin/ldconfig. The packages’ make files usually do not

say anything about this, and a package ends up being broken for a reason unknown to the

person behind the keyboard. The user, therefore, always needs to remember to log in to

root and set /sbin/ldconfig to be writable by the install group.

2.2.5 LD PRELOAD Method

Now we come to yet another package management technique. This one is called the

LD PRELOAD method. Upon the installation of a package, a library is preloaded which

tracks selected calls to the file system. The calls that are tracked are those that create files.

When a file is created, it is added to an installation log for the package. Once a package

installation completes, a log file is left with a list of all files that were installed. We can

easily do things such as uninstall packages using the installation logs. Tracking whether

or not files are being overwritten is also not difficult to do. We can either use the tracking

library or search through the log files for the possibility of a collision. Updating packages

can be done by comparing logs after installation to determine whether or not any files were

left behind by the old package.

The main drawback of LD PRELOAD is that the libraries have to be loaded at the cor-

rect time. When, for example, a make install needs to be run, we have to remember to

load the libraries. It would not be a good idea to load the library for a configure script,

because we would track files created only for the installation process. We also have to

remember to unload the library afterwards to prevent logging non-installation phases. Re-

membering to load the library is trivial compared to writing the library. Not only will one

need to have advanced knowledge of the internals of commands such as mv and cp, one

will also need to be fluent in the C programming language. Furthermore, the library – the

LD PRELOAD implementation specifically – will not be portable to systems that do not

have dynamic ELF binaries.

42

2.2.6 Temporary Build Directory Method

The most popular technique used by distribution developers is to build a program in a

temporary directory, note all of the files, and copy the files to the file system. The temporary

directory is within a fake tree so that the package can be properly linked. This technique

has all of the strengths of the LD PRELOAD or timestamp approach, but requires more

time and hard disk space to implement. Normally a package is built and its files are copied

to the system directories. In this technique the files are first copied to the fake tree, and

then to the real tree. This means that we need twice the hard drive space and have to spend

twice as much time copying files a second time. If a package is large, we really feel these

weaknesses, especially if we are tight on hard drive space, which is not uncommon if there

are many very large packages installed on a system. The greatest strength of this technique

is that in the fake root, modifications can be made to a package before installing it. This

technique is the most popular because developers use it to create binary packages. Binary

packages are shipped by a distribution, allowing users to get software without compiling it

on their own computer and without having to track its files. The techniques we have dis-

cussed earlier are all used by either enthusiasts, people with narrow purposes, or developers

of package managers.

2.3 Binary Packages

We have had a taste of how tedious it is for a user to work with LFS and some low-level

package management techniques. Fortunately a user does not have to touch any part of

them because of the existence of binary packages. To install a program we just extract a

pre-compiled package to its default directory and proceed to use it. We do not have to spend

time running configure scripts, the compile scripts, and install scripts. Huge packages like

OpenOffice can take ten hours just for the compile scripts to finish. With a pre-compiled

binary package we do not have to wait more than five minutes for the whole program to be

43

installed and be usable.

There are, however, tremendous drawbacks involved in using binary packages. The

first is that the packages will not necessarily be optimized for the system to which the

user is installing. Just about all distributions that ship binary packages optimize for one

type of all-encompassing processor. As we have discussed in the previous chapter, binaries

optimized for i386 will encompass both the earlier x86 architecture processors and the

latest x86 architecture processors. Second, users might get a binary package which lacks a

feature they want or includes a feature they do not. When we run configure scripts, we can

make the scripts generate compile scripts which allow for the compilation of extra features.

We can also turn off features to save space if we need to. A binary package might lack a

needed feature or be needlessly big, forcing the user to compile the package from source or

necessitating a search for a separated binary package. Third, if a new package or package

version is released users have to wait for a binary package to be created and placed on

a distribution’s download repository. There might be more weaknesses, but these are the

major ones. However, because of the advantages that binaries provide, most distributions

base their package managers on being able to handle these binaries.

2.4 Primitive Package Managers

We have described the lowest level of organizing packages in GNU/Linux: no package

manager. We have also described some techniques which are a level higher. We can now

proceed onto the next level: actual package managers. Package managers, by themselves,

can be divided into higher and lower levels. We will start with the lower level package

managers and gradually rise to the higher level package managers.

44

2.4.1 Pkgtool

One of the most primitive package managers can be found in the Slackware distribu-

tion. This package manager is actually a collection of shell scripts that come as a package

called pkgtool. When we refer to pkgtool we are talking about Slackware’s package man-

agement system. As we will see, pkgtool is rather primitive compared to other package

management systems. Slackware has a binary package repository. Currently, the binaries

are i486 optimized and are compressed as tgz26 archives. There are two common ways

of compressing files and folders in the open source software world. Initially a tape archive

(tar) is made from a collection of files. This tar does not have any compression and is sim-

ply a conglomeration of files. Tar files are then compressed with either bunzip or gunzip.

The bunzip format can be used if there is a desire to minimize size. The disadvantage

with bunzip, however, is that it takes longer to both compress and decompress. Archives

compressed with gunzip end up being larger than bunzip, but require less time to be de-

compressed and compressed. Slackware developers, to judge by their choice, seem to favor

giving their users the ability to install the binaries faster. Of particular interest to us are four

scripts that come with pkgtool.

The first is installpkg. A user runs installpkg on a downloaded binary. The script

simply extracts the files in the binary to their appropriate locations. The inside of a Slack-

ware binary contains files starting with the root directory. If a package has a file that goes

into /usr/bin/, then the binary package is going to have a usr folder with a bin subfolder

and finally the file itself within the bin subfolder. Installpkg parses a package directory

structure and replicates it in the real system. In other words it copies the files to the correct

locations. Some packages also come with an install script in install/doinst.sh. The

script is executed if installpkg finds it. All additional install scripts do any extra things

that installpkg can not do, but the developers want to be done.

The next script is removepkg. When installpkg installed a package, it logged what

26tar file compressed by gunzip.

45

files were installed and where. Removepkg parses the log files27 and deletes all of those

files. The next script is upgradepkg. This script is applied by a user in the same way

as installpkg. Upgradepkg takes the new – or old28 – tgz package, installs it using

installpkg, and then checks the logs of the old package that was installed before. If a

file of the old package was not overwritten by the new package, it is deleted. In other

words, anything belonging to the old package is not needed by the new package if it was

not brought in by the new package. To be extra sure that nothing was removed that should

not have been, upgradepkg does the installation of the new package a second time.

Last, but not least, there is the makepkg script. This script is normally not used by users.

It is used by Slackware developers and those who wish to correctly create a Slackware pack-

age. What makepkg does is best described by the comments in its source code: makepkg

“Makes a Slackware compatible ‘*.tgz’ package containing the contents of the current and

all subdirectories. If symbolic links exist, they will be removed and an installation script

will be made to recreate them later. This script will be called ‘install/doinst.sh’”. A person

using makepkg under normal circumstances first runs a configure script on the program for

which he wants to create a binary. After that he runs the generated make scripts to compile

the package. Once the program is compiled, the person figures out which files normally

would be installed to the system with make install.29 The person copies the files to a

directory of his choosing, runs makepkg in that directory, and has his binary package in the

same directory. A developer probably tests the package by installing it and attempting to

use it. If something is wrong,30 he will have to start all over and re-package the program.

Slackware’s pkgtool is primitive because users have to install and upgrade packages one

at a time.31 Furthermore, they have to manually synchronize themselves to Slackware’s

package repositories to keep their packages up to date. Other inconveniences include the

27These are stored in the /var/log/ directory.
28The script works in cases where a user wishes to downgrade.
29He will have to see the make scripts for that information.
30Maybe he should have used different configure options, for example.
31If a user knows his way around a shell will take advantage of globbing.

46

lack of any dependency tracking. A user might install a package which will not work.

Usually a package will complain, when launched on the CLI, about a missing library file.

If the user is lucky, the library file goes by the name of a package with that library file. If

he is not, then he will have to search the Internet for which package the library belongs to.

We shall get to dependency tracking a little later.

2.4.2 RPM

Slackware’s pkgtool is a collection of tools that creates and manages package archives.

The Red Hat distribution, along with countless others, uses a considerably more refined

package manager and archive format. RPM, The Red Hat Package Manager, has a long

history and a ton of features. We will describe the major features and relevant history.

RPM was written in 1997. Before it, the Red Hat distribution used RPP,32 PMS,33 and

PM.34 RPP was known for its ease of use for users when installing packages, but had the

disadvantage that it was difficult to create packages for it. RPP was a source based package

manager, which would need programs’ source code modified to fit its needs. This made

development difficult for RPP. PMS built packages from original source code and made

modifications as it built them. Although PMS made it easier on developers, it lacked a

number of features for querying and file verification. PM had all of the features of RPP and

PMS, but turned out not to be as good a solution as RPM. RPM was initially written in Perl.

The developers wanted to use a language built for being able to write code quickly. With

Perl however, RPM quickly grew too big35 for it to be used on a floppy disk, or to install a

system with. The RPM developers rewrote it in C, making it both faster and smaller. RPM

came to combine the ease of use of RPP and the developer friendly character of PMS.

Additionally, it had some new features.

32Red Hat Package Processor.
33Package Manager System.
34Package Manager.
35It required Perl, which was quite large, during installation.

47

One of these features was its ability to handle configuration files. Slackware’s pkgtool

assumes that users will backup their configuration files before updating a package. RPM,

on the other hand, checks packages’ configuration files and determines whether to overwrite

them, leave them alone, or warn the user while leaving the new configuration file with a

file name extension next to the old configuration file that it did not overwrite. What RPM

does in this regard is quite simple. When the package tries to write to the configuration

file directory, /etc, it checks whether or not the file already exists.36 If it does not, then

it writes the incoming file to disk. If a file of the same name as the incoming file already

exists, then checksums are taken of both files and an additional checksum of the original

configuration file that came with the old package. If all checksums are the same, then the

files are the same and the existing file is overwritten. If the original file checksum is the

same as the file currently on the system, but the incoming checksum is different, then the

new file overwrites the existing one. This can be done because the user never modified the

configuration file and therefore the new configuration file can only take advantage of new

features of the updated program. If the the checksum of the incoming file is the same as

the checksum of the original file, then nothing is done because the configuration files did

not change and the user modified the file to his liking. If all checksums are different, the

user is warned and the original file is renamed with a .rpmorig extension and the new

file is written to disk. It becomes the user’s job to figure out what changed in the new

configuration file and judge whether he might need to rewrite in his own configuration file.

Other features RPM was built with included the creation of its very own archive format.

Whereas pkgtool simply used the existing gunzip format, RPM designed its own format

to allow for access to information without extracting the entire archive. For example, if

upon installation of a package pkgtool wished to display the description of the package to

the user, it would have to extract the whole archive. This is costly for a large package or

on a slow system. RPM on the other hand is able to display such information by extracting

36It additionally tracks some other directories.

48

only a small portion of the archive. Archives for RPM are of course in the rpm format and

post-fixed with a .rpm extension.

While on the topic of file naming, now is a good time to explain the way RPM sys-

tematizes package names. Pkgtool and just about all other package managers have almost

identical conventions, so this is more of a universal issue. A package name consists of the

program name, followed by the version of the program, followed by the release of the pro-

gram version by the package builder, and optionally followed by the type of architecture,

optimization level, or type of package it is. The program name and version depends on

the conventions used by the program developer. The release of the package is determined

by distribution developers. Initially, they release a package to users without specification

of a release milestone. However, they later might find a bug, and in turn release the pack-

age of the same program and version, but with a -x after the program version at the end.

This tells both users and package managers that this is a newer package and can be ap-

plied as an upgrade to the older package. The next part of a package name is optional, but

almost always appears with rpms. It follows the program version and release and might

look something like .i386, .src, or .fc5.i386. We already know that the ixxx shows

the optimization level that the package was compiled with. It also shows that the package

will work on an x86 system. The .src means that the package is not a binary package,

but a source package. The fc5 is an example of a package built specifically for the Fedora

Core 5 distribution.37 If an rpm is designated as src, that means that it is an archive of the

original program source code along with patches and instructions for how RPM will build

the package.

The rpm archive contains a lot of information about a package, including statistical

information regarding things such as the size of the package, dependencies required by the

package, the time and date when the package was built, checksums of each file, permissions

of each file, and descriptions of the package and files. All of the information is used to

37This is currently Red Hat’s community project.

49

quickly query a package with RPM. The information is also used during the three main

tasks that RPM is designed to accomplish: installing, updating, and removing packages.

Installing an rpm package is done by passing RPM the -i option and feeding it the location

of an rpm package. This location can be on the machine’s file system or on the world

wide web. A user can invoke a number of options with -i. These include disabling the

installation of documentation, disabling RPM’s ability to handle the overwriting of existing

files, setting a different installation path,38 and a number of other less important options.

When RPM installs normally, it first checks for dependencies. It checks if all required

dependencies are in the install database on the system. If a dependency is not there, RPM

stops and tells the user that he needs to install that dependency first. Next, RPM checks

if any files might get overwritten. If so, RPM stops and tells the user. RPM of course

stops if the package is already installed. If all dependencies are present and there are no

file conflicts, RPM runs any pre-install scripts that exist in the package. These pre-install

scripts might include removing any files that might get in the way. RPM then determines

which files are configuration files, and runs the checksum comparisons to determine what it

will need to do. Once all of this is sorted out, RPM extracts all of the files and copies them

to where they are supposed to go. RPM then runs any provided post-installation scripts.39

Finally, RPM finishes by adding information to the database. During the entire installation

procedure, RPM keeps track of the files that were installed, their checksums, permissions,

and to which package they belong.

To remove a package, a user invokes the -e option to RPM along with a package or

list of packages. RPM parses its database, determines if the removal of the package will

break any other packages,40 executes any existing pre-removal scripts, saves copies of con-

figuration files if they had been modified, deletes all of the files belonging to the package,

executes any existing post-removal scripts, and finally removes entries for the package in

38A different root.
39This may include updating /sbin/ldconfig.
40In other words, if the package is a dependency for them.

50

the database. RPM stops if the package is a dependency for any other package and tells the

user. We have already discussed how RPM knows if configuration files have been modified.

The third main task RPM accomplishes is upgrading packages. To upgrade a package

users do the same thing that they do when installing, with the exception that they invoke

the -U option. RPM does the same things that the install task does with the exception of

performing the configuration file checksum comparisons. After the installation of the new

package is completed, RPM uninstalls the old version or versions. It does not remove any

files of the new package, but only files that are owned by the old package.41

2.4.3 Dpkg

Although RPM does a lot of things, it is not the only package manager that does these

things. Dpkg, Debian’s package manager, is similar. Dpkg also works with its own archiv-

ing format. To be specific, the archiving format consists of an “ar” archive containing three

files. The dpkg packages end with a .deb extension. Like RPM, dpkg packages contain

information regarding dependencies of the package, files of the package, scripts, etc. The

first file42 of a Debian archive is the version of the archive. This is important because the

archive’s internal formatting changes43 from time to time. To retain compatibility, dpkg

contains C code to handle every different archiving version that ever existed. We are de-

scribing format version 2.0 of .deb archives.

The second file is control.tar.gz. This is a gunzip archived file which contains

a series of text files with information about the package. This information includes the

package name, type,44 installed size, the developer responsible for its maintenance, version

of the package with revision, dependencies, description, listing of configuration files that

the package might bring in, pre-install script, postinstall script, pre-uninstall script, and

41This is because of the way the database was adjusted during installation.
42The “ar” archive is designed to open the separate files without extracting the whole package.
43Even the set of required information changes.
44This includes architecture, branch of Debian to which it belongs, and whether or not it is an essential,

required, important, standard, optional, or extra package.

51

post uninstall script. Debian packages do not need a list of files that the package will

attempt to install because it logs that on the fly during installation.45 Dpkg, like RPM, also

supports the ability to install source packages. Dpkg’s source packages similarly contain

an archive of the original source code, with a .dsc file containing information about the

file. Dpkg, however, does not have a number of patches in the source archive like RPM,

but a file with a diff.gz extension. diff.gz is one big patch with all modifications that

a developer made. The .dsc also contains instructions for building the package. Dpkg

will not install a built source package directly; there is no single command that a user

writes to build it in the first place. Dpkg builds the package and then builds a binary deb

archive which the user can install. A user using dpkg installs packages with commands

similar to those of RPM. The installation will log the files installed, handle configuration

files, run the scripts if there are any and append any other relevant information to the dpkg

information directories on the system. Installing with dpkg will stop if existing files might

get overwritten or if dependencies are lacking. There are two ways a user can remove a

package: with the purge option or remove option. The purge option removes the package

and its configuration files, while the remove option removes the package files, but not the

configuration files. A user can also run a dpkg with a --configure option. This will run

postinstall scripts and re-write all configuration files to disk. Dpkg does not have an option

that users can use to upgrade. The install option handles that task automatically.

2.5 High-level Package Managers

Dpkg, RPM and pkgtool are still all low level package managers. Although they are all

easy to use compared to doing everything manually, they still force users to do a number

of tasks manually. These tasks include having to find the package and where it is located,

finding dependencies if needed, and knowing when to and when not to apply overriding

45It is almost certain that some archive version might have had a requirement for that information.

52

options in the case of file collisions. Although these things seem acceptable prices to pay

for solid file tracking and configuration file handling, imagine if we have a system with

six hundred packages, all of which we want to upgrade to new versions. First, we would

have to find web links to the latest versions. Furthermore we would not even know about

a new version being available if we do not visit a distribution’s repository. When we begin

installing the new versions, some of the packages might have new dependencies.46 We

would have to find the new dependencies’ packages and install them. We would be lucky if

we finished everything in the course of three uninterrupted hours. Now imagine if we have

more than one machine on which we wish to upgrade all of our packages. With pkgtool

we can always get away with downloading all packages that are available on its mirror

and “globbing” all of the files into upgradepkg. With RPM or dpkg, we might not be

able to glob, because we might be providing it non-globbable web links to archives. A

package name starting with z might need to be installed before one starting with c so that

RPM or dpkg do not complain about dependencies.47 One can understand why there are

package managers that allow users to find out about new versions of packages, update all

packages with one command, download packages automatically, and automatically bring

in dependencies in the right order.

2.5.1 Apt

According to Debian’s documentation, dpkg is designed as a low level tool for devel-

opers and users with special needs. Users are encouraged to use apt48 to take care of any

updating, installation, and removal needs.49 Apt is not actually a package manager, but

rather a frontend for dpkg, although philosophically speaking it is a package manager. We

will get more into frontends later, but it is vital to examine what apt does for a user so that

46This will be even more of a pain to determine with pkgtool due to the lack of any dependency information.
47We are assuming that the package starting with c specifies a need for a dependency whose version is

greater than of the currently installed version of the package starting with z.
48Advanced Packaging Tool.
49http://www.debian.org/doc/manuals/reference.

53

we can more easily understand what is special about the package managers we examine

next.

First of all, apt has a list of all packages that are available. A user can at any time update

that list by typing apt-get update. This list is used by apt to automatically track which

packages are installed on the system and have new versions available. This allows users to

save a lot of time that might otherwise be spent searching for new versions of a package.

Second, apt automatically downloads packages from mirrors. Mirrors are servers that con-

tain copies of the files contained on a main distribution server where new files are added.

In our case the files are new packages. Apt automatically downloads anything that it needs.

This includes the list of newest packages and the packages themselves. In other words, with

apt, the user does not have to search manually for package files on the Internet. Third, apt

allows the user to search for text in the names and descriptions of all packages. With dpkg,

we would have to do so on a package by package basis. Furthermore, apt also contains a

database of all files that can possibly be installed by all packages. The user can use apt to

search for individual files. This is extremely helpful if a user is looking for an executable,

but the executable is not part of a package description or name. Fourth, apt automatically

queues up dependencies and does so in the right order. Whereas dpkg does not let the user

install the package until the user installs all dependencies,50 apt automatically downloads

and installs all dependencies for a package along with the package. Fifth, apt allows a user

to update every single package with one simple command: apt-get upgrade. Upgrading

is synonymous with updating in our terminology. If a user has six hundred packages, he

can run this command, eat lunch, come back, and apt will have completed a task that would

have taken more than several hours using dpkg and probably days with LFS. Sixth, apt

does not just remove packages but also removes a package’s dependencies in such a way

that the removal of the dependencies will not render any other programs malfunctional. In

other words, apt checks which dependencies are needed by other packages and does not

50Don’t forget that the installed dependency might itself require a dependency.

54

remove them, only removing those dependencies which belong to the package that the user

is attempting to remove. This removal feature is also applied when the system is upgraded

and when deprecated packages might need to be removed.

If you think that this is enough for a complete package management solution, think

again. Apt has a feature where a user can run auto-apt run command, where command

can be just about any command, but is usually a configure script for a source package.51 If

the configure script complains about the lack of something, for example the g++ compiler,

apt will pause the running of the script, call apt’s apt-get to install g++, and return to the

configure script as if g++ had been installed in the first place.

Everything that apt does underneath is calling various options to dpkg. It gets all of its

information from dpkg52 and does almost everything using dpkg. When it installs pack-

ages, it asks dpkg if the package is installed; if it is not then it will look at its package list,

determine dependencies, ask dpkg which dependencies are already installed, queue up the

needed dependencies, then call dpkg with appropriate links and options to install dependen-

cies of dependencies first, followed by dependencies of the package, and then the package.

If the package already exists, then it will check the latest version available in its list and

compare it to the version installed reported by dpkg. If the installed version is older, it will

do the install procedure, but additionally queue up for removal any dependencies that will

not be needed afterwards. Upgrading works the same way, except that apt evaluates every

single package.

2.5.2 Swup

Swup53 is the package manager used by the Trustix distribution. Trustix is a distribution

oriented toward users who run servers on the Internet and who want a distribution whose
51http://packages.debian.org/stable/admin/auto-apt.
52With the exception of the auto-apt feature and things like the package list.
53The Secure SoftWare UPdater.

55

priority is security.54 There is nothing extremely special about swup. It allows a user to do

the things that apt does, with just about the same ease of use – although it can be argued

that apt is easier to use. Swup is, like apt, a frontend with the exception that it works with

rpm packages. Swup does not use the RPM package manager, but rather its own libraries

and tools to manage rpms. Due to this, we can consider swup to be a package manager that

works almost entirely from the ground up. The reason we are going over swup is because

it allows us to examine what security features package managers can be built with.

Swup keeps checksums of all files and allows a user to validate files at any given time.

Swup downloads a latest package list just like apt. It provides users with the assurance

that they are downloading from a trusted mirror by issuing special GnuPG55 signatures.

GnuPG downloads all data in an encrypted fashion, eliminating the possibility of anyone

intercepting packets and sending malicious ones to the user.56 It assures – without getting

into technical details available in GnuPG documentation – that whatever the user is receiv-

ing, is from Trustix and untainted. Swup is designed to update packages. Trustix is not a

bleeding-edge distribution which distributes the latest versions of software, but rather one

which makes sure that all software is secure and quickly updates software to a new version

when a vulnerability is found. Swup also attempts to bring in minimal dependencies. The

argument is that the fewer packages, the fewer chances of security failure.

A big feature of swup is that it enables the user to maintain easily different roots on the

system. Having a separate root, to which only chroot access is possible, is an extra security

layer which allows isolation of security breaches to smaller segments. Swup supports a

simple option --root, which allows a user to update packages in a specific root, without

having to chroot. Using the --root feature also allows extra minimal installations within

the root. The way the --root feature works is quite simple. It simply extracts packages

to the selected root, and logs what it did in that root. When updating, it reads the logs

54http://www.trustix.org/.
55GNU Privacy Guard.
56http://www.gnupg.org/.

56

contained in the root and acts accordingly. Actually, this feature is found not only is swup;

RPM and dpkg also allow packages to be extracted in different roots. It is simply significant

that with swup users need only add one extra option to swup. The fact that swup holds

checksums for all files is also not new. Rpm does the same thing and can verify the files

and rebuild those that do not match the correct checksum. Swup, because it uses rpm

packages underneath can pretty much take advantage of all the security abilities provided

by RPM.

2.5.3 Pacman

Swup is not a package manager which manages packages entirely by itself. It uses

RPM’s archiving format. Pacman,57 however is a full scale package manager. It is devel-

oped by the people who created and maintain the Arch Linux distribution. Pacman uses

the tar.gz archiving format, identical to Slackware’s tgz.58 Pacman’s archives contain a

data file called PKGBUILD which provides the following information: the package name,

version, package description, web link to the package’s website, a list of files to treat as con-

figuration files, dependencies required for building the package from source, dependencies

required for the package to run and work, a web link to the source file or files, checksums

for the files, and the commands needed to build the package from source. There are also

optional preinstall, postinstall, pre-remove, post-remove, pre-upgrade, and post-upgrade

scripts. Finally the package contains the binary files that were built with the PKGBUILD

file using makepkg,59 the Arch Linux developers’ tool which is used to create pacman bi-

nary archives. The makepkg utility builds packages from source in a similar fashion to

RPM or dpkg in that it installs the built package into a temporary root. Then, makepkg is

used to package the files in the temporary root into tar.gz archives to be used by pacman.

Pacman is designed to calculate and install dependencies, delete unneeded dependencies,

57Short for package manager.
58The archives formats are the same; they just different file extensions.
59Not to be confused with pkgtool’s makepkg.

57

track configuration files the same way that RPM does, update the entire system like apt,

and provide information. Pacman is unique in giving the users the option of “freshening”

a package or “upgrading” it. The upgrade process involves removing the package first and

then bringing in the new package. “Freshening” does what the other package managers

do when they update packages: bring the new package and then remove the left over files.

Pacman uses a master package list that pacman downloads when a user supplies the -y

option. This master package list, just as in apt allows pacman to figure out whether or not

there are any new packages available and install the latest packages upon a user’s request.

2.6 Centralized Package Managers

We have discussed a number of decentralized package managers. What is meant by

decentralized is that most information about a package is contained within the package

archive. There are package managers that take a different approach, a much more cen-

tralized one, where the information about packages is stored in a repository on the file

system. A package manager like pacman needed to download a master package list to do

its work properly. First of all, effort on the part of developers must be made to generate

the master package list. Second, if users wish to find out about a package, they might

need to download the package60 and extract its contents. Apt uses a database of available

packages, descriptions, and everything that is available if a package is extracted. All of

the information is initially stored in a package. It can be argued that such a system is in-

efficient for both users and developers. First, copies of information are stored all over the

place. Second, tools have to be developed and maintained that create copies of the data by

automatically scanning available packages and package repositories.

Package managers exist, however, that eliminate the need for such duplication – which

takes up space and cpu time – and that make development arguably more efficient and

60Or invoke a package manager to query, download, and extract appropriately.

58

organized. These package managers keep information about packages centralized. Note

that this idea of centralized versus decentralized package managers is not a common idea,

but a pattern identified by the author to categorize the vast number of package managers

and package management systems out there.

The basic centralized package manager – from which the idea of centralized informa-

tion gathering grew – is “ports”. This is not an actual package manager, but rather a base

for a package management system; we will think of it as a package manager because,

package managers which utilize a ports system use the same basic concepts. Ports was ini-

tially implemented in a number of BSD-based systems and a number of new GNU/Linux

distributions have adopted it as a base for their package managers.

The basic idea of ports is that it is a collection of files containing information about

packages, including how they are built and patched, where they are downloaded from, de-

scriptions, and dependencies. This collection of files is called a port. Ports vary in what

they contain. Some may just have make files, patches, and separate description files. Others

may have one centralized file containing all information. A package manager using ports

usually works the same way as the package managers we have covered: it downloads and

builds a program using the information provided by ports, installs it either to the system or

first installs it to a fake root, optionally packages it, and moves the files to the system. A

raw ports implementation is just about as tedious to use as Slackware’s pkgtool. There is no

dependency tracking or warnings about missing dependencies. Just about any ports imple-

mentation, however, has a way to quickly and easily update which packages are available.

This is because the information is all centralized with a directory, which has subdirectories

corresponding to ports. It is extremely easy for a developer to package the latest collection

of ports and distribute it, perhaps as easy as writing a small command to be run periodically

by a cron daemon. Furthermore, it is easier for developers to go to a central place to make

any small changes, rather than having to repackage a program and wait for it to upload.

With ports, developers can easily have a personal port collection, which they can use to test

59

how packages built with different options and add the build information – once they figure

everything out – to the main ports repository. Everything in ports is designed to be built

from source packages.

2.6.1 Portage

A bare ports implementation does not offer many advantages to the user. Ports based

package managers have been, however, created that offer great advantages to the user.

One such package manager is portage, which is used and maintained by the developers of

the Gentoo distribution. Portage keeps a collection of ports on central servers to which

users synchronize their machines whenever they wish to update their packages by using

the emerge --sync command. The emerge application is part of portage and is a frontend

for an underlying ebuild application. Ebuild and emerge work together to allow users to

install, remove, update, and in two words, manage packages.

Portage’s ports consist of a number of files. A Changelog file keeps information for

developers regarding by whom, when, and why a port was changed. A Manifest file

contains checksums for all of the files in the port with the exception of the Manifest itself.

A files directory in a port includes a set of patches,61 a digest file containing checksums

for files which will be downloaded from the Internet upon package installation or update,

files to be added to a package at some point, and a metadata.xml file which is used for

special purposes to get information about ebuilds. Finally, the main file of a port is always

the ebuild of the package.

Ebuilds contain all of the information about packages that portage needs to carry out its

duties. Portage has become a very complex piece of software. The primary reason for this

is that ebuilds are designed to be easy to write. If a package has a traditional ./configure,

make, make install installation procedure, the person writing the ebuild does not have to

say in the ebuild that those three commands need to be run. Portage automatically figures

61This has recently changed; patches are now provided as separate archives.

60

out what to do in such a case. Portage also has something called an “eclass”. An eclass

allows a developer to specify what type of installation a package will have. Once portage

sees an eclass declaration in the ebuild, it passes the package name to the eclass script or

scripts which use that name to do what the package requires. This is especially useful if

someone is dealing with a group of packages which differ in their installation only in what

name is added to one place or another, such as a configure option. A basic ebuild starts out

with an inherit declaration, which specifies which eclass to push the package through or

which functions provided by portage to import so that the ebuild writer does not have to re-

invent the wheel when attempting to, for example, compare program versions. Next come

specifications for an assortment of variables, such as from where to download the package’s

sources, the description of the package, the license used by the package, the homepage of

the package, which architectures the package can be built on,62 build dependencies, runtime

dependencies, post-merge dependencies, and any additional variables that the ebuild author

wishes to use for his ebuild.

Before we describe ebuilds further, we must understand the categorization of depen-

dencies that portage uses. Just about any other package manager that we have covered or

shall cover does not categorize dependencies. In other words a dependency is just a depen-

dency. Portage however utilizes categories. Build dependencies are dependencies required

to build the package. Portage, due to the philosophies of the Gentoo distribution, tries its

best to build and install all packages from source code on the user’s machine. As a result,

build dependencies are important for portage when it queues up packages to install. Build

dependencies, specified by the DEPEND variable in an ebuild, will always be put at the

front of the installation queue. Run time dependencies, specified by the RDEPEND vari-

able, are dependencies the package will need in order to run. It does not matter where in

the queue run time dependencies end up, so long as they end up in the queue. Post-merge

62Portage is built to be able to work on a fairly large number of computer architectures:
http://packages.gentoo.org/.

61

dependencies63 are those packages that are needed by the package, but need to be put in

the queue after the package, because the package is needed to install the dependency. Post-

merge dependencies do not commonly appear, and when they do occasionally appear it is

because of USE flags.

Before we explain USE flags, we must finish describing what is contained within an

ebuild. After variable declarations, a number of optional functions are added to the ebuild.

If no functions are added, portage will handle the package as one that requires a number of

traditional, non-specialized installation commands. Portage will guess and check through

what it knows until it fails on everything it tries. There are a lot of available functions and

all are required to be written in the order in which they are described.

A pkg_nofetch() subroutine can be written and used by an ebuild author to give in-

structions to users about what to do in order to download the source code if there is a

package whose source code cannot be downloaded (usually for legal reasons). These in-

structions will be displayed to users when they attempt to install or update the package

using emerge, and the source files are not downloaded. Next comes the pkg_setup()

subroutine. This subroutine is used to make modifications to patches, make adjustments

to variables depending on architecture, and do just about anything that might need to be

done before the package is unpacked. Next comes the src_unpack() routine. In this

subroutine the ebuild writer has control over what happens while and after the package is

extracted by portage to its temporary build directory. It is useful, at this stage, to apply any

non-standard patches that portage cannot handle. Some developers like to make sed sub-

stitutions64 to adjust configure scripts, source code, etc. This subroutine also must be used

if the package is extracted in a way that portage cannot recognize. The next subroutine is

src_compile(). This gives the ebuild author the ability to control what options go into a

package’s configure script, in addition to specifying any commands that must be run before

files are installed. The next subroutine is src_test(). Although we have not covered this

63PDEPEND variable.
64Sed is a program that uses regular expressions to search for and change text in files.

62

in our Linux From Scratch experience, packages occasionally come with scripts that test

whether or not the package compiled correctly. This subroutine, seldom used, allows the

ebuild author to specify whether a package should run any testing scripts.

The next function is src_install(). This function allows a developer to control what

happens after a package is installed. A package installed by portage is never installed to

the live system at first. It is installed to a fake root. Therefore, anything that the ebuild

author does in this routine is done in the fake root. This allows portage not to have to make

changes to its file tracking database before a package is ready to install. In other words,

portage logs only the end result. In the src_install() routine developers make any

needed or desired symbolic links, move documentation around, add things to configuration

files belonging to the package, etc. Next comes the pkg_preinst() subroutine. At this

point portage has built the entire package in a fake root, which can conceivably be packaged

into a binary. The preinst routine allows the ebuild writer to complete any things that

need to be done on the real system. These may include modifying configuration files of

other packages, or more commonly, adding users and groups to accommodate a package.

Next is the pkg_postinst() function. This routine is invoked after the package has been

installed to the real system. It may include commands for linking needed things, but most

commonly is used to display to users any post install instructions that the user must follow

or information about how to use the package. The next function is pkg_prerm(). This

function is used to do anything that might need to be done before portage begins removing a

package. Likewise, the pkg_postrm() routine can be used to run anything after a package

has been uninstalled. Finally, pkg_config() can be used to add things to configuration

files after installation.

Within a lot of these functions, handling is done for things called USE flags. USE flags

are options, named by ebuild writers, which allow a user to control what a package is built

with support for and what it is not built with support for. If a user sets a USE flag, the ebuild

will contain information regarding what to do with that use flag. For example, the flag

63

might force a certain DEPEND, RDEPEND, or PDEPEND to be added to the installation

queue. Furthermore, the flag can set certain configure script options to be added in the

src_compile() stage. Basically, ebuilds allow an easy way to organize a program to be

customizable by a user without having to do research regarding dependencies and configure

options.

Now that we have covered how portage’s ebuilds are structured, we can cover how a

user configures portage. In portage everything has a tendency to be centralized: from the

ports collection underneath, to a configuration file with which users can customize portage

to their preferences. Portage’s main configuration file is /etc/make.conf where users

specify the CFLAGS they wish every package to be built with. Because a number of users

have abused their CFLAGS by adding too many of them, portage now filters CFLAGS

from some packages. This is an option that is not possible with decentralized binaries.

Next, a user can specify the CHOST, and CXXFLAGS, which by default are set to be the

same as the CFLAGS. Before portage compiles a package, it sets all variables so that the

packages’ installations will use them. Next, users can specify a number of variables specific

to portage. These variables include the directories portage uses, which may include a user’s

very own ports directory called portage overlay. The major variable that a user can set is

the USE variable. Users set all USE flags which they wish packages be compiled with; i.e.

if they set or unset a flag here, it will apply to every package that they install. For example,

the nsplugin flag is used by packages to install integration with web browsers. If users

wished that their web browsers had this integration, they would set this flag and not worry

about any package that is updated or installed afterwards coming without integration with

their web browsers. For example, the Real Media Player package can be made to work

from firefox by setting the nsplugin flag and installing or re-installing both firefox and Real

Media Player.

Portage also allows individual package flagging. Users can set packages to be masked,65

65This means that portage should not install these under any circumstances.

64

they can set USE flags individually, and do a number of other things that we will get to

shortly. Before we finish describing portage, we must note that portage does all of the

things that a basic package manager would do. It tracks files, it handles configuration files,

and automates installing, updating, and removal of packages. These are all low level things

and portage works on levels beyond them and levels beyond the basic ports implementation.

Portage by now might sound like a flawless package manager for both the user and

developer. This is not the case. Portage may be extremely powerful, but is not perfect.

Users still end up doing a number of things manually. For example, a user wishing to retain

a specific, freshly deprecated version of a program will have to individually mask every

single package which wants to bring in the non-deprecated version of the dependency. The

question might be: why would a user wish to keep an old and rusty package? This might be

due to Application Binary Interface changes that break source based systems. It might not

be worth the risk – of rendering a system temporarily malfunctional – for a user to update

a package that works correctly. Portage is also very big and bulky. Not only are there

a great number of eclasses, which are difficult to document, but portage ends up doing a

lot of inefficient things when going about its business due to its complexity. A number of

Gentoo developers also complain about bugs in portage which have become features. These

“features” were historically added to fix a bug, but now the “features” force ebuild writers

to create workarounds because the “feature” fixed something, but broke something else.

To remove such a feature is also not an option because it would bring back the bug that

it fixed, or break existing workarounds. A number of Gentoo developers are developing

a new package manager, called Paludis,66 which hopes to work with existing ebuilds in

the huge portage tree, do everything that portage does, but much more. Paludis is also

developed to move away from some of portage’s centralization and allow the execution of

external scripts. Paludis also intends to create a feature where CFLAG optimizations can

be added on a per package or per package category basis. Beyond this, Paludis wishes to

66http://paludis.pioto.org/.

65

extend portage’s very limited ability to install into separate roots.67

2.7 Maintaining Package Managers

Now that we have covered all of the major package managers and package management

techniques, we can proceed to cover levels even higher than the package managers. One

of these higher levels is maintaining the package managers’ packages or ports. Writing the

code for the ports or manually building binary packages is a low level job. We have covered

this. There are much higher level issues involved in managing the ports or binaries for a

package manager.

2.7.1 Keeping Up To Date

The first of these issues is staying informed of when new versions of programs are

released. Developers often need to keep up with what the latest versions of programs are so

that they can provide users of the package manager the ability to utilize the latest software

with the latest bug fixes, features, and improvements. There are more than ten thousand

programs that are available to a GNU/Linux user. The most popular distributions have

about that number of packages. Even with the hundreds of developers working to maintain

packages for a package manager, they find it virtually impossible to keep track of all the

packages. Many distributions assign individual developers to keep track of new versions

and to package the new version into a binary or create a port for it. Even with this scheme

there are problems because developers sometimes disappear, go on vacation, or do not have

time.
67Recall swup’s strong root specification feature.

66

2.7.2 ABI Changes

The next issue is related to ABI changes in programs. ABI is short for “Application

Binary Interface”. This interface is between the applications and libraries. In other words,

if a library changes drastically, applications need to be adjusted in order to work. When a

maintainer finds a new version of a program, he checks the program’s changes log – if the

program’s developer had the courtesy to create one. If the program did not change much,

then the maintainer copies most of the old port for creating the new one. If the package

manager is not ports based, then the maintainer builds the new binary with the information

contained in the source binaries of the older version. If, on the other hand, the program is a

library and changed a lot, and the program provides functionality for another program, then

the developer has a lot more work on his hands. ABI changes often require other packages

to be rebuilt. Sometimes the changes result in new file names for libraries, in which case

programs that depend on the old files’ names need to be rebuilt so that they can link to

the new library names. Making symbolic links is not practical because a large number of

files might have changed their names and locations. On a ports based package manager,

the maintainer submits the port for the new program and – if the port structure allows –

passes a message to users telling them that they will need to rebuild programs x, y, and z,

if they have them installed. With binary package managers, the maintainer rebuilds any

packages that need to be rebuilt. This results in a problem, however, because the packages

that are rebuilt cannot be used with the older version of the program with the ABI changes.

Users will have problems if they decide to individually update one of the rebuilt packages,

or more realistically, users install one of the rebuilt packages for the first time, without

updating anything else.

2.7.3 Toolchain Weaknesses

The last big issue occurs when a maintainer stumbles upon a new package which does

not compile on a specific toolchain for whatever reason. This can happen if the program

67

developer writes the program using a different toolchain. This issue does not affect users

of package managers that use binary packages. In a ports implementation, however, the

issue can reach the user. The toolchain that users have installed can vary on a ports system

and their toolchains are required to build packages. Even if a maintainer checks a program

on his toolchain, other users with different toolchains might have troubles, which present

themselves in the form of compile failures. These failures can take a long time to fix de-

pending on their nature. They often require patches to be created for the package, changing

source code so that it can compile and work. Most of the time a maintainer is competent

enough to create such a patch. However, if there are complexities, a bug is filed to the

program’s developer, and the maintainer waits for the developer to either fix the issue or

report that it is some other issue. Sometimes the compile failures are fixed by patching a

toolchain package. In this case, the maintainer and user will have to rebuild the toolchain

package to get the new program to compile. The patch can cause regressions, however, so

a developer might need to rebuild everything just to make sure that everything works. This

is not practical and is done on a limited basis as a result.

2.7.4 Branches

As we have just seen, users have two options: stay informed and update their systems

regularly or, don’t install or update anything. Maintainers for package managers realize

this and keep branches for the packages. The Debian distribution, for example, has three

branches. An unstable branch, testing branch, and a stable branch. The unstable branch

is where developers put the latest software with the latest rebuilds for ABI changes, the

latest rebuilds with patched toolchain packages, etc. The testing branch is created from

a snapshot of the unstable branch.68 Testing is done from that moment to ensure that all

packages work together correctly. Packages with ABI changes from that point are rarely

68This is done only when a testing branch becomes the stable branch and there is a need to start somewhere
for a new testing branch.

68

added to the testing branch. The stable branch is made when a testing branch settles down.

A testing branch settles down when maintainers are sure that all packages work together

smoothly. Packages are updated in the stable branch, but only if they are known not to

cause ABI mismatches.

Other distributions, notably Gentoo, have only two branches. A stable branch and a

testing branch. If a package causes significant ABI mismatches, then the portage maintain-

ers will mask the package until things get settled. Masking flags a package so that portage

cannot add it to install or update queues. To use the package anyway, the user can manu-

ally unmask the package by editing appropriate configuration files. The testing branch is

where maintainers usually commit ports as soon as they find out that a program is released.

Portage, because it is a source based package manager, also has to watch for file collisions.

In testing this is not watched, but for a package to reach the stable branch it needs to have

no file collisions with other packages. Since Gentoo does not have a release cycle like

Debian, the stable branch is not immune to ABI changes. The ABI changes, however, do

not come to users as a surprise. When ABI changes happen in the stable branch, users are

warned with a posting on the main Gentoo website and the popular Gentoo forums. When

necessary, Gentoo provides documentation for how to properly update the system.

Here is a current example of a program with ABI changes and how distributions are

dealing with it: Xorg-7.1 is the set of packages which are responsible for rendering a

graphical environment for users. It is one of the most popular sets of packages. This

version came out with significant ABI changes. As a result of these changes all existing

video drivers that provide three dimensional graphics will not work. The developers for the

video drivers69 are working on releasing ABI compatible video drivers. In the meantime

maintainers have added all necessary ports and prepared the binaries. Gentoo put Xorg-7.1

into the testing branch, and will hold off on adding it to the stable branch until new drivers

are released and are tested. Debian put the latest Xorg package into the unstable branch,

69These drivers are closed source.

69

but will not touch the testing branch until the new drivers come out. Suppose however, that

we have a user who does not care about three dimensional acceleration and the changes

in Xorg will not affect him. If he is in a stable branch and using Gentoo, he will still end

up waiting for the drivers to be made, unless he uses portage’s “accept keywords” feature

which allows the user to tell portage that a testing branch package can be used. A Debian

user on stable or testing will have to wait.

There also exist branch-less distributions, which have only one, live branch. The biggest

such distribution is Fedora Core. It stuffs the latest packages into the tree as quickly as

maintainers can package them. Fedora relies on the fact that their users will keep as up

to date as possible. In Fedora’s case, a user would have to wait it out before updating the

system again. Fedora, however, has a release cycle where they rebuild just about all of their

packages from scratch and make a new release and eventually abandon the old one. Users

usually cannot switch to the new release easily. We have to keep in mind, however, that

Fedora is a distribution created as a playground for the more serious, non-free as in money,

Red Hat Enterprise distribution.

2.7.5 Bug Reporting Systems

We have discussed probably half of the high level package manager maintenance pro-

cess. The other half concerns the bug reporting systems. The open source community is

how a distribution thrives. There are a number of for profit distributions, such as Man-

driva and Suse, but they, like most other distributions, have a bug reporting system. Bug

reporting systems are used for a large number of purposes. First, users eager for a package

upgrade often report when a new version of a program comes out. More courteous users

provide maintainers with information right in the bug report, such as the changes log. Even

more courteous users provide working port files or package the source binary. Furthermore,

users submit bugs relating to compile failures if they are using a source based distribution.

In addition, sometimes maintainers do not notice an ABI problem until a user files a bug

70

report about something not working. Users inform maintainers of any typographical or

documentation errors. Maintainers also file bug reports to keep track of what is happening.

The bug reporting system allows maintainers to respond to important issues and make a

distribution as pain free for users as possible. A maintainer does not even have to do track-

ing of packages coming out or ABI changes occurring. He can just sit back, relax, and do

what the bug reports tell him to do. This is not a good way for a maintainer to think, but the

idea is that he can focus on more vital things rather than have to worry about trivialities.

2.7.6 Optimization

Another high level issue floating around is the optimization problem. This is less of a

problem for source based distributions,70 because users can easily set their own optimiza-

tions. The only problem on source based distributions is that some users apply dozens of

optimization flags and file bug reports when something breaks. This is more of an annoy-

ance for maintainers, who turn down such users’ reports telling them to tone their flags

down to sanity. Binary based distributions, however, suffer from having to stick with one

generic optimization level. This level is usually i386, for maximum compatibility for older

machines. Once a binary based distribution chooses an optimization level, it cannot all of

a sudden decide that it will release binaries optimized for another level. If it does this, a

number of consistency issues with packages will arise, in addition to incompatibilities. For

a distribution to go to another optimization level, its maintainers will have to repackage

every package and release them all at once and abandon the older packages. This is no

easy task and, as a result, distributions “stay put”. Distributions like Arch Linux made

themselves i686 optimized from their birth. However, the user base of these distributions

has used i686 compatible machines from the beginning. A much older distribution such as

70Note that we use “distributions” rather than “package managers”; we are placing these together because
once a distributions chooses a package manager, it sticks with it and is often known for it.

71

Slackware,71 will irritate some of its user base, who use the distribution on old machines

and would like to keep up to date, if it suddenly transforms its packages to i686. The next

question might be, why can’t a distribution release binaries for all levels of optimization?

The answer is that it takes a lot of time to package a binary for more than one architec-

ture. Another reason is that the distribution’s server containing all of the packages will be

filled with a ton of data, when instead it could be filled with one tenth that data if users

could accept one generic optimization. Furthermore, benchmark results do not show much

improvement with the higher optimization levels. See appendix A for a simple way of

thinking about optimizations.

2.8 Frontends

We have introduced some frontends already, but we should deal with them in greater

depth here. Frontends are a high level issue. A lot of distributions end up using the very

packages that are maintained by either RPM72 or dpkg.73 This solves a lot of problems

for distributions since they do not have have to worry about having to maintain a lot of

packages. They do not have to recreate a collection of packages that took hundreds, if not

thousands of people to bring together. The way these distributions set themselves apart

is by creating a frontend for a package manager. A distribution like Debian creates two

frontends for dpkg. One we have already discussed and the other is Aptitude. Aptitude,

unlike apt, is specially geared for users just starting out with Debian. Aptitude does the

sames basic things as apt, but has a more intuitive command line interface. Aptitude does

not do all of the things that apt does. For example Aptitude does not allow users to search

for individual files. This would conflict with Aptitude’s search option, i.e. a second search

option might confuse the user. Aptitude also limits the amount of control that users can

71It is the oldest distribution still active according to the Linux Weekly Newsletter’s distribution list:
http://lwn.net/Distributions/.

72Red Hat distribution.
73Debian.

72

have. It assumes that users wanting more control will use apt.

Red Hat74 does not have frontends like Debian has. Instead, it uses a frontend developed

by the Yellow Dog Linux distribution, called yum.75 This frontend allows users to do

the same things that apt allows and has Aptitude-like syntax, while allowing some of the

control allowable under apt. As we have discussed, frontends make a user’s life very easy

due to the way dependencies and extensive updates of packages are handled.

Currently, distributions are setting themselves apart by creating GUI frontends for pack-

age managers. The distributions that are doing this are geared toward novice users.76 There

are two such distributions that have become popular. Ubuntu and Mandriva. Ubuntu is De-

bian based and comes with the standard apt and Aptitude. Their GUI is simple. It allows

users to do a bulk update of all the packages. When a user turns the GUI on, the GUI auto-

matically downloads package lists and everything that it needs. The user can also browse

and install packages. The package manager interfaces with dpkg directly rather than re-

lying on apt or Aptitude. Similarly, Fedora has GUI tools that enable users to install rpm

packages that users might attempt to download via firefox; i.e. a user can open an rpm file

with the GUI and install the package.

As we go up more levels, from low level package managers, to frontends, to GUIs,

we appear to lose customizablilty. GUI creators often attempt to make things as simple

as possible for the user. They assume that users do not know anything. As a result, they

assume that users will not care about options that allow them to control things or they might

get confused by all of the extra options and make an error. The GUIs currently in existence

are therefore very limited in functionality, despite accomplishing very high level tasks.

We have now covered just about everything important about package managers, from

the bottom up. We now proceed to implement a package manager of our own.

74Since Red Hat Enterprise Linux 5 and in Fedora.
75Yellowdog Updater Modified: http://linux.duke.edu/projects/yum/.
76By novice we mean users who do not really know much about their systems.

73

Chapter 3

The Birth of a Distribution: Developing

the Package Manager

All of the package managers that we have covered in the previous chapter accomplish

a wide variety of tasks and appeal to a wide variety of people. At present, it is difficult to

come up with a package manger that offers much more than the existing ones. This dif-

ficultly aside, it is even more difficult to make a package manager that supports all of the

software that is available. It took years and the work of hundreds of developers for distri-

butions like Gentoo and Debian to contain over ten thousand packages in their respective

package manager repositories. We, however, will attempt to overcome these difficulties

and in the process see the type of thinking and work that is involved in creating a package

manager.

The first stage of our endeavor has to start with planning which features we will focus

on and how users will interact with the program. A user-first mentality has to be sustained

throughout. We must also sustain an “advanced user” mentality by making it easy for

developers and other advanced users to add packages to the package manager repository.

The second stage involves writing the actual package manager and testing it along the way.

The third stage involves extending the package manager and building a whole distribution

74

around it. There is no final stage because a package manager’s repository must always be

updated to accommodate the new developments in the large number of software projects.

3.1 Determining Features

Let us ask ourselves the following question: what can a user want that he cannot get

elsewhere? Better yet, what does a user get elsewhere, which he can attain more easily? A

possible answer can be: a package manager that supports both binary and source packages

allowing the user to mix and match on demand or not to mix and match, but use the package

manager the same way with both types of packages. To build source packages with rpm

or dpkg one has to manually create build commands and then run the respective package

managers with special CLI (command line interface) options to compile and install the

source package. Even if the source package is acquired with build commands already, the

user will still have to customize the build files for any special settings that might be required

for compilation. Optimization flags, for example, are things that might need customization.

In other words, such a package manager does not work well for source packages because

of the extra knowledge the user must have and the extra steps the user must take. If a

user wants a no hassle solution for building all packages from source, then he can go to

something like portage. However, with portage the user will lose the ability to easily work

with binary packages. With portage the user will have to first find a compatible binary

package,1 place the packages in a “magic” directory, and then run portage with appropriate

CLI options.

To date, there are not many – if any – package managers that seamlessly work with

binary and source packages. This is certainly a good feature that we might want to work

on. Some packages take a long time to compile when building from source and users

simply might not want to spend that time in hope of having a package optimized. They

1This is not an easy task considering that portage does not officially support a binary package repository
and that not many people distribute binaries built by portage in the first place.

75

may only want their favorite media player optimized with special CFLAGS, while keeping

everything else at the distribution’s default optimizations. Furthermore, a user might want

to get a specific system up and running quickly, and optimize it at a later time. Sometimes

it might be faster for a distributor to create a port from which a package can be built from

source, than for the distributor to create and distribute the binary package. In other words,

a user will welcome the ability to choose between a system built from binary packages and

from source.

Another feature users may want that they do not fully have at present, is a package

manager that can seamlessly install multiple versions of the same package while being able

to easily switch between all of the versions on demand. This is something useful for a user

who wishes to test a package before removing the older, but functional version. Let us

posit that we have users that use OpenOffice. Although the current version is 1.1.3, ver-

sion 2.0.0 comes out with a number of new features that our users might find helpful. Our

users are currently happy, but we know that they will not be happy if the new OpenOffice

is broken when installed. The ideal feature of the package manager would be to detect the

old installation and, upon installation of the new one, to backup all of the files that will be

over-written before they are over-written. Then, if the users do not like the new OpenOffice

the system administrators can, in one command, quickly backup – or remove – the files of

the new version and resurrect the files of the older OpenOffice. Such a feature does not

exist extensively in any package managers as far as the author knows. Some package man-

agers, particularly portage, allow multiple installs for some packages. However, external

scripts are required for users to be able to switch between versions because the packages

are installed in separate locations and symbolic links need to be changed.2

The multi-versioning support can be expanded to feature something that we might want

to call duplicate file handling, or “duplicate handling” for short. Recall the annoyance we

described of packages that overwrite the files of other packages. Currently, package man-

2This is faster than the feature we are planning, but is much more involved for ebuild maintainers and less
systematic in the sense that provisions must be made on a package by package, case by case basis.

76

agers either overwrite if the file exists or they tell the user that there is a file collision which

must be cleared before continuing. Why not back up the files before they are overwritten

for a particular package and resurrect the files if the package that “overwrote” the files is re-

moved? This feature might not be noticed by the novice or uninterested users, but it would

certainly solve a rather big headache for developers. This feature would be combined with

an ability to use files belonging to a package on demand.

Another – and perhaps last – feature that we might want to implement is per-package

and global optimization flags for packages. Currently, portage is king of package managers

for users who wish to build a custom optimized distribution. This is partly due to the

feature in portage which allows users to edit the main configuration file and set their custom

CFLAGS, CXXFLAGS, LDFLAGS, and other optimization flags. However, in portage,

users often run across the problem that some optimizations do not work well with specific

packages. As we saw in the first chapter, optimization flags for package x can “de-optimize”

package y. In fact, some optimization flags prevent a package from working altogether.

Portage has a feature called optimization flag filtering. This feature allows a developer to

designate harmful flags for individual packages. This is useful in the cases where a user

sets global optimization flags that might break a package. The question becomes, why not

expand this feature, and allow the user to set his own global optimization flags, but set

his own package specific flags. Portage’s current feature allows only filtering of flags for

individual packages, but not for the setting of flags.

3.2 User Interaction

The first stage in developing our package manager is to think about how users will

interact with the package manager. We must consider what CLI options users should have

to work with and what they can change in the configuration file. We have to figure out what

to name all of the commands and options. Our goal is to create a package manager that will

77

provide users with easy commands for doing common tasks. For example, if a user wants

to install a package, he does not have to supply an --install flag as this is extra typing.

Furthermore, a user should not have to supply an --update flag. The package manager

should automatically determine if a package is being updated or not. A user should be

able to check for and update all packages by simply supplying everything to the package

manager. A user should rarely have to supply multiple CLI options since a single or no CLI

options is more desirable. All of this helps the user by not forcing him to memorize things.

The first thing that we have to do is come up with a name for the package manager. It

makes it difficult to refer to something as “package manager” all the time. Furthermore,

it will help users if the package manager has a name. Let us call the package manager

Vestigium, which is Latin for “trace”. The basic concept of a package manager is to keep

track of the files that are owned by packages. It makes sense to create the association

between package managers and tracing. In production versions3 of Vestigium it makes a

lot of sense to allow the user to call both “vestigium” or “ves” at the CLI because it will

save a user the trouble of typing more.

As we have already mentioned, users interact with the package manager in two ways:

the CLI and the configuration file. The configuration file should serve the purpose of al-

lowing the user to set settings so that the user does not have to use specific options on the

CLI. For example, if the user always wants source packages, he can set it in the configu-

ration file so that he does not have to supply a --source, CLI option. The configuration

file should also allow the user to set the directories that Vestigium will use. For example, a

user might have a partition designed specially for downloading source files. The user can

make Vestigium download to that partition via the configuration file. The configuration file

also serves as the place where global settings are set. For example, this is the place where

users would set their optimization flags. Finally, the configuration file should be the place

where users set their preferences of download mirrors and other things like this.

3Production versions of software are intended for use by the user. Production versions are those versions
that are the result of extensive testing.

78

As mentioned briefly earlier, there should be no need for an install or update option.

Vestigium should be able to automatically determine what to do depending on the infor-

mation that it has. At this point we assume that Vestigium knows whether a program is

installed and can correctly sort package version orders. Since Vestigium will not do any

work if a package is already installed and up-to-date, a user needs to be able to force Ves-

tigium to process the packages anyway. A user simply has to apply the --rebuild option

to Vestigium’s CLI. It is important to note that no provisions will be made for --rebuild

in the configuration file because it would conflict with Vestigium’s automated features.

When a user passes a package or list of packages, Vestigium will evaluate for the user

whether or not any dependencies need to be brought in. If any packages have dependencies,

it will add them to the front of the package installation queue. If a user desires not to have

such functionality, he will be able to disable it by passing a --nodep option to Vestigium’s

command line or set the nodep flag to true in the configuration file. The nodep flag will not

appear in the configuration file by default, because it is not a good idea for a user to set it

to anything but false. We should, however, make sure that no user is deprived of the ability

to do something he wants to do anyway.

Vestigium needs to keep its information about packages as up to date as possible. There-

fore, it will automatically download all information that it needs. If the user desires to

manually retrieve that latest information, he can set a nosync4 option to true in the config-

uration file; furthermore, he can pass a --sync option to the command line. The --sync

option will have two uses. If nosync is set to true in the configuration file, a user can re-

trieve the latest information by running Vestigium with the --sync option. If nosync is

set to false, then --sync will not download the latest information. This may seem like

unexpected behavior, but it will prevent the introduction of extra CLI option clutter and

encourage users to make such changes in the configuration file. The reason for this is that a

user must only prevent synchronization when he wishes to keep a static collection of ports

4Short for no synchronization.

79

or does not desire to wait for Vestigium to move on if it realizes that there is no network

connection. Vestigium needs to be up to date so that maintainers can distribute any fixes to

the users.

A CLI-only option for Vestigium will be --download, or -d. This option will enable

the user to download everything that is needed without doing the actual installing or up-

dating. This is handy for a user who might have a limited amount of time to download

packages, and therefore desires to download everything that is needed for him to use when

he does have access to the Internet.5 The reason that this is a CLI-only option is that a user

presumably will never make something like this a global option. This is because of the fact

that the user will need to set the configuration file option back when he wants to update or

install the downloaded packages’ files.

Vestigium will have a --debug option, and a settable debug flag in the configuration

file. This flag will be used to provide more verbose output to the user. It will show what

subroutines Vestigium is entering and leaving. The debug flag is used heavily in devel-

opment, and will probably be invoked by users submitting potential bugs with the package

manager.

Another option that Vestigium will have is --prompt, or -p. This will print for the

user a list of packages that will be installed, updated, rebuilt, or removed, and will ask the

user for confirmation regarding whether or not to proceed. This option will be available

in the configuration file and by default will be set to true. If the user uses --prompt with

“prompt” set to true in the configuration file, he will effectively do nothing. The prompt

option is useful because it allows a user to see all of the packages that will be worked on.

The user can say “no” at the prompt and correct any mistakes.

Vestigium will have control options for removing packages. Vestigium will always

correctly know whether a user is installing, updating or rebuilding a package. When Ves-

tigium updates a new package it will, by default, remove the older package. The user can

5A user who for whatever reasons has access to an Internet connection for a short time will find this very
useful.

80

change this behavior by either setting --noremove on the CLI or setting noautoremove

to true in the configuration file. The noremove flag will not disable the ability for the user

to manually remove packages or clean out dependencies. The user can remove a package

by sending the --remove, or -r, option to the command line. Since removal is done on a

package by package or list of packages basis, no such option will exist in the configuration

file. We do not want to encourage users to remove packages whenever Vestigium is given a

list of packages with no options.6 The --remove option can be used by users with --nodep

to prevent Vestigium from removing packages that were brought in as dependencies, but

which will afterwards not be needed by any package.

Related to --remove, Vestigium will have a --clean or -c shorthand option, which

will remove all packages of versions older than the given package. Recall that a major

feature of the package manager is to allow multi-version installations. A user should have

the ability to remove, with one command, all of the previous versions of a program.

Vestigium will feature a portage-like --depclean which will also have a configuration

file flag cleandeps set to true by default. cleandeps will serve to search for dependencies

that are not needed by any packages, and remove them. This is especially useful for users

who run Vestigium with noautoremove, and want control over removing dependencies

that are no longer depended upon by other packages.

As we mentioned earlier, one of Vestigium’s prime features will be a special file col-

lision handling system, called “duplicate handling”. We make use of the term “duplicate”

to help users understand that duplicates of files7 are kept by Vestigium. By default, when

a program is being installed and is attempting to write a file that already exists, Vestigium

searches for which package the file on the system belongs to. Once it finds that package, it

will back the file up under that file’s backup directory.8 The incoming file will get written

once the existing file is backed up. The backed up file is called a duplicate, or “dupe” for

6This secures against the case where a user forgets about setting an option in the configuration file and
ends up deleting important packages.

7To be more precise, the file names are the same. The contents of the files are probably different.
8By default /var/spool/vestigium/[package name].

81

short. Vestigium will have a number of options for handling duplicates. First, the user will

be able to tell Vestigium not to create any duplicates, and just overwrite what is already

there. This naturally can be done with a --force or -f shorthand option on the command

line, and with an alwaysforce flag in the configuration file. The --force subroutine is

intended to be understood by users as an option that overwrites everything in its path.

Second, the user should be able to prevent the incoming file from being written, and

make it the file that Vestigium will back up as a duplicate. This is effectively flipping the

files – or better yet, flipping the default behavior – and can be done with the --flipdupes

option. The configuration file would have a flipdupes flag that accomplishes the same

thing. If the flipdupes flag is set to true in the configuration file, then --flipdupes will

naturally flip files back to their default locations; hence our justification for having “flip”

in the name.

Third, a user might wish to remove duplicates from a particular package. He can ac-

complish this with the --remdupes CLI option. Because this is something that should be

done on a package by package basis, no such corresponding flag should exist in the con-

figuration file. We must keep consistent that if a user specifies a package without a version

number, duplicates from all installed versions of the program will be deleted. Whereas if a

package version is specified, Vestigium removes duplicates that are owned by that specific

version.

Finally, a user might wish to apply a specific package’s duplicates after installation. He

can do this with the --applydupes or -a shorthand CLI option. This also is something

that should not reside in the configuration file. The user will be required to supply a spe-

cific program with its version if the program has multiple versions installed. Otherwise,

the program name will be sufficient. --applydupes makes sure to create duplicates for

the program whose files are being replaced in favor of the other program. If used with

--force, --applydupes does not create any duplicates. For example, package x owns

file a. Package y starts installing and wishes to write its own file a. Vestigium copies file

82

a to package x’s duplicates directory, and then allows package y to write file a to the file

system. The user does not like the file brought in by package y, so he uses --applydupes

to bring in package x’s file a. Vestigium proceeds to save the current file a under package

y’s duplicates directory and moves package x’s file a into the system. Had --force been

utilized by the user, package y’s file a would not have been sent to package y’s duplicates

directory.

Vestigium must provide some standard package manager viewing and searching fea-

tures to users. A user might want to know what packages are available in the ports tree and

what he has installed. He should be able to do this with a --search or -s shorthand option

on the command line. By default the search will be shallow, in the sense that it will only

search for package names. The user can pass a --searchdesc or -S shorthand option to

the CLI, or modify the configuration file to have alwayssearchdeep set to true. This will

search not just the file names, but the package descriptions. This is almost identical to the

way portage does its searching.

Vestigium will allow users to search for files on the system to determine which package

they belong to, if any. This will be done with the --searchfile or -b shorthand option.

Since -s is already in use, -b is used instead, and can be associated with “belongs”. An-

other thing that Vestigium will allow is the ability to list all files that belong to a package

with a --listfiles or -l shorthand CLI option. Neither of these features needs to exist

in the configuration file. Another searching option for the user will be --verify. This

will check a package for whether the files in the logs exist on the root system. If there is a

mismatch, Vestigium will tell the user which files are missing.

We have thus far only described how users utilize Vestigium’s multi-versioning and

duplicate handling features. It is now time to describe how users will take advantage of

being able to choose between installing binary packages and installing source based pack-

ages. In Vestigium, this could not be any simpler. If it is set in the configuration file

that the user wants binaries, then Vestigium will download and install only binary pack-

83

ages. If the user wants a package to be compiled from source, then he simply passes

the --buildsource CLI option. The same principle applies if the user has source based

packages set in the configuration file. The user, at any time, can install a binary package

by passing the --installbinary CLI option. A user will not accomplish anything by

running Vestigium with --buildsource or --installbinary while having source-based

installation or binary package installation enabled respectively in the configuration file.

To extend the packaging capabilities, Vestigium will provide users with backup capa-

bilities, whereby a user can pass --backup along with a package or list of packages to the

CLI, thus creating an archive of files that are owned by a package. This backup will be

stored in the user’s backup directory which is chosen in the configuration file. At any time

a user can recover the data saved in the archives by using the --applybackup option.

The package backup capabilities naturally allow for the creation of binary packages.

Binary packages are, after all, archives of all the compiled files of a package. If a user

desires to create binaries of packages as they are being installed, he can do so by run-

ning --package or setting createbinaries to true in the configuration file. If the user

wishes to create a binary package without installing, he can use the --binary option or set

onlycreatebinaries in the configuration file.

The last major feature of Vestigium is the setting of customization options. Global

optimization options are set in the main configuration file. Users simply add lines like

cflags =. For per package optimization flags, users add them to the package’s INFO files

in the package’s port directory. Users who are not sure about their optimizations, or who

want to receive optimized packages, can simply tell Vestigium in the configuration file –

choosing from a list of known ones – what processor their system uses. There are two

lines in the configuration file that users have to fill: the first is arch = and the second is

subarch =. arch specifies the general architecture, that is x86, ppc, mips, etc. Subarch

specifies the system in more detail and answers the question of whether it is an athlon64

32 bit system, a pentium4, or simply i386. Comments in the configuration file specify the

84

available archs and subarch options. Note that any optimization flags added by the user in

the configuration file override the optimization flags brought in by the setting of arch and

subarch. Furthermore, per-package optimization flags override all other optimization flags.

3.3 Implementation

Now that we have described how Vestigium will be designed to be used by end users,

it is time to describe how package maintainers and other developers will use Vestigium.

From the perspective of maintenance of Vestigium, the major consideration is to avoid a

steep learning curve. This means that users should not have to learn a new language in

order to create a build script. Build scripts should contain instructions for how the package

is configured, how the package is built, where all of the files are installed, and what links

are to be made.

The second consideration is expandability and organization. Vestigium will have a

modified ports structure. A package’s port, at least for now, will contain four files. The first

file is the INFO file. INFO contains basic information such as a package’s dependencies,

the files that it needs to download for installing from source, a description of the program,

the license used by the program, and a web link to the program’s website. Next comes a

BUILD file. This file contains the commands needed to configure and compile a program

from source. After BUILD comes INSTALL. This file contains instructions for where files

are moved in the system. Everything specified in INSTALL becomes logged by Vestigium;

that is, all files that are installed get tracked by Vestigium. Finally, we have the POSTINST

file where maintainers can add instructions to be run after a package has been installed,

that is, any instructions that the maintainer does not want Vestigium to track. The reason

for splitting files out is so that a novice maintainer can absorb the mentality of building the

package first, copying files to the right locations, and then making adjustments afterwards.

Portage’s ebuilds force users to create subroutines for the three tasks.

85

The ports hierarchy will be designed such that all packages are in alphabetic folders.

Inside each package’s folder is a folder for each version of the package that is intended

to be available. For example, the package screen-4.0.2 would be under the following path:

s/screen/screen-4.0.2. The alphabetic portion of the hierarchy serves to accommodate

a growing number of ports.9 The package and package version portions allow for the

creation of multiple versions of packages.

A utility, called Vesport,10 will be available so that maintainers do not frequently have

to recall syntax for the INFO file. Vesport is a very basic editor that asks a user to input

data in response to questions. The questions revolve around creating a port for a given

package. Once it collects all of the information from the user, Vesport creates the four files

that comprise a package’s port, and organizes everything with correct syntax.

The final consideration for developers and maintainers is that Vestigium and its accom-

panying tools are all written in Perl. Perl is a scripting language, which means that it is

easier to learn and often easier to program in. Perl is considered by many to be a language

that is difficult to read. This is certainly true if no effort is expended to make more readable

programs. Vestigium is written to be easy enough to read by following consistent syntactic

and semantic rules and having well named and placed subroutines, as well as comments.

A developer or maintainer can very easily modify or add to Vestigium and its tools’ func-

tionality. A lot of package management deals with text processing.11 Perl is considered to

be one of the strongest languages for text processing, making it even easier to work with.

Now that we have explained how the package manager is intended to be used, we can

proceed to describe the core implementation and development of it. We can look at what

we described earlier as an outline for the implementation. The first thing we describe in

the core implementation is the main code, that is, the code that can be seen as comprising

the main method. This will help with the description of all of the subroutines that are used.

9It makes searching faster.
10Written by the author for use with Vestigium.
11File tracking can be argued to be text processing.

86

Next comes a description of the tracking methods, including what information is tracked

and how. Strengths of the implementation are described after that. Finally, the weaknesses

and lessons learned are discussed.

Vestigium starts out loading and setting variables from the configuration file. Ves-

tigium is hard-coded to look into /etc/vestigium.conf for the configuration file. Most

package managers also have hard-coded locations for configuration files, with CLI options

that enable the user to provide the location of a configuration file. The main reason for

hard-coding the configuration file location is that the configuration file contains informa-

tion regarding the locations of everything else. Once the configuration files load, we do

not have to hard-code any other locations. The other locations include the directory where

Vestigium’s libraries, ports, log files, backup directories, temporary directories, download

directories, and wrappers are. In addition to locations, Vestigium extracts information such

as optimization flags,12 architecture and sub-architecture information, and the settings that

we described earlier.

After loading information from the configuration file, Vestigium proceeds to make sure

that the temporary directory is clean. As we shall see later, the temporary directory is

used by Vestigium to build packages from source. When building packages from source

with Vestigium, failures may occur in the middle, where Vestigium does not get a chance

to clean up afterwards. Therefore, cleaning the temporary directory before anything else

allows for two things. The first is that novice users can retry a failed package – or continue

to use Vestigium after a failure – without having to know about the potential need to delete

information from the temporary directory. The second is that advanced users, who are

attempting to create a port for a package, do not have to waste time remembering where

the temporary directory is and deleting its contents.

The next thing that Vestigium does is load sub-architecture default optimization flags.

Vestigium is designed so that users who want an optimized Pentium IV system can get

12As of this writing Vestigium is coded to support LDFLAGS, CFLAGS, CXXFLAGS, and CHOST.

87

one without having to read the gcc manual themselves. That is, they can trust Vestigium’s

maintainers with that job. Vestigium’s maintainers are supposed to set optimization flags

in a special file located in Vestigium’s library directory. This file contains a list of known

subarchitectures13 with optimization flags corresponding to them. Vestigium makes use of

Perl’s regular expression capabilities to efficiently extract all of the optimizations. The way

information is stored in the subarchs file makes it easy to understand for those intending to

modify it and faster for Perl’s regular expression engine to read.14

We have discussed before how optimization flags added to Vestigium’s configuration

file override those set by the choice of the subarch. In order to correct this, Vestigium

takes those extracted optimization flags and replaces those set right before.15 Note that

optimization flags are placed into environmental variables. Perl provides easy access to the

environment variables by allowing programmers to edit directly the ENV hash. This means

that we can easily override the optimization flags that we set earlier without needing to keep

track of any extra variables. Furthermore, almost all programs that we will compile with

Vestigium only need to have the environment variables set. If the user did not specify any

custom optimizations, the optimization variables will be empty because the flags extracted

from the configuration file went straight into the environment hash. Therefore, Vestigium

makes sure to set the optimization variables to what is in the environment hash.

3.3.1 Libraries

The next thing that Vestigium does is load the libraries. At the time of this writing,

there are three libraries that are imported. The first is search.lib. This library contains

subroutines needed to search for files, owners, and programs. The subroutines include

searchBackupsForFile, which searches for a file in the duplicates directory of all pack-

ages. When found, the location of the file is returned. From this location, the program

13Such as Pentium IV, Pentium III, Athlon64.
14See the subarch file in the appendix and take note of the indentation
15If the user did not set flags in the configurations, this will not occur.

88

that owns the file can be extracted. This is due to the directory hierarchy that we discussed

earlier. Another subroutine is findOwner, which finds the program that owns a given file.

Another subroutine, findDupeOwner, finds all of the owners of a file in the case where

there were file collisions and files had to be moved out to duplicate directories. Another

routine is findProg, which, given a program name, returns all of the versions available for

installation. Next is findInstalledProgVer, which, given a program name and version,

returns whether it is installed or not. Similar to it is findInstalledProg, which returns

a list of all installed versions for a given program. Next is listFiles, which checks if a

program is installed, and if it is, returns all of the files that the program owns.16 A small

subroutine exists to output things that are not found. Called notFound, this subroutine is

used mostly by the other subroutines. It accepts what was not found as an argument, prints

out a warning about it, and goes on to call the continuePrompt subroutine. Last, but not

least, a simple function, checkIfDuplicate, is used to check a given list in Vestigium for

an existing entry. This is used later in calculating dependencies.

The next library is cont.lib, containing three subroutines. The first is the printHelp

subroutine. It is called every time a user supplies syntactically incorrect CLI parameters

to Vestigium. Vestigium’s CLI syntax is simple. A user is expected to provide, at the bare

minimum, a package or list of packages to process or everything, which for Vestigium

means all packages. A user is also expected to provide correct spelling for any CLI options.

Help is displayed if information is missing or deficient in either case. The next subroutine

is error. It takes as a parameter an error message and returns the error message while

stopping Vestigium in its tracks. The error subroutine can be replaced by the die function

in Perl.17 However, it is a convenience for those reading Vestigium’s source code to see

a subroutine named error. The error subroutine is used in Vestigium predominantly

for sorting out contradictory CLI options. For example, if a user uses the CLI options

--search and --remove at the same time, we need to stop Vestigium and tell the user

16File ownership is defined as the files that a program has installed.
17error uses die.

89

why.

The last library is names.lib, which provides subroutines that improve Vestigium’s

readability. The first subroutine is getProgName, which, given a program name with ver-

sion, extracts the program name. The second is getFirstLet which returns the first letter

within any text. And finally, the last is getBasename, which returns the last directory in a

path. All of these subroutines consist of simple regular expressions.

After loading libraries, Vestigium continues by checking if the current user is the root

user or not. This is done because installation is made to directories that only root can write

to. However, since it is not necessary to be root in order to search for file owners and similar

things, Vestigium prompts the user to continue or exit. The continue prompt simply asks

the user to continue, and waits for their input.

3.3.2 User Requests

Vestigium proceeds to load input from the CLI. It makes sure not to accept duplicate

entries of options or of packages. If the user inputs: vestigium glibc glibc, Vestigium

will not work on glibc twice. If the user supplies everything, Vestigium will work on

all installed packages. Vestigium knows which packages are installed by looking into the

log directories. The rest of the loading input from the CLI consists of setting all of the

variables necessary for Vestigium to work. After setting all of the variables, Vestigium

does a comprehensive sanity check to make sure that users are not abusing the CLI with

contradictory options.

If Vestigium passes the sanity check, it proceeds to synchronize the ports, unless the

user specified otherwise through the CLI or configuration file. The synchronization of ports

is called with the sync subroutine. It looks for download mirrors specified in the configura-

tion file, and then downloads an archive of ports. The download mirror is the general loca-

tion of where to download files from. The mirror must contain a special hierarchy. There

has to be a directory named ports, within which a ports.tar.gz file is located. Within this

90

directory is the hierarchy of packages that we described earlier and ports.tar.gz is in this

directory, because it is easiest for the maintainer of the mirror to create archives there. It is

faster to create and faster to extract ports.tar.gz because it is a gunzip archive.18 The

idea is that every time there is a change to a port, a new ports.tar.gz archive is created

and made ready for Vestigium to download. Once Vestigium downloads it to the download

directory, it extracts all of the files and removes ports.tar.gz.

If the user wanted to use --search or --searchdesc, Vestigium will do that by reading

all of the packages provided by the user on the CLI. For every package, Vestigium will call

the findProg subroutine, which will or will not output – depending on whether the pro-

gram exists or not – a list of all available versions of the program. The subroutine will take

care of notifying the user if a package was not found. For every available program version,

Vestigium will check whether that version is installed by calling findInstalledProgVer

and will notify the user of what it found. At the time of this writing the --searchdesc

method is not yet implemented. In order to implement it, one would call a new subroutine,

but only after attempting to find programs of a certain name. The new subroutine would

scan all of the descriptions in all of the ports for a specific keyword. Of course, this would

be called by specifying it on the CLI or in the configuration file.

If the user told Vestigium to remove duplicates for a given package or packages, Ves-

tigium would do this now by figuring out if the packages supplied are installed. It makes

no sense to go ahead and waste processor cycles and hard-disk access times to do some-

thing that is already done. If a user wishes Vestigium to proceed with deleting a pack-

age’s duplicates, he can say yes at the continue prompt. Vestigium will always remove

duplicates of the latest installed version, unless the user provides an explicit version. The

findInstalledProg subroutine takes care of versioning. The removal of duplicates is ac-

complished by the removeDupes subroutine. The removeDupes subroutine simply extracts

the information necessary – from the program and its version – to find the path of the dupli-

18A gunzip archive is larger than a bz2 or bunzip archive, but speed is more important here.

91

cate files, and proceeds to delete everything in that path. For example, glib-2.4’s duplicates

would be located in $backupDir/g/glib/glib-2.4/dupes/, where $backupDir is the

location of the backup directories which are set in the configuration file.

The next option that Vestigium might work on is outputting a list of all files owned by

a package for the user. This is done by calling the listFiles subroutine for all packages

given by the user. The subroutine handles all of the issues relating to informing the user

whether packages are installed, do not exist, etc. Similar to the list files option is verify.

If the user invokes verify the difference is that it does not output the list of files to the user,

but takes that list and scans the disk for the existence of every single file. The listFiles

subroutine collects its data from log files left by Vestigium when installing the packages.

This means that all of the files in the logs should, under normal circumstances, be in their

appropriate locations. If this is not the case, the verify option outputs which files are

missing.

3.3.3 Queues

If Vestigium is still running it is because its attention was not grabbed by the users’

requests to do specific actions. Vestigium now needs to build what we will call package

queues. Depending on what the user wants, queues need to be constructed so that Vestigium

can apply the correct subroutine to the correct packages and in the correct order. First, we

need to describe all of the queues that Vestigium works with. First is the uninstall queue.

Packages are added to this queue – at the time of this writing – if a user passes the --remove

flag to Vestigium on the CLI. Other cases where packages might be added to this queue

are more complicated, and are not yet implemented in Vestigium. These cases include

the updating of packages, if the user supplies the --clean or --depclean option. Both

are difficult to implement, because they have to scan all installed packages for whether a

particular package is depended upon or not. This is especially difficult because in its current

state, Vestigium cannot distinguish between packages that were compiled as dependencies

92

and those that were not. A simple distinction is made by the Portage package manager, but

even then, --depclean is still not efficient. Portage maintainers do not trust their scheme

to be used during an update as a way to remove obsolete packages. The simple distinction

can be made between those packages that historically had to be added as dependencies and

those that the user explicitly requested. This is the distinction Vestigium would probably

have to make if someone were to implement the --depclean feature along with the ability

to track down and remove obsolete packages, or even switch dependencies.19 The --clean

feature is also not implemented as of this writing. This is due to the fact that it is not a major

feature and can be done without for some time.

The next queue is the backup queue. Just like uninstall, it responds to the --backup

option supplied by the user on the CLI. Unlike uninstall, however, it is not intended to be

used for anything else. We nevertheless include it as a queue instead of just proceeding

directly through all of the given programs. This is because someone might potentially find

a use for it and end up having to do less modification to implement a feature.

Another similar queue to backup is the rebuild queue, which holds packages when a

user supplies --rebuild. Packages will also be added to the rebuild queue if a user’s

configuration file says that the user wants to use only backed up packages. In other words,

backed up packages will be installed regardless of whether they are already installed or not

and if the user wants to work with backups only. We will see later that the rebuild queue

and install queue use the same functions for dealing with backups.

The next queue is the install queue. Install gets populated with packages that are not

yet installed. The latest version of available versions is added to the install queue unless the

user specifies a specific version to install. The same goes for the update queue, except that

packages are added to the update queue only if an older version is already installed. What

occurs is that packages which are given by the user are checked with the findProg sub-

19For example, xpdf was a dependency for package y, but along come poppler with better support for
package y. An implementation can be made where the dependencies are switched in the sense that xpdf is
removed and poppler installed.

93

routine. This subroutine gives the list of all available packages. We take the latest version

from this list and compare it to the output of findInstalledProg. If there are no installed

versions of the program, we place the program into the install queue. If there are installed

versions and the latest installed version is not the same as the latest available version, we

add the package to the update queue. Otherwise, a package would be a candidate for the

rebuild queue, but only if the --rebuild option was passed. Note that, had the user passed

a specific version of a program, findProg and findInstalledProg would have returned

entries stating that an available version was found,20 but an installed version was not.21

This would place the specific version into the install queue, as we would want, preserving

the multiple installation feature that we outlined earlier.

The last queue is a temporary one because it gets scoped in and out in Vestigium.22 The

queue is called depQueue, and serves as a queue that collects dependencies that get added

to the update and install queues in the right order. The mechanism for getting this to work

is fairly tricky. First, Vestigium cycles through what is in the install queue. If the user did

not set --nodep, it continues with the process. Vestigium extracts dependency information

contained within a specific package’s INFO file. It creates a list of dependencies whose

existence must be checked. If the latest version of a dependency is already installed, then

nothing needs to be added to any queues. If a dependency is not installed or is not the

latest version, Vestigium adds the dependency, along with its latest available version, to

depQueue. Since different packages might have the same dependencies, Vestigium does not

add duplicate entries of dependencies into the dependency queue. The question might be

at this point: why do we not add the dependencies directly to the install, rebuild, or update

queues? The answer is that dependencies might have dependencies themselves. If we add

directly to the queue without using depQueue, we will have to recheck all of the queues for

dependencies. Even worse, we will have to do another iteration, followed by another, and

20This is assuming that the user supplied an existing program with version.
21This is assuming that the program version was not installed.
22The queue is alive in only a small section of the code.

94

another. Instead of that trouble, a recursive algorithm is utilized for finding the full tree of

dependencies in depQueue. For every entry in depQueue, the entry’s INFO file is parsed

for dependencies. Vestigium checks if all of those dependencies are installed or not and if

they are the latest versions. If not, the dependencies are added to the back of depQueue –

this is crucial – if a dependency is not already in the queue. Vestigium then does the same

thing to the next item in depQueue. Since all additionally added dependencies were added

to the back of the queue, Vestigium eventually reaches them and finds their dependencies.

What we have at the end is an ordered list of dependencies such that the core dependencies

– the ones that others depend on – are at the back, while the ones that need dependencies

are at the front. This allows Vestigium to easily add everything in depQueue to the install

queue and update queue. Vestigium does this by checking if the dependency has an older

version already installed or not. In the former case, the dependency is added to the front

of the update queue. In the latter, the dependency is shifted to the front of the installed

queue. Note that Vestigium takes dependencies from the front of the depQueue and moves

them to the front of the other queues. This is important, because at the end the packages

that do not need special dependencies are at the front of the queues, while packages that

do require dependencies are at the end of the queues. Without this order there would be

trouble, especially if the user is building packages from source, since packages will not

pass their configure tests and will not allow Vestigium to continue. Another thing that we

have to note is that circular dependencies are possible with the algorithm in its current state

– as of this writing. However, circular dependencies might be abolished from Vestigium by

comparing duplicate entries from depQueue before they are added to the other queues.23

Vestigium now deletes depQueue and proceeds to inform the user about what it is going

to do, unless of course the user requested in the configuration file not to be prompted. If the

user tells Vestigium to continue, it will proceed to process every package in every queue.

First is the install queue. If the user specified in the configuration file that he wanted source

23See Appendix B for more about circular dependencies and methods of combating them.

95

packages, Vestigium runs the installpkg subroutine. If the user specified that he wanted

binary packages, then Vestigium will run the installbin subroutine. And finally, if the

user specified that he wanted backups to be extracted, then installbak will be run. All

of these subroutines are covered later. The same applies with the rebuild queue. The only

difference is that the rebuildpkg and rebuildbin subroutines are run respectively, and

the subroutine for backups is the same as for the install queue: installbak. The update

queue is handled in the same way as the rebuild queue was, with the exception that the first

two subroutines are once again renamed. The last two queues, uninstall and backup, have

the removepkg and backuppkg subroutines run respectively. Once all of the contents of

these queues are processed, Vestigium stops.

3.3.4 Subroutines

Up to this point Vestigium has not done very much. Most of the work occurs in the

subroutines. We will not describe all of the subroutines in detail.24 The subroutines de-

veloped and well tested at the point of this writing deal with many of the same concepts

and algorithms as other subroutines. To spare being repetitive we focus on the major ones:

installpkg, backuppkg, installbak, removepkg, and rebuildpkg. These subroutines

utilize other subroutines, which we will cover as we proceed.

The installpkg subroutine is given a package with its version that is not already in-

stalled. The first thing that installpkg does is open the INFO file for the package and

checks if any optimizations flags were supplied. If optimization flags were supplied, Ves-

tigium overrides the existing ones in the environment hash. The next thing that is done in

installpkg is the calling of the extract subroutine. The program to which work is being

done is passed to extract. The program’s INFO file is first loaded by extract and used to

determine the locations where the files containing the given package’s source code can be

downloaded. It takes the list of locations and calls the download subroutine. The download
24Not all of them have as of this writing been well tested, and some of them have not been implemented.

96

subroutine takes a URL as a parameter and downloads what is in the URL to the download

directory. The download subroutine stops if the user supplied --download to the CLI. Ves-

tigium makes sure not to download a file that is already in the download path by checking if

the file to be downloaded is already located at the appropriate location. Once a file is down-

loaded or determined to be in the correct location, extract attempts to determine what type

of file it is. Most of the files that circulate in the open source world are tar archives com-

pressed with bunzip or gunzip. The tar command handles both of these cases by extract-

ing the archives to the temporary directory. Another type of file that circulates is a patch

file. Such a file usually contains information regarding what line to modify in the extracted

source code. This file, with its location, is added by extract to a list of patch locations.

The extract subroutine is designed to be extensible to include handling for any file format

in existence provided that Vestigium’s maintainer adds a line in the code for every format.

After extracting all of the files, extract changes the current directory to the first extracted

folder. This is called the working directory and theoretically provides the commands in

Vestigium access to everything that was extracted in other directories. This is very conve-

nient because users can write BUILD scripts where files are copied from directories adja-

cent to the working directory using something like cp ../otherFolder/file file. The

last thing that extract does is execute applyPatch on all of the patches that were down-

loaded. The applyPatch subroutine attempts to patch the source code by passing possible

options to patch. The patch command includes a feature that removes the parent paths

from patches, allowing patch to patch the correct files in the source code.25 Depending

on who created the patch, the number of parent paths that need to be removed might differ.

Vestigium figures this out for the user. If patching fails, Vestigium stops. Once patching

is stopped, we are back in installpkg. The first stage of installation has finished and the

source code is ready to be configured and compiled. At this point Vestigium generates a file

with information about the package that is currently being worked on.26 Vestigium loads

25See the patch program’s man page.
26We describe this in detail when we get to talking about the file tracking method.

97

the package’s BUILD file and begins running the commands that are contained within it.

If the command is a cd command,27 Vestigium updates the working directory to it. This is

to ensure that when Vestigium goes on to the other scripts, it will not inadvertently lose the

directory in which all of the action is supposed to take place. Once all commands in the

BUILD are executed, Vestigium prepares to load the INSTALL file by creating the directo-

ries needed for the package’s log files. Next, installpkg modifies the environment PATH

variable to have Vestigium’s wrapper path take precedence over other executable paths. We

will discuss what this is later. All of this is necessary for correct tracking of the files that

package installs. Without going into too much detail at this point, installpkg runs the

commands in INSTALL so that all files that the package installs to the system are logged

to files in a package’s log directory. Once all commands in INSTALL are run, Vestigium

resets the environment’s PATH variable to what it was before and proceeds to run the com-

mand in the POSTINST file. The last things that are done in installpkg are the resetting

of optimization flags to what they were before the package’s optimization flags over-rode

them and the removal of the contents of the temporary directory as well as the information

file generated earlier. If the user had used the --package CLI feature or set its equivalent

in the configuration file, Vestigium would call backuppkg.

The backuppkg subroutine is Vestigium’s subroutine for creating binary archives of

packages. The backuppkg subroutine, unlike installpkg, takes as input a program name

with its version or a program name without a version. Assuming that the program is in-

stalled on the system and has correct information in its logs, backuppkg calls listFiles

to get a list of files that are owned by the package on the system. This list of files is fed to

the tar command so that all of the file’s attributes are preserved – including symbolic links.

The resulting archive is a gunzip containing all of the files of the package. It is important

to note that the resulting file name will be the program name, followed by version, then

architecture, and finally subarchitechtures. This allows us to create archives that can easily

27Change of directory.

98

be used to create a mirror with binary packages for users to download.

The installbak subroutine extracts existing backups of a package. When extract-

ing the backup, log files are recreated. Vestigium captures the verbose output of the tar

command to quickly create logs. The installbin subroutine completes almost the same

actions that installbak does except that it downloads binary packages from a mirror on

the Internet. Likewise, the rebuildbin subroutine completes the same actions, but makes

sure to remove a package’s files from the system first. The updatebin subroutine simply

calls installbin on the new version and removepkg on the older version of the package.

Another subroutine is rebuildpkg. It first moves log files out of the way, making it

seem as if the package is not installed. Next, it sets the force variable to true and calls

installpkg. This makes installpkg over-write all files that will still exist in the system

since the package is already installed. Once installpkg finishes, rebuildpkg sets the

force variable back to false. Next, rebuildpkg compares the log files that were moved out

to the new log files created after re-installation. If it notices any files in the old logs that are

not in the new logs, rebuildpkg will remove extra files found in the old logs. Although it

has not been implemented at the time of this writing, updatepkg will be almost identical

to rebuildpkg with the exception that it will not need to copy log files to other locations,

but compare the new and old versions and delete the files only associated with the older

version.

The next subroutine is removepkg. This is one of the trickiest parts of Vestigium.

Like installpkg, a lot of this subroutine depends on the file tracking implementation

that we have yet to describe. The removepkg subroutine provides half of the implementa-

tion behind the duplicate file handling and multiple versioning features. removepkg first

checks if a program is installed. If not, removepkg warns the user and prompts him to

continue or not. Note that removepkg finds out if a program is installed or not by calling

findInstalledProg. Had the user told Vestigium a specific program version, removepkg

would process that specific version only. If a program is supplied without a version at-

99

tached, removepkg will attempt to remove all installed versions of a package. The first

step to removing a package is scanning the two types of log files that were created dur-

ing installation. The first type of log file is inst.log and the second is dupe.log. The

inst.log file contains all of the files installed by a package. The dupe.log file contains all

of the files that initiated duplicates for other packages.28 Under ideal circumstances there

will be nothing in dupe.log. In this case, removepkg can remove every file contained

within inst.log. However, under circumstances where files were moved to a package’s

duplicates directory, removepkg needs to check if the files it is about to remove are in

the program’s duplicates directory. If they are, removepkg cannot remove those files be-

cause they are owned by another package. Furthermore, some entries in inst.log might

be directories. Directories are removed by removepkg if and only if they are empty. It

is important to note the Vestigium goes through the logs backward, starting with the last

entry. It is designed to do this because during installation directories are created first, and

then populated with files. When removing a package files have to be removed first, then

the directories.

The removepkg subroutine is still not finished. It needs to take care of the case where

it might delete a file that the package itself forced out. In other words, during installation

a package might have forced some files to go into other packages’ duplicate directories.

For example, package x wrote file a, and then package y wrote file a, forcing a to go to

package x’s duplicates. Next, package z also comes in to write file a, thus forcing file a

also to go under package y’s duplicates. If the user decides to remove package z, removal

of the file proceeds because package z does not have file a in its duplicates. The problem

now however, is that package y and package x expect that file a is on the system. What

removepkg has to do is find anyone with file a in its duplicates directory, and move that file

from duplicates to the system directories. The removepkg subroutine does this by checking

every file that has been recorded in dupe.log and attempting to find the other owners of

28Other packages’ files had to be moved out before installing the new package’s files.

100

the file. The first owner of the file that is found, and who has the file in their duplicates

directory, is the one whose duplicate file is moved back to the system. If no owners are

found, a warning is sent to the user. It is possible that all packages who had duplicates for

a given file might have already been uninstalled, however if this is not the case then the

user should file a bug with Vestigium’s maintainers. The last thing that removepkg does is

remove a package’s log and backup directories.

3.3.5 File Tracking

Up to this point we have have had a few glimpses at Vestigium’s file tracking imple-

mentation. It is time for a comprehensive description of the implementation. Vestigium’s

file tracking implementation is similar to the LD PRELOAD method described in the sec-

ond chapter. The main difference is that Vestigium’s implementation is far more portable.

In general, Vestigium utilizes the output from commands that are responsible for moving,

copying, and linking files. That output is processed so that any file that is created can be

logged in a log file or files. There are five main commands that are used in a package’s

installation to make files appear in locations on a file system: mv, cp, mkdir, ln, install.

The mv command moves a file from one location to another. The cp command does the

same thing execpt it does not delete the old file. The ln command creates links from a

specific location to another file. The mkdir command creates directories. And finally,

install is a versatile combination of the cp and mkdir command that can set permis-

sions, strip symbol tables, and do other tasks. The author tried his best to find packages

that used any commands other than these five during installation, but was not able to find

any.

All cp, mv, ln, mkdir, and install commands that are run in INSTALL need to be run

through Vestigium’s modified scripts that log what those commands do. Commands in IN-

STALL, however, can be scripts such as make install or sh program-install-script.

This means that the commands in those scripts must run through Vestigium’s modified

101

scripts. The way Vestigium takes care of this is by having scripts called wrappers whose

names are cp, mv, ln, mkdir, and install. These wrappers are located in a directory,

which the installpkg subroutine shifts onto the PATH environmental variable so that the

wrappers have precedence over the normal commands. With this precedence, whenever an

installation script uses one of the five commands, it ends up running the wrappers. The

wrappers execute the normal cp, mv, ln, mkdir and install commands. Initially, the

wrappers would evaluate the input of the commands, and piece together the source files,

destination files, and CLI parameters, and feed them into the normal commands. This

turned out to be a daunting task, so instead, the author utilized the commands’ verbose

outputs. Here for example is the verbose output of the cp command:

cp kde-andrey/* /tmp/ -Rv \par

‘kde-andrey/konqueror.log’ -> ‘/tmp/konqueror.log’

‘kde-andrey/ksycoca’ -> ‘/tmp/ksycoca’

The first item after cp is the source files and the second item is the destination location

for those files. The -R option tells us that we want to copy directories and -v tells us that

we want verbose output. The two lines after the command tell us what the cp command

accomplished. It moved the file konqueror.log to the /tmp/ directory, and did the same

thing for ksycoca. Similar output exists for the mv, install, ln, and mkdir commands.

The wrappers do much more than just read the verbose output of the five commands.

They log all of the information to the log files of the program being installed, and they move

out any existing files before allowing any of the five commands to overwrite them.29 Let

us first describe the cp wrapper. We will then describe a small portion of the ln wrapper.

The ln wrapper is almost identical to cp, with the exception of one interesting case. Next,

we describe the mkdir wrapper. The mv and install wrappers are not discussed because

they are nearly identical to cp. By going through descriptions of the wrappers we will see

the full implementation of Vestigium’s file tracking system.
29This is part of duplicate file handling feature.

102

One of the first things that the installpkg subroutine does is create a special file

containing information about the package that is being worked on. This file, called the

profile, is the first file that our wrappers read. The contents of this file are: the name of the

program with the version, the directory where Vestigium’s libraries are located, the location

of the log directories, the location of the backup directories, a statement if debugging is

enabled, a statement if the --force feature is enabled, and finally, the location of the

work directory. The cp command – as well as mv, ln, and install – has a neat backup

feature whereby the user can tell cp to copy an existing file out of the way before copying

a new file over. There are two environment variables that can be utilized to customize

cp’s backup feature. The first is VERSION CONTROL, which tells cp the type of backup

naming scheme to use. The choice is between simple and numbered. The numbered scheme

does not overwrite files that have already been moved out of the way. The simple scheme

overwrites any existing files that were copied out of the way. Vestigium is designed to use

the simple scheme because, as we shall see, the numbered scheme is of no use. The second

environment variable is SIMPLE BACKUP SUFFIX. It controls the suffix that is appended

when moving files out of the way. To make everything consistent and more understandable

in Vestigium we set the suffix to be .dupe, meaning that the file became a duplicate. After

setting the two environment variables, cp proceeds to read the arguments that were supplied

to it. That is, these arguments are the same arguments that a normal cp command would

take. The cp wrapper takes off certain CLI options if supplied. The first option that is

taken off is -b or --backup as it is intended for nothing other than the cp wrapper to

control this option. The second option that is chopped off is -S or --suffix. This option

controls file backup options, which might interfere with correct functions of the wrapper.

Next is -v or --version, which, once again, only the wrapper should have control over.

Finally, the -V or --version-control options that are used by cp commands on some

systems, are filtered out to assure correct functioning of the wrapper. These options control

how file backups are made. Once these options are filtered out, the wrapper changes the

103

current directory to the work directory. This is a measure taken to prevent the occurrence

of a cp command assuming that it is being run from the work directory, but in fact is run

in the directory from which the user is running Vestigium. After this step, the wrapper

runs one of two variations of cp. In the first variation --force is used. In this variation

cp overwrites any files that might be in the way. In the second variation, cp is run with

the -b CLI option. The -b option is short for --backup. It tells cp to move the file that

would normally be over-written to the same directory and append the suffix supplied by

SIMPLE BACKUP SUFFIX. Both variations of cp are run with the -v or --verbose CLI

option. For both variations, the wrapper swallows the output of the commands, including

error output. The next action taken by the wrapper is the evaluation of the output that it

swallowed. If the output shows that a backup operation has occurred, the locations of the

backed up files are recorded in a duplicates list. In all cases, the file that was successfully

copied to a destination is added to the installed list. In the special case where cp attempted

to overwrite a directory, a lot of work needs to be done. First, we find the owner of the

directory by calling the findOwner subroutine. If we do not find the owner, then we have

to assume that it is either a vital system directory that does not really belong to a specific

package, or a user created directory. In this case, we stop Vestigium and tell the user to

pass proper judgment on what to do.30 If the owner is found, we proceed to move the

directory to the owner’s duplicates directory, making sure to do this without using any of

the wrappers. We make sure to record that directory in both the owner’s dupe.log – so

that the removepkg subroutine can function correctly – and the dupe.log of the program

that is being installed. We also record the directory, its contents, and all of the other files

that got a chance to be recorded in inst.log before the failure. Finally, a cp command –

not through the wrappers – is run, finishing what was supposed to be accomplished. The cp

wrapper proceeds to record the remainder of the output of the original cp command. Once

it is finished, the wrapper proceeds to record all files that were installed in the inst.log

30For example, move the directory out manually.

104

of the package. The files are added to the log file with their full paths, making it easy to

know where they are when parsing the log. For all duplicate files, the owner is searched for

by using the findOwner subroutine. Note that findOwner does not return an owner who

already has the file in its duplicates directory. This assures the ability for the duplicate file

handling not to be limited to two packages only, but to apply to as many as needed. If an

appropriate owner is not found, we notify the user of the problem and leave the duplicate

file as is because it may be a user created file. If we do find an owner, we move the duplicate

file over to the owner’s duplicates directory. Finally, we log the file in the dupe.logs of

both the program to where the duplicate was moved under and the program that is being

installed.

The ln command creates links from a location to another file. The ln wrapper is line-

for-line identical to the cp wrapper with the exception of two cases. The first is that it does

not have trouble with the case where the current file is a directory. It places the symbolic

link into that directory as would happen in any case. The second is that the ln command’s

output does not always give the full path to where the link is located. This is normal because

a symbolic link31 simply contains a pointer to the location of the file. That pointer does

not have to be the full path. Therefore, to log correctly any created symbolic links, the ln

wrapper checks if the output shows a beginning /. If this is not the case, the wrapper uses

the current directory as the reference point to the link.

The mkdir wrapper uses the same principles applied by all of the other wrappers. The

mkdir command, however, does not have the backup feature that the other commands have.

On a positive note, we do not need to do any crazy duplicate handling with mkdir. All we

need to do is log that it was created, or that an attempt was made to create it. The wrapper

simply reads the output of mkdir and records the directories that it attempted to create in

the inst.log of the package. Recall that the removepkg subroutine removes a directory

only if empty. There is therefore no need to worry about needing to move a directory out

31Symbolic links are used more often than hard links to accommodate those users who might have separate
partitions for folders.

105

for duplicate file handling. In fact, it could be dangerous to do so because we might move

out contents with files that do not belong to the program under whose duplicates directory

the directory will be stored.

3.4 Strengths and Weaknesses of Implementation

We have finished describing the full implementation of Vestigium. It is now time to

step back and evaluate the strengths and weaknesses behind the implementation. After this

evaluation we discuss the issues encountered when writing Vestigium and lessons learned

from the experience.

The strengths of Vestigium are plenty. Even when we consider the fact that a number of

features are still missing, Vestigium does a lot of things. We need not mention all of them

as the reader can look through this chapter for such details, but we might as well summarize

the major actions that Vestigium performs. First of all, Vestigium allows the installation of

either source based or binary packages. It allows the user to switch between the installation

modes with single options on the CLI. Vestigium is able to do all of the downloading,

unpacking, file tracking, and dependency tracking of packages. Additionally, Vestigium

provides a quick and easy way for users to synchronize with Vestigium’s ports repository.

All of this allows Vestigium to intelligently update systems with a single command. If

we think about it, Vestigium does more than the combination of dpkg and apt-get. Most

remarkably, Vestigium does all of this with a fairly small code base. Currently the code base

stands at roughly three thousand lines. After the implementation of most of the missing

features, Vestigium should grow to roughly five thousand lines.32 Vestigium is relatively

portable. Due to the fact that is it written in Perl, it will work on any system that Perl

runs on. Binary packages can be created for any number of architectures and used with

Vestigium. Source-based installation on different architectures can also be accommodated,

32This number is based on counting the number of missing subroutines, and estimating how many lines
each might require.

106

provided that GNU user space can run on the architecture. Another strength of Vestigium is

its ability to compile source packages with custom optimizations. Not only does Vestigium

provide preset optimization flags for sub-architectures – for users who want to trust a higher

power for optimizations choices – it provides the ability for users to set flags globally or on

a per-package basis. A major advantage of Vestigium is the flexibility provided by the ports

scripts that allow packages to be installed straight from the directory in which the package

was built. Most source-based package managers build programs in a temporary directory,

install the files to another temporary directory, and finally copy the installed files to the real

system. Vestigium bypasses such an inefficiency without losing the ability to create binary

packages of the programs.

Vestigium’s greatest weakness is its current ports implementation. In particular, the

script files that comprise a port are the cause of most of the trouble. The weakness is so

great that Vestigium can comfortably be thought of as a useless package manager. It is not

a matter of bad code in Vestigium that creates the weakness, it is simply the organization

of the separate scripts and how they are intended to be used. The author discovered the

weakness when attempting to create ports for packages. First of all, it is not convenient for

a port writer to jump around a number of separate files to add commands. There is a reason

why all information is in a single ebuild file in Portage. It helps a port writer see the big

picture of what is happening and what he is working with. The author found it needlessly

challenging to attempt to recall the commands that he wrote in a preceding script. The

author ended up creating a Vesport utility to alleviate the inconvenience, but it was simply

a work-around to a more fundamental problem.33 Second of all – and perhaps worse of

all – Vestigium’s ports were designed not to have the complexity of something similar

to portage’s eclass. Although the complexity of the ability to use high-level functions

would have been two steps backward, it would have been thousands of steps forward in

the long run. Due to the fact that Vestigium does not have anything close to an eclass it

33Vesport turned into a very rigid text editor.

107

becomes exceedingly painful to re-write statements that could have a high-level functional

equivalent. Another advantage to an eclass, is that you can write different functions of the

same name, but that work for different architectures. What good is Vestigium’s source-code

portability if it does not translate into the portability of the ports?

Finally, Vestigium’s ports require the modification of packages’ source code. Recall,

RPP, the package manager that Red Hat abandoned because the package manager mandated

modifications to packages’ source code. It is clearly unacceptable for a package manager

today to mandate modification of source code. The reason Vestigium mandated modifica-

tion was due to the “magic” behind bumping the paths of the wrappers above the normal

mv, cp, install, mkdir, and ln commands. During the configure stage of a package’s in-

stallation, the configure script would hard-wire paths to the five commands to what it found

in the PATH at the time. However, when it would come time to track which files were writ-

ten to the file system and where,34 the packages’ make scripts refused to use the wrappers.

The reason for this was that the configure scripts generated make files with the hard-wired

paths that they found before. The author attempted two work-arounds. The first was to

install files to another temporary directory, and use the wrappers to copy the files from the

new temporary directory to the real system like other package managers. This work-around

was not satisfactory because it was taking away from Vestigium’s feature of not using such

temporary directories. The second work-around required changing the hard-wired paths in

the make scripts by using sed or Perl regular expression substitutions. This was not too bad,

until the author discovered that packages can have a tremendous number of make scripts

in multiple nested directories, all requiring modifications for the hard-wired paths.35 Make

scripts can be written differently, and a single sed substitution might not work for all cases.

It, therefore, becomes a pain to add ports to Vestigium in general. If it is painful to create

ports, then it makes no sense to use the manager because a user keeps a package manager

for software installation and updating needs.

34This is where the wrappers’ path would get precedence in PATH.
35A find command can alleviate this problem by recursively going through all directories.

108

And so, we did not give birth to a distribution. Had Vestigium been an excellent plat-

form for creating ports, we might have created a large enough collection to warrant the

foundation of a distribution. GNU/Linux distributions need to offer something to users that

might not be offered by other distributions. In our case, Vestigium is what we would offer,

but what does a package manager offer if it does not have many packages due to a bad ports

implementation?

We have learned how to go about developing a package manager. Most importantly, we

have learned the major pitfalls a package manager developer can fall into when organizing

the functions of a package manager. If the author were to start over, he would create a

package manager that would parse portage’s ebuilds. Not only would this spare the trouble

of organizing an efficient ports systems, but it would allow users to take advantage of over

eleven thousand ebuilds that can be used to build packages.

109

Chapter 4

Maintaining a Distribution

Once we have a distribution constructed, we have to maintain it. The bulk of the mainte-

nance centers around keeping packages up to date. Updated packages often result in the

need to modify other things, so all non-package management changes in a distribution are

actually more related to package management than they may seem.

The first question a distribution might ask is how many people it needs to maintain all

of the packages. Some distributions have less than a dozen developers,1 many have less

than fifty, while a number of them have more than one hundred and are always looking

for more.2 The really small distributions appear to actively maintain roughly four hun-

dred packages, relying a lot on contributions from users.3 The slightly larger ones maintain

around one thousand or five thousand packages. For example, Gobolinux maintains an esti-

mated nine hundred eighty one,4 while Source Mage maintains almost five thousand.5 The

largest distributions, as we have mentioned earlier, maintain over ten thousand packages.

The small distributions,6 appear to rely on a development model where they maintain

packages as a group. In other words, people take on tasks when there is a need. The larger

1Crux.
2Gentoo, Debian, etc.
3You can see an example of this here: http://crux.nu/Main/About.
4The estimate was generated from here: http://www.gobolinux.org/recipe-store/.
5The estimate was generated from here: http://www.sourcemage.org/codex.
6Those with less than fifty developers.

110

distributions however have fairly strict assigned responsibilities.7 These strict assigned

responsibilities are in the form of the packages that an individual or group of individuals

is responsible for maintaining. In Debian, teams of developers may collectively maintain a

number of packages or individuals may maintain a number of packages. More often than

not, the teams maintain more packages than individuals. Some individuals maintain more

packages than a lot of teams. Furthermore, some individuals can be on numerous teams,

while having their own packages to maintain.8 Gentoo has a similar development model,

where individuals maintain their own packages, while being in teams9 that work together

to maintain a number of packages.

Usually the more important packages are maintained by a team. For example, the gcc

package is maintained by a team in Gentoo and Debian, called “toolchain” and “Debian

GCC Maintainers” respectively. In Gentoo, the firefox package is maintained by an indi-

vidual as well as a herd. Debian has a similar scheme. There are probably two reasons for

this. The first is that the important packages are complex or large to the degree where a

single mind cannot do all of the work to maintain them. The second is that should anything

occur with an individual developer,10 there are others who are familiar enough with his

work to take on his duties. Every now and then, bugs submitted to Gentoo’s bug tracking

system go unfixed because of a maintainer’s absence, even if users have submitted func-

tional fixes.11 Such an occurrence is unlikely to happen with packages that are maintained

by a group since the absence of all its members at the same time is unlikely to occur.

The question still remains: How many developers does a distribution need? This ques-

tion can be broken down further: How many developers are needed to maintain x number

of packages? How many developers are needed to maintain x number of packages if the

7There is usually no centralized authority that assigns responsibilities, nor is there, in general, a “police”
that enforces that people complete their responsibilities. On the contrary, developers assign responsibilities
to themselves and make it up to themselves to complete the responsibilities.

8These facts can be observed here: http://www.us.debian.org/devel/people.
9Called herds.

10He might go on a vacation.
11The maintainer is needed to submit the fixes to the package management repository.

111

developers are expected to work y amount of time? How many packages can z developers

handle? Assuming that there is no alternative to the maintainers scheme, we can use sim-

ulation to attempt to answer these questions. The use of simulation is needed because the

packages need to be worked on at fairly random times. New software in the open source

world is usually not released on set schedules. It can be argued that we can utilize various

forecasting techniques to predict when package x might have a new release, but it is difficult

to apply the same forecasting techniques to every package.12 Data is also fairly difficult to

collect from the large number of packages. Besides when new releases of packages occur,

package maintenance might need to be done in response to bug reports. Forecasting occur-

rences of bug reports is likewise very tough, especially considering that it is impossible to

even guess how many problems a package might have between releases.

4.1 Using Simulation to Estimate Personnel Requirements

Simulation allows us to construct a simplified model of a complicated system. The

simplifications occur when we assume that events in the system occur randomly. Further

assumptions take place to determine the random probability distributions that should be

used to produce realistic results. The author has constructed a simulation of maintainers

maintaining a package management repository. This simulation uses results from Gentoo’s

portage to construct as realistic as possible random distributions.

The first step to creating a simulation is collecting data that will determine what random

distributions should be used. There are four pieces of data that this simulation collected.

The first is the average time between version revisions in Gentoo’s portage tree. Gentoo

has a CVS/SVN repository13 that is available for any one to download. The author wrote

a Perl script14 that uses regular expressions to extract and collect information about how

12Every package requires individual scrutiny to judge which forecasting technique to use.
13These are subversioning programs that allow a large number of people to coordinate on programming

projects. CVS is the “Concurrent Versioning System”. SVN is “Subversion”.
14See retrieve-pkg-commit-times in appendix C.

112

much time passed between every major version “bump”15 for each package in portage.

The average time between version bumps is computed from that data. The second piece

of data is the average time between non-major version bumps made by maintainers. The

author simplified this to be “bug bumps”, or the occurrences where a maintainer made a

change in response to a discovered or reported bug. The third piece of information collected

is the compile-time for every single package. This information was collected from an

unsuccessful survey conducted on the official Gentoo developers’ mailing lists.16 Portage

keeps a log of the packages that were successfully compiled and the times at which each

compile started and ended. The author made a Perl script17 that went through the file and

extracted the compile times for packages built by the only developer that replied to the

survey. The final piece of information was the average number of times a developer re-

compiles packages before committing an ebuild for a package. This question was asked in

the survey.

Using the data collected, the author set three probability distributions to be used in the

simulation. To simulate version bumps and bug bumps, the author used two exponential

distributions with means extracted from mining Gentoo’s CVS. The exponential distribu-

tion was chosen here because it is commonly used to express events that occur through

time.18 To simulate compile times, the author used the compile times extracted from the

log file obtained from the developer. To simulate the number of times a package might

need to compiled,19 the author chose the gamma distribution with α = 1, β = 1, and shifted

Gamma(α,β) by one to the right. This gave the effect where the average number recom-

piles is two, but there is a decreasing probability that more recompiles are required. A

15A bump is a modification to a package. A version bump is when a package is updated to a new version.
16The survey attempted to gather logs from as many developers as possible in order to find out how long

it takes to compile individual packages for each. The survey also attempted to collect information on how
frequently the developers recompile their packages before committing an ebuild. You can see the inquiry on
Gentoo’s mailing list archives http://archives.gentoo.org/gentoo-dev/msg 141098.xml. There was only one
responding developer.

17See pkg-comp-times-retrieve in appendix C.
18Ross, 28.
19The responding maintainer gave two as the average number of times he needs to recompile a package

before committing it to the tree.

113

large number of recompiles, although possible, is very unlikely because the gamma func-

tion slopes down rapidly after it peaks at two. Putting everything together, the simulation

generated random version bumps and bug bumps, randomly chose a target package from a

list of all packages, and moved the package from that list to another list for the duration of

the randomly generated bug bump20. The simulation then generated the number of recom-

piles a maintainer would do, and multiplied that by the fixed compile time for the package.

The results displayed at the end were the average time that a developer ended up working

on his packages per week. Each simulation run was one year.

The results from the simulation were not too useful. The main reason for this is that

there was only one participating developer. His log file did not represent all of the packages

available in the portage tree. This was a major determinant for the final results. Another

reason the simulation was bad was that it did not take into account packages maintained

by herds. Nevertheless, the simulation did a few things well. The reason for recording

the package compile times was so that we could weigh some packages as more difficult to

maintain than others. The big assumption made was that the larger a package is the more

difficult and time consuming it is to maintain. In general the larger the package, the longer

it takes to compile. Had the simulation been successful, it could be argued that distributions

might use simulation to better allocate packages among maintainers by either getting new

maintainers involved or reassigning packages.

4.2 The Maintainer Scheme: Pros and Cons

The maintainer scheme used by the large distributions has its benefits, but also its weak-

nesses. The largest benefit can be argued to be accountability. If you know who is responsi-

ble for what, you can easily determine which individual was culpable for any failures. The

same works on the other end where the individual does not want to let a project down by

20Moving the package is done so that it does not get chosen again from the initial list too soon.

114

not completing his responsibilities. Another benefit is expertise. When a person is given

a single thing to focus on, he becomes an expert at controlling that thing. We can think

of this benefit as distribution of labor.21 Along the same lines, users and other developers

know whom to contact if they are having trouble with a package. Another benefit is that

no single person ends up doing all of the work. It is dangerous if one person becomes

an expert in everything to the point where no one else knows how to do anything because

they never got the chance to be active. If something were to happen to the all-knowing

person, the entire distribution would falter. The last benefit to the maintainer scheme is that

maintainers are more likely to spend their time doing things that might be boring. When

a person is assigned a responsibility, and the person is not allowed to take over others’ re-

sponsibilities, he tends to spend more time completing his responsibility to perfection. For

package management, a maintainer will have no excuse not to write up tedious documen-

tation. Furthermore, a maintainer will have no excuse not to run a few extra tests on the

package.

The greatest disadvantage to the maintainer scheme is that if a maintainer becomes ab-

sent, any needed maintenance to a package will not be done. Distributions have gotten

around this by assigning groups to maintain important packages. Users, however, have dif-

ferent needs and a package that might not be important to many users might be important

to some. If there is no maintainer to do maintenance then the users will either have to

wait or make local changes to the source code. Such a scenario occurs fairly frequently

in Gentoo.22 Another big problem with the maintainer scheme is new or abandoned pack-

ages. Sometimes an interesting package comes around and some users want that package

to be in their distribution’s package management repository. Usually, there is no willing

maintainer to adopt the package, either because all maintainers have their hands full with

other packages, or they do not feel interested in the package. It can take a long time for

21Plato’s Republic.
22See bugs 168177, 26326, 116584, and 151584 on http://bugs.gentoo.org. In each of these bugs users

have done work that fixes the bugs, but no maintainer has been around to commit the fixes.

115

a package to be finally adopted.23 There are countless instances where users might sub-

mit fixes, but have those fixes never – or only after a long time – make it to the package

management repository because the maintainer is absent or the package no longer has a

maintainer. Gentoo has recently been removing packages from the portage tree that are no

longer maintained by anyone, have no one who wants to maintain them, and that have been

lying untouched for a long time.24

In many ways it would make sense to have a system in place where users and developers

could take care of needed package management without facing the “maintainer’s respon-

sibility” dilemma. Perhaps it would make sense to have a web interface where users can

submit maintenance requests. A notification would be sent to the maintainer about requests.

If the maintainer is available, he would quickly assign the request to himself. If not, then

any willing developer or user should be able to assign the task to himself and complete the

work required by the task. If the request would not be taken up by anyone, then users could

battle back by voting for the request. All of the requests would be in queue, with those

requests receiving the most votes on top of the list. A distribution’s developer can at any

time appease users by taking care of requests at the top of the queue. Developers could also

act like users and vote for, or add requests to things they have not been able to fix.

4.3 Attracting and Keeping Developers

One thing on the minds of distributions is attracting developers. There are two types

of developers that can be attracted: Those who desire to volunteer and those who desire to

make money. Community driven distributions like Gentoo and Debian rely on the work of

volunteers. For profit distributions like Red Hat rely on the work of paid employees. There

are advantages and disadvantages to both schemes. Volunteers often do not need a lot of

23In the following bug report it took ten months to find a maintainer despite the fact that a user had been
maintaining a functional ebuild: http://bugs.gentoo.org/show bug.cgi?id=77857.

24Gentoo’s treecleaners project: http://www.gentoo.org/proj/en/qa/treecleaners/.

116

motivation to get work done. They volunteered because they love doing the work that they

do. A paid employee does not necessarily love the work that he does; he probably does it

to make ends meet. It can be argued that a person’s passion for their work drives them to

create better products. This is a fairly weak argument if we posit that a person has more

motivation to do better work if they need the work to feed themselves and their families.

The problem with volunteers is that they probably work part time, since they do other

work to feed themselves. The result is that they have a limited amount of time to devote to

their volunteer responsibilities. They might skip optional testing or a non-vital thing such

as documentation. A paid employee on the other hand can devote his full time to testing and

documenting what they do. Another problem with volunteers is that they are not obligated

to stay on the development team. They can at any time say that they quit because they no

longer have time for their hobby. A paid employee does not have any motivation to quit

because he already has his or her source of money.25

Community based distributions attract developers by making it fairly easy to become

one. These distributions allow people to work their way up from technically easy jobs

to technically challenging ones. One can start as a documentation person, take on a few

package maintenance responsibilities, and later join a team or teams. If you have interesting

ideas, you can implement those ideas and see them adopted in the distribution simply by

submitting the ideas to existing developers.26

Community distributions keep their developers by attempting to have a comfortable

community atmosphere. Debian for example has many conferences and events.27 These

serve as a way for developers to come together and socialize. Community based distribu-

tions rely on a large number of communication mechanisms. Forums, IRC chat rooms, bug

reporting systems, and mailing lists are some examples of communication mechanisms. All

of these mechanisms enable a large number of people to coordinate in an organized fashion

25This is assuming that a volunteer might have no time for his hobby because he needs to devote himself
to a full time job.

26Assuming that the ideas are good enough to gain acceptance.
27https://gallery.debconf.org/.

117

without ever meeting face-to-face or leaving their chairs. It can be argued that developers

feel as if they are apart of something important. This feeling is certainly enough to keep a

human being engaged.28 Another thing keeping developers from leaving is the users. The

users that make up a distribution’s community further contribute to making developers feel

a part of something grand. A developer is not just working for the benefit of themselves,

but for the benefit of others.

4.4 Attracting and Keeping Users

Attracting users is something that distributions do not always do directly. There are not

too many distributions that have marketing departments. It appears that marketing depart-

ments are exclusive to the for profit distributions.29 It appears that Ubuntu is one of only

a few not for profit distributions with marketing departments.30 Other distributions rely on

word of mouth or indirect marketing – news stories – to convince users to try a distribution.

If one reads forum posts about how users got settled on a particular distribution, one will

find that users tried a number of distributions before settling on one they preferred.

Distributions tend to attract different types of users. Ubuntu for example attracts users

looking for a product that provides ease of installation and use. Gentoo attracts advanced

users who want to customize their systems. Different distributions also attract either more

individual users or more enterprises.31 Individual users often need a distribution to provide

a solid desktop environment with the ability to run a few basic server applications like a

web server or ftp server. Individual users more often than not are probably looking for an

experience where they can get things done without much hassle. This is probably because

28According Wickens, et al., 481, feedback motivates humans to take actions.
29The following is an opening for a marketing job at Red Hat:
http://redhat.hrdpt.com/cgi-bin/a/highlightjob.cgi?jobid=1421.

Here is a story that mentions SUSE have a marketing vice president and therefore having a marketing depart-
ment:

http://www.newsfactor.com/perl/story/21799.html.
30https://launchpad.net/ ubuntu-marketing.
31Companies or organizations.

118

of the fact that users want to use their operating systems to relax after a long day’s of work.

What convinces individual users to stay with a distribution appears to be the ability to get

the latest packages easily, the ability to get free support from forums or mailing lists, and

the rarity of breakages.

Enterprise users value support first and foremost due to the fact that they are willing to

pay for it. In an Enterprise it is very important for existing applications to remain running,

even if they are out of date. Enterprises also expect that any package updates be done

only to patch up security holes. So long as the distribution does not cause any breakage

between updates, the enterprise will be content. However, eventually an enterprise might

need packages of a certain version that cannot work on their system due to the age of other

packages. For example, we can imagine the case where a new program is developed and

can only work on a system that had been compiled with gcc-4. If the distribution is stuck

with gcc-3, then the enterprise will have to abandon the distribution in order to run that

program. This is because of the fact that a move from gcc-3 to gcc-4 will break more

software than it will fix. Enterprises value stability as well as a system that allows their

machines to evolve.32

32Not be deprecated.

119

Chapter 5

Conclusion

This thesis has examined many aspects of a typical GNU/Linux distribution. Novices

may find it a helpful introduction to the concepts of GNU/Linux. It is important to realize

that the package management systems we have described would not have been possible

if software were closed source instead of open source. In such a case, users would have

no optimization options and developers would have less concrete understanding of how

applications interact with the operating system. We contend that users and developers alike

should have quick and easy ways to find out which files make up the programs on their

systems.

In the first chapter we introduced optimization. If we should conclude anything from

our discussion of optimization, it is not that we have to use obscure flags such as -ftracer

to attain one percent gains in performance. Rather, we should take away the principle

that optimization can potentially have a significant impact on performance, and that it is

often worthwhile to test combinations of flags. A package manager that allows users and

developers to easily change optimization flags for software is one that is able to adapt

quickly to the introduction of new technologies. The beauty of open sourced software is

that it always changes and improves. When information is in the open people are able to

come together to make it grow.

120

We have discussed how package management in GNU/Linux distributions works. We

have covered most of the general uses for package management. Although we have de-

scribed many of the major package managers, there are still some that we have not de-

cribed. A more thorough treatment would take a longer time and more funding since there

are some unique package managers that are available only to paying customers. For ex-

ample, the Red Hat Enterprise distribution employs the up2date1 package management

frontend for RPM. The only way for a user to play around with up2date is to purchase

Red Hat Enterprise – or, like the author, become employed at a company that uses Red

Hat Enterprise. The technologies behind some of the package managers we described were

touched upon superficially. Gentoo’s portage, for example, is far more complicated than the

author’s description. Not much work has been done in academia on package management.

Most of the information about package management is in the implementations, mailing list

discussions, bug tracking systems, and documentation for users.

In the implementation of Vestigium an attempt was made to contribute package man-

agement ideas to the world. There were three main ideas. The first was to create an easy

way for users to set CFLAGS and CXXFLAGS manually on a package by package basis.

As shown in our benchmarking results, the effect of optimizations might differ between

applications. If users can focus on individual applications, they can optimize their systems

better. More importantly, developers who create packages for distributions might find it

very efficient to be able to optimize packages using the features provided by the package

manager itself.

The second major idea was the file collision handling system. File collisions slow down

development for distributions that have a large number of developers. A package cannot be

marked stable in portage until it has no file collisions. Red Hat’s mailing lists are still filled

with instances in which developers’ packages conflict. The file collision handling system

implemented in Vestigium is based on the simple concept of file rotation that enables users

1To be more accurate, Red Hat employed up2date until Red Hat Enterprise Linux 5.

121

and developers quickly to figure out what might be wrong and how to fix it.

The third major idea was seamless optimized binary and source based packaging in the

same package manager. If this idea is implemented properly, users get the best of the best

of package management systems. When users need to install a package quickly, they fetch

the binary. When they want to customize their packages a little, they install from source.

Furthermore, users are always able to install binaries that are optimized for their systems.

Developers might also like this feature, because it permits them to test package installation

conveniently.

One often hears the argument that open source software cannot generate money from

anything other than support. This argument stems from the fact that when source code is

available, anyone can simply download, compile, and run it without paying for precompiled

binaries. There is, however, value not in precompiled binaries, but in the work that needs

to be done to create the precompiled binaries. For example, it might make sense for a dis-

tribution to sell subscriptions to users for access to the distribution’s package management

repository.2 No user who needs to get work done would want to download source code for

all of the packages he needs and install them the LFS way. Users, especially enterprises,

are willing to pay for an efficient package management system that can enable them to keep

up-to-date, to customize their systems to a fair degree, and to request special things to be

added to the package management system. None of these desires are capable of fulfillment

without an open development model, a package manager that is able to compile packages

from source, a package manager that requires minimal expertise, and a package manager

that can perform its functions quickly and correctly.

2Red Hat employs this scheme.

122

5.1 Further Research

In chapter four, we mentioned the creation of an interface to help developers manage

and prioritize package management tasks. The author submitted a proposal to Google

Summer Code 2007 to create such an interface for the Gentoo Linux distribution. This

proposal has been accepted. Once the interface is implemented and ready for deployment,

we will see whether or not the theories about solving the limitations of the maintainer

scheme are correct.

As we discussed at the end of the third chapter, Vestigium is able to accomplish some

things well, but is inefficient in a number of important respects. Overall, it is not practical

to attempt to transform Vestigium into a program to be used by real users. Its interface,

features, nomenclature, code layout, and even the ideas behind it need to be reorganized.

If we were to take the challenge of creating a package manager one more time, we would

have to consider combining the best aspects of RPM and portage. Not only would this con-

ceivably attract developers who know the ins and outs of working with existing schemes,

but it would be a good way to implement the seamless source and binary based installation

feature. There is far less demand among users for file collision handling and optimization

customization than there is for features which allow them to seamlessly work with binary

and source package installation.

If further research is to be conducted, it must be oriented toward developing a package

manager that has great usability among a wide variety of user types. Casual desktop users

need graphical user interface aids. Systems administrators need CLI aids and customiza-

tion options. Enterprise users need speed, consistency, and adaptability. Solutions already

exist that appeal to these and other user groups individually. A package manager that can

encompass a very wide variety of users is one which can attain commercial success.

123

Bibliography

1. Bailey, Edward C. Maximum RPM. Red Hat, Inc., Durham, NC. 2000.

2. Beekmans, Gerard. Linux From Scratch: Version 6.2. Gerard Beekmans. 2006.

3. Drepper, Ulrich and Ingo Molnar. The Native POSIX Thread Library for Linux. Red

Hat, Inc., Durham, NC. February 2005.

4. Jelnek, Jakub. Prelink. Red Hat, Inc., Durham, NC. March 2004.

5. Nahmias, Steven. Production and Operations Analysis. Fifth Edition. McGraw-

Hill/Irwin, New York, NY. 2005.

6. Ross, Sheldon M. Simulation. Fourth Edition. Elsevier, Burlington, MA. 2006.

7. Wickens, Chistopher D., et al. An Introduction to Human Factors Engineering. Sec-

ond Edition. Pearson Education, Inc., Upper Saddle River, New Jersey. 2004.

124

Appendix A

Understanding Levels of Optimization

There is a simple way think about levels of optimizations. When a person rolls their auto-

mobile into a gasoline station, he is provided with three choices of gasoline types: regular,

unleaded, and premium. All three will run on his automobile, however, premium will make

the car drive better. The difference is only slightly noticeable, but it exists. unleaded will

make the car run slightly better than on regular, but slightly worse than on premium. Thus

when a user installs a distribution that is optimized for i386 and the user is on a machine

that can support up to i686, it will be as if the user is filling his computer with regular gaso-

line. Regular gasoline is cheaper to produce, just as it is easier to produce the i386 binaries

that fit all systems. If the user installs an i686 optimized distribution, then his system will

be slightly more responsive, just as a vehicle running premium gasoline.

A similar analogy applies when choosing binaries compiled with -O1, -O2, etc. We can

posit that -O1 is regular gasoline, -O2 is unleaded, and -O3 is premium. The -O0 flag can

be seen as the gasoline mixed with water and sold by scammers. With -O2 a user’s system

will run smoothly, but with -O3, it will run a little more smoothly. The cost of premium

gasoline is higher. The cost of -O3 is higher in terms of the size of the resulting binary.

125

Appendix B

Circular Dependencies

Circular Dependencies is an interesting problem that high level package managers have

faced – particularly the binary based ones like apt or rpm. These problems have been

mostly worked out,1 but have bugged users in the past. A circular dependency occurs

when a package needs a dependency, but that dependency will not install because it has

the following dependency: the package that we are attempting to install in the first place.

In other words, we install package x. Package x asks for y. Package y however, asks for

package x to be installed when we attempt to install y. This is simplest form of a circular

dependency. More commonly, circular dependencies occur with more than two packages.

We think of the simplest circular dependency as when two dogs chase each others tail, but

the more common case as when a dozen dogs are chasing a distinct dog’s tail.

There are certain methods to combat circular dependencies. The easiest way is to check

which package has the least dependencies that it needs before it can be installed. Once that

package is found, it is to be installed by applying the package manager’s “force” option.

After that, we repeat until all packages are installed. Another method is draw out the circle

and force the installation of the set of packages that will most quickly eliminate circularity.

The latter can be a lot tougher because there might be a very complicated circle or circles

of dependencies.
1Developers have adapted to dealing with them.

126

Appendix C

Source Code

You can find the complete source code for sysmark, Vestigium, Vesport, and the simula-
tion here: http://afalko.homelinux.net/thesis. At the same location you can find the results
yielded by sysmark and the results yielded by the Simulation.

The following files are contained in the following pages:

1. /source/vestigium/vestigium: main Vestigium executable.
2. /source/vestigium/cont.lib: library for Vestigium.
3. /source/vestigium/names.lib: library for Vestigium.
4. /source/vestigium/search.lib: library for Vestigium.
5. /source/vestigium/wrappers/cp: cp wrapper for Vestigium.
6. /source/vestigium/wrappers/install: install wrapper for Vestigium.
7. /source/vestigium/wrappers/ln: ln wrapper for Vestigium.
8. /source/vestigium/wrappers/mkdir: mkdir wrapper for Vestigium.
9. /source/vestigium/wrappers/mv: mv wrapper for Vestigium.
10. /source/vestigium/vestigium.comf: Vestigium’s configuration file.
11. /source/vestigium/subarchs: subarchs database.
12. /source/vestigium/vesport: Vestigium’s vesport utility.
13. /source/vestigium/Makefile: Makefile for Vestigium.
14. /source/sysmark-1.0.2/sysmark: main sysmark executable.
15. /source/sysmark-1.0.2/parse: code to parse sysmark output.
16. /source/sysmark-1.0.2/README: sysmark readme documentation.
17. /source/sysmark-1.0.2/Makefile: Makefile for sysmark.
18. /package/simulation/main: main simulation executable.
19. /package/simulation/maintainers-create: collects information about which packages are as-
signed to whom.
20. /package/simulation/pkg-comp-times-retrieve: collects package compile times.
21. /package/simulation/retrieve-pkg-commit-times: collects average time between bug bumps and
version bumps.

127

C.1 Vestigium
C.1.1 vestigium
#!/usr/bin/perl -w
Copyright 2006 Andrey Falko
Distributed under the terms of the GNU General Public License v2
Vestigium alpha version (0.0.1)

use strict;
use vars qw { $debug $originalPATH $libDir $portDir $tmpDir $workDir $logDir $configFile $backupDir $downloadDir $wrapperPath

@options @packageList @mirrors
$arch $subarch $chost $cflags $cxxflags $ldflags
$applydupes $backup $binaryOnly $clean $depclean
$downloadOnly
$flipdupes $force $listfiles $nodep $noremove
$package $pkgtype $prompt $rebuild $remdupes $remove $search
$searchdesc $searchfile $sync $verify
@installQueue @updateQueue @uninstallQueue @rebuildQueue @backupQueue };

print "You gave me nothing to do on the command line.\n" if (! @ARGV);

$debug = 0;
$configFile = "/etc/vestigium.conf";
$originalPATH = "$ENV{’PATH’}";
open CONFIG, $configFile

or die "Unable to open the configuration file: $!";
#First filter out the #Comment lines.
while (<CONFIG>) {

chomp $_;
print "$_\n" if ($debug && ! /ˆ#/ && !($_ eq ""));
push @options, $_ if (! /ˆ#/ && !($_ eq ""));

}
close CONFIG;
#Set the varibles.
SWITCH: for (@options) {

/ˆlibdir\s*=\s*(\S+)/ && do { $libDir = $1; next };
/ˆportdir\s*=\s*(\S+)/ && do { $portDir = $1; next };
/ˆlogdir\s*=\s*(\S+)/ && do { $logDir = $1; next };
/ˆbackupdir\s*=\s*(\S+)/ && do { $backupDir = $1; next };
/ˆtmpdir\s*=\s*(\S+)/ && do { $tmpDir = $1; next };
/ˆdownloaddir\s*=\s*(\S+)/ && do { $downloadDir = $1; next };
/ˆwrapperpath\s*=\s*(\S+)/ && do { $wrapperPath = $1; next };
/ˆpackagetype\s*=\s*(\S+)/ && do { $pkgtype = $1; next };
/ˆarch\s*=\s*(\S+)/ && do { $arch = $1; next };
/ˆsubarch\s*=\s*(\S+)/ && do { $subarch = $1; next };
/ˆchost\s*=\s*\"(\S+)\"/ && do { $chost = $1; next };
/ˆcflags\s*=\s*\"(.*)\"/ && do { $cflags = $1; next };
/ˆcxxflags\s*=\s*\"(.*)\"/ && do { $cxxflags = $1; next };
/ˆldflags\s*=\s*\"(.*)\"/ && do { $ldflags = $1; next };
/ˆmirror\s*=\s*(.+)/ && do { @mirrors = split /\s/, $1; next };
/ˆnosync\s*=\s*(\S+)/ && do { if ($1 eq "true") { $sync = 0 } else { $sync = 1 } next };
/ˆnodep\s*=\s*(\S+)/ && do { if ($1 eq "true") { $nodep = 1 } else { $nodep = 0 } next };
/ˆdebug\s*=\s*(\S+)/ && do { if ($1 eq "true") { $debug = 1 } else { $debug = 0 } next };
/ˆprompt\s*=\s*(\S+)/ && do { if ($1 eq "true") { $prompt = 1 } else { $prompt = 0 } next };
/ˆcleandeps\s*=\s*(\S+)/ && do { if ($1 eq "true") { $clean = 1 } else { $clean = 0 } next };
/ˆalwaysforce\s*=\s*(\S+)/ && do { if ($1 eq "true") { $force = 1 } else { $force = 0 } next };
/ˆflipdupes\s*=\s*(\S+)/ && do { if ($1 eq "true") { $flipdupes = 1 } else { $flipdupes = 0 } next };
/ˆalwayssearchdeps\s*=\s*(\S+)/ && do { if ($1 eq "true") { $searchdesc = 1 } else { $searchdesc = 0 } next };
/ˆcreatebinaries\s*=\s*(\S+)/ && do { if ($1 eq "true") { $package = 1 } else { $package = 0 } next };
/ˆonlycreatebinaries\s*=\s*(\S+)/ && do { if ($1 eq "true") { $binaryOnly = 1 } else { $binaryOnly = 0 } next };
do { warn "Warning: I did not understand $_ in $configFile." };

}

system "rm -Rf $tmpDir/*";

if ($subarch) {
open SUBARCHSFILE, "$libDir/subarchs"; #File containing architechture varibles
my $start = 0;
for (<SUBARCHSFILE>) {

chomp;
if (/ˆ$subarch/) {

$start = 1;
next;

}
next if (! $start);
/chost\s*=\s*\"(\S+)\"/ && do { $ENV{CHOST} = $1; next };
/cflags\s*=\s*\"(.*)\"/ && do { $ENV{CFLAGS} = $1; next };
/cxxflags\s*=\s*\"(.*)\"/ && do { $ENV{CXXFLAGS} = $1; next };
/ldflags\s*=\s*\"(.*)\"/ && do { $ENV{LDFLAGS} = $1; next };
/ˆend/ && do { $start = 0; last };
do { die "Bug: When parsing subarchsfile. \$_ = $_"};

}
}

if ($cflags) {
$ENV{CFLAGS} = $cflags;
$ENV{CXXFLAGS} = $cflags;

}
if ($cxxflags) {

$ENV{CXXFLAGS} = $cxxflags;

128

}

if ($chost) {
$ENV{CHOST} = $chost;

}

if ($ldflags) {
$ENV{LDFLAGS} = $ldflags;

}

#Make 100% certain that we do not lose the flags:
$cflags = $ENV{CFLAGS};
$cxxflags = $ENV{CXXFLAGS};
$chost = $ENV{CHOST};
$ldflags = $ENV{LDFLAGS};

use lib "/usr/lib/vestigium";

require "search.lib";
require "names.lib";
require "cont.lib";

unless ("$ENV{USER}" eq ’root’) {
print "You are not logged in as root. Installing or removing anything will most definitly fail.\n";
&continuePrompt;

}

@options = 0; #We are done with this list for now, and should clear it for later use.
shift @options;
#Set more default varibles.
$downloadOnly = 0;
$remove = 0;
$noremove = 0;
$depclean = 1;
$remdupes = 0;
$applydupes = 0;
$search = 0;
$searchfile = 0;
$listfiles = 0;
$rebuild = 0;
$backup = 0;
mkdir $tmpDir;

for (@ARGV) {
if (/ˆ--?/) {

if (! @options) {
push @options, $_;

} elsif (! &checkIfDuplicate($_, \@options)) {
push @options, $_;

} else {
warn "Duplicate input parameter, $_, ignored";

}
} elsif (/everything/) {

if (scalar @packageList) {
warn "There appears to be stuff in the package list; resetting package list

If you would like to add extra packages, add them after \"everything\" and do not add \"everything\" a second time";
@packageList = undef;

}
my @tempList = glob "$logDir/*";
my @pkgGlob;
for (@tempList) {

@pkgGlob = glob "$_/*";
}
@packageList = map { &getBasename($_) } @pkgGlob;

} else {
if (! @packageList) {

push @packageList, $_;
} elsif (! &checkIfDuplicate($_, \@packageList)) {

push @packageList, $_;
} else {

warn "Duplicate input parameter, $_, ignored";
}

}
if ((! scalar @packageList) && (! scalar @options)) { #If nothing was given on the command line.

&printHelp;
}

}

SWITCH: for (@options) { #The ˆ are needed so that the regular expession matches do not match something
#that they are not supposed to. e.g. -r is normally also going to match --remdupes.

/--applybackup/ && do { $pkgtype = "backup"; next };
/ˆ-a|--applydupes/ && do {$applydupes = 1; next };
/--backup/ && do { $backup = 1; next };
/--binary/ && do { $binaryOnly = 1; next };
/--buildsource/ && do { $pkgtype = "source"; next };
/ˆ-c|--clean/ && do { $clean = 1; next };
/--debug/ && do { $debug = 1; next };
/--depclean/ && do { $depclean = 1; next };
/ˆ-d|--download/ && do { $downloadOnly = 1; next };
/--flipdupes/ && do { $flipdupes = 1; next };
/ˆ-f|--force/ && do { $force = 1; next };
/ˆ-h|--help/ && do { &printHelp };

129

/ˆ-i|--installbinary/ && do { $pkgtype = "binary"; next };
/ˆ-l|--listfiles/ && do { $listfiles = 1; next };
/--nodep/ && do { $nodep = 1; next };
/--noremove/ && do { $noremove = 1; next };
/--package/ && do { $package = 1; next };
/--prompt/ && do { $prompt = 1; next };
/--rebuild/ && do { $rebuild = 1; next };
/--remdupes/ && do { $remdupes = 1; next };
/ˆ-r|--remove/ && do { $remove = 1; next };
/ˆ-s|--search/ && do { $search = 1; next };
/ˆ-S|--searchdesc/ && do { $search = 1; $searchdesc = 1; next };
/ˆ-b|--searchfile/ && do { $searchfile = 1; next };
/--sync/ && do { if (!$sync) {

$sync = 1;
} else {

$sync = 0;
}
next;

};
/ˆ-v|--verify/ && do { $verify = 1; next };
do { print "Option $_ was not understood, would you like to continue (N/y)? ";

next if (<STDIN> =˜ /y/);
exit 0;

};
}

@options = undef; #We are done with it, and might as well clear some memory.

#Let do some obvious error checking so that
#we can prevent or warn a user before they
#trip themselves.
&error("I don’t know which to do, search or remove. Please choose one of them.\n")
if (($search || $searchdesc || $searchfile || $listfiles) && $remove);
&error("I don’t know which to do, rebuild or remove. Please choose one of them.\n")
if ($rebuild && $remove);
&error("Create something and remove it? Write your own package manager if you want to do this.\n")
if (($applydupes || $backup || $binaryOnly || $noremove || $package) && $remove);
&error("You can either search for a particular package or list the files of a particular package.\n")
if (($search || $searchdesc || $searchfile || $verify) && $listfiles);
&error("You can not list files and backup at the same time. Choose which to do.\n")
if ($listfiles && $backup);
&error("You can use rebuild or verify one at a time.\n")
if ($rebuild && $verify);
#And...I’ll finish this later.

print "Debug: packageList contains = @packageList\n";

if ($sync) {
&sync;

}

if ($search) {
for (@packageList) {

my @found = &findProg($_);
next if (! @found);
print "\"$_\" matched the following availible versions of programs:\n";
my $str = join "\n", @found;
print "$str\n";
for my $progVer (@found) {

my @foundInst = &findInstalledProgVer($progVer);
if (! $foundInst[0]) {

print "$progVer is not installed\n";
next;

}
my $str = join "\n", @foundInst;
print "I found the following installed: \n$str\n";

}
}
exit 0;

}

if ($remdupes) {
for (@packageList) {

my @installed = &findInstalledProg($_);
if (! $installed[0]) {

print "No versions of $_ installed and therefore there is nothing for me to do";
&continuePrompt;

}
@installed = sort @installed;
my $progVer = pop @installed;
&removeDupes($progVer);

}
exit 0;

}

if ($listfiles) {
for (@packageList) {

print "Files belonging to $_ are: \n";
&listFiles($_);

}
exit 0;

}

130

if ($verify) {
for (@packageList) {

print "Files belonging to $_ are: \n";
my @files = &listFiles($_);
my @bad;
for (@files) {

chomp;
if (-e $_) {

print "$_ exists. Good.\n";
} else {

print "$_ does not exist! Bad.\n";
push @bad, $_;

}
}
if ($bad[0]) {

my $missing = join "\n", @bad;
print "Verification found the following files missing:\n@bad\n";
print "You might want to rebuild the program.\n";

} else {
print "Verification found that all files are intact.\n"

}
}
exit 0;

}

for (@packageList) {
if ($remove) {

push @uninstallQueue, $_;
next;

}
if ($backup) {

push @backupQueue, $_;
next;

}
my @found = &findProg($_);
next if ($found[0] eq "1"); #findProg will return "1" if it does not find anything.
@found = sort @found;
my $latest = pop @found;
my @installed = &findInstalledProg($_);
if (!$installed[0]) {

push @installQueue, $latest;
} elsif (grep $_ eq $latest, @installed) {

push @rebuildQueue, $latest if ($rebuild || $pkgtype eq "backup");
} elsif (grep /$_/, @installed) {

push @updateQueue, $latest;
} else {

die "Bug Alert! [Sirens]\n";
}

}

{ # We are scoping @depQueue
my @depQueue;
for my $progVer (@installQueue) {

my $prog = &getProgName($progVer);
my $let = &getFirstLet($prog);
if (! $nodep) {

open INFO, "$portDir/$let/$prog/$progVer/INFO";
my $deps;
for (<INFO>) {

if (/ˆdeps\s*=\s*\"(.*)\"/) {
$deps = $1;

}
}
my @deps;
if ($deps) {

@deps = split /\n/, $deps;
}
for (@deps) {

my @installed = &findInstalledProg($_);
if (!$installed[0]) {

my @found = &findProg($_);
@found = sort @found;
my $latest = pop @found;
if (! &checkIfDuplicate($_, \@depQueue)) {

push @depQueue, $latest;
}

}
}

}
}

for my $progVer (@rebuildQueue) {
my $prog = &getProgName($progVer);
my $let = &getFirstLet($prog);
if (! $nodep) {

open INFO, "$portDir/$let/$prog/$progVer/INFO";
my $deps;
for (<INFO>) {

if (/ˆdeps\s*=\s*\"(.*)\"/) {
$deps = $1;

}

131

}
my @deps;
if ($deps) {

@deps = split /\n/, $deps;
}
for (@deps) {

my @installed = &findInstalledProg($_);
if (!$installed[0]) {

my @found = &findProg($_);
@found = sort @found;
my $latest = pop @found;
if (! &checkIfDuplicate($_, \@depQueue)) {

push @depQueue, $latest;
}

}
}

}
}

for my $progVer (@updateQueue) {
my $prog = &getProgName($progVer);
my $let = &getFirstLet($prog);
if (! $nodep) {

open INFO, "$portDir/$let/$prog/$progVer/INFO";
my $deps;
for (<INFO>) {

if (/ˆdeps\s*=\s*\"(.*)\"/) {
$deps = $1;

}
}
my @deps;
if ($deps) {

@deps = split /\n/, $deps;
}
for (@deps) {

my @installed = &findInstalledProg($_);
if (!$installed[0]) {

my @found = &findProg($_);
@found = sort @found;
my $latest = pop @found;
if (! &checkIfDuplicate($_, \@depQueue)) {

push @depQueue, $latest;
}

}
}

}
}

#Recursivly find dependencies for dependencies
for my $depVer (@depQueue) {

my $dep = &getProgName($depVer);
my $let = &getFirstLet($dep);
open INFO, "$portDir/$let/$dep/$depVer/INFO";
my $deps;
for (<INFO>) {

if (/ˆdeps\s*=\s*\"(.*)\"/) {
$deps = $1;

}
}
my @deps;
if ($deps) {

@deps = split /\n/, $deps;
}
for (@deps) {

my @installed = &findInstalledProg($_);
if (!$installed[0]) {

my @found = &findProg($_);
@found = sort @found;
my $latest = pop @found;
if (! &checkIfDuplicate($_, \@depQueue)) {

push @depQueue, $latest;
}

}
}

}

for (@depQueue) {
#Need to sort between update queue and install queue.
my @installed = &findInstalledProg($_);
if (@installed) {

unshift @updateQueue, $_;
} else {

unshift @installQueue, $_;
}

}
} # Scope for @depQueue finished

if ($prompt) {
print "I am going to install ". @installQueue ." packages: \n" if (@installQueue);
for (@installQueue) {

print " $_\n";
}

132

print "I am going to rebuild ". @rebuildQueue ." packages: \n" if (@rebuildQueue);
for (@rebuildQueue) {

print " $_\n";
}
print "I am going to update ". @updateQueue ." packages: \n" if (@updateQueue);
for (@updateQueue) {

print " $_\n";
}
print "I am going to remove ". @uninstallQueue ." packages: \n" if (@uninstallQueue);
for (@uninstallQueue) {

print " $_\n";
}
print "I am going to backup ". @backupQueue ." packages: \n" if (@backupQueue);
for (@backupQueue) {

print " $_\n";
}
&continuePrompt;

}

for my $progVer (@installQueue) {
print "About to install $progVer\n" if ($debug);
if ($pkgtype eq "source") {

&installpkg($progVer);
} elsif ($pkgtype eq "binary") {

&installbin($progVer);
} elsif ($pkgtype eq "backup") {

&installbak($progVer);
} else {

die "Bug! This should never happen. Report it please.";
}

}

for my $progVer (@rebuildQueue) {
print "About to rebuild $progVer\n" if ($debug);
if ($pkgtype eq "source") {

&rebuildpkg($progVer);
} elsif ($pkgtype eq "binary") {

&rebuildbin($progVer);
} elsif ($pkgtype eq "backup") {

&installbak($progVer);
} else {

die "Bug! This should never happen. Report it please.";
}

}

for my $progVer (@updateQueue) {
print "About to update $progVer\n" if ($debug);
if ($pkgtype eq "source") {

&updatepkg($progVer);
} elsif ($pkgtype eq "binary") {

&updatebin($progVer);
} elsif ($pkgtype eq "backup") {

&installbak($progVer);
} else {

die "Bug! This should never happen. Report it please.";
}

}

for my $prog (@uninstallQueue) {
print "About to remove $prog\n" if ($debug);
&removepkg($prog);

}

for my $prog (@backupQueue) {
print "About to backup $prog\n" if ($debug);
&backuppkg($prog);

}

#print "You entered the following options: @options\n";
#print ’You set $nodep = ’.$nodep.’, $debug = ’.$debug."\n";
#print "You wish to install the following packages: @packageList\n";

sub prepareLogDir {
#Sould be run only upon a new program install.
warn "Debug: Entering prepareLogDir.\n" if ($debug);
my $progVer = shift;
$progVer =˜ /(.+)-\d/;
my $prog = $1;
$prog =˜ /(.)/;
mkdir "$logDir/$1" or die "Could not make directory in $logDir: $!" if (! -d "$logDir/$1");
mkdir "$logDir/$1/$prog" or die "Could not make directory in $logDir/$1: $!" if (! -d "$logDir/$1/$prog");
mkdir "$logDir/$1/$prog/$progVer";
warn "Debug: Leaving prepareLogDir.\n" if ($debug);

}

sub generateInfo { #This function generates a file in /tmp which is used by the modified mv, cp, etc. command to retrieve needed information.
warn "Debug: Entering generateInfo\n" if ($debug);
my $prog = shift;

133

open PROFILE, ">>/tmp/vestigium/profile";
select PROFILE;
print "progname $prog\n";
print "libdir $libDir\n";
print "logdir $logDir\n";
print "backupdir $backupDir\n";
print "debug $debug\n";
print "force $force\n";
print "workDir $workDir\n";
select STDOUT;
close PROFILE;
warn "Debug: Leaving generateInfo.\n" if ($debug);

}

sub backuppkg {
warn "Debug: Entering backuppkg\n" if ($debug);
my $prog = shift;
my @files = &listFiles($prog);
my $progVer;
my $let;
if (! ($prog =˜ /\-\d/)) {

my @progVers = &findInstalledProg($prog);
@progVers = sort @progVers;
$progVer = pop @progVers;
$let = &getFirstLet($prog);

} else {
$progVer = $prog;
$prog = &getProgName($progVer);
$let = &getFirstLet($prog);

}
system "mkdir -p $backupDir/$let/$prog/$progVer/";
system "tar --preserve-permissions --create --absolute-names -v --ignore-failed-read --file \

$backupDir/$let/$prog/$progVer/$progVer-$arch-$subarch.tar.gz --no-recursion -T @files";
warn "Debug: Leaving backuppkg\n" if ($debug);

}

sub rebuildpkg {
warn "Debug: Entering rebuildpkg\n" if ($debug);
my $progVer = shift;
my $prog = &getProgName($progVer);
my $let = &getFirstLet($progVer);
system "mv $logDir/$let/$prog/$progVer $tmpDir/"; #Save the logfiles elsewhere.
$force = 1; #To overwrite all existing files without thinking that they are dupes.
&installpkg($progVer);
$force = 0; #Reset $force before we forget.
open OLDLOG, "$tmpDir/$progVer/inst.log";
my $matched;
for my $old (<OLDLOG>) {

chomp ($old);
open NEWLOG, "$logDir/$let/$prog/$progVer/inst.log";
for (<NEWLOG>) {

chomp;
print "Debug: Comparing NEW=$_ to OLD=$old\n" if ($debug);
if ($_ eq $old) {

#Do nothing. We do not want to delete this file.
$matched = 1;
last; #No need for more.

}
next;

}
if ($matched) {

$matched = 0;
next; #Keep going

} else {
#File exists in OLDLOG, but not in NEWLOG; can be removed
print "Removing $old\n";
system "rm -rf $old";

}

}
warn "Debug: Leaving rebuildpkg.\n" if ($debug);

}

sub installbak { #Installs backup of package if exists
warn "Debug: Entering installbak" if ($debug);
my $progVer = shift;
my $prog = &getProgName($progVer);
my $let = &getFirstLet($prog);
my $output = ‘tar -xvpf $backupDir/$let/$prog/$progVer/$progVer-$arch-$subarch.tar.gz -C /‘; # This should overwrite all files.
my @output = split "\n", $output;
system "rm -Rf $logDir/$let/$prog/$progVer/*"; # Delete the logs.
open INSTLOG, ">>$logDir/$let/$prog/$progVer/inst.log";
select INSTLOG;
for (@output) {

print "$_\n";
}
select STDOUT;
warn "Debug: Leaving installbak" if ($debug);

}

sub installpkg {
warn "Debug: Entering installpkg\n" if ($debug);

134

my $progVer = shift;
my $prog = &getProgName($progVer);
my $let = &getFirstLet($prog);
open INFO, "$portDir/$let/$prog/$progVer/INFO";
my @info = <INFO>;
close INFO;
for (@info) {

if (/ˆcflags\s*=\s*\"(.+)\"/) {
$ENV{CFLAGS} = $1;
$ENV{CXXFLAGS} = $1;

}
if (/ˆcxxflags\s*=\s*\"(.+)\"/) {

$ENV{CXXFLAGS} = $1;
}

}
&extract($progVer);
my $tempdir = glob "*";
chdir $tempdir;
&generateInfo($progVer);
open BUILD, "$portDir/$let/$prog/$progVer/BUILD"; #or die "Could not open BUILD: $!";
for (<BUILD>) {

if (/cd\s+(.*)/) {
print "Changing working directory to: $1\n" if ($debug);
chdir $1;
next;

}
system $_;

}
close BUILD;
&prepareLogDir($progVer);
open INSTALL, "$portDir/$let/$prog/$progVer/INSTALL" or die "Could not open INSTALL: $!";
$ENV{’PATH’} = "$wrapperPath:$originalPATH";
for (<INSTALL>) {

if (/ˆmake/) { # This is for bug #22
open MAKEFILE, "Makefile" or open MAKEFILE, "makefile"; # If Makefile is not capitalized
my @makefile = <MAKEFILE>;
close MAKEFILE;
for (@makefile) {

if (/\=.+\/(install)/ || /\=.+\/(mv)/ || /\=.+\/(cp)/ || /\=.+\/(ln)/ || /\=.+\/(mkdir)/) {
#If any of these command have a /, then they probably have an
#altername location specifed. We want the wrapper to be used.
#This is a fix for bug #22. The quicker solution could be to
#modify the in the INSTALL file, but this would require the user
#to be extra careful.

We shall only warn for now, and add substitution to INSTALL.
my $cmd = $1;
next if (/vestigium/);
die "Bug: $cmd command is hard specified at $_ in makefile please file a bug.";
#s/\=.+\/$cmd/= $cmd/;
#$cmd =a ’perl -p -i.bak -w -e’ . "\’s/\=.+\/$cmd/= $cmd/\’" . ’ Makefile’;
#system $cmd; # What ever works :\

}
}
#open MAKEFILE, ">>Makefile" or open MAKEFILE, ">>makefile";
#select MAKEFILE;
#print $_ for (<MAKEFILE>);
#select STDOUT;
#close MAKEFILE;

}
print "Debug: Command to be run = $_" if ($debug);
my @output = ‘$_‘;
for (@output) {

chomp;
print "Debug: OUTPUT = $_\n" if ($debug);
if (m/fail/i) {

die $_;
}

}
}
close INSTALL;
&resetPATH;
open POSTINST, "$portDir/$let/$prog/$progVer/POSTINST"; #or die "Could not open POSTINST: $!";
system $_ for (<POSTINST>);
close POSTINST;
&resetFlags;
print "Debug: Installation appears finished.\n";
system "rm -Rf /tmp/vestigium/$prog /tmp/vestigium/profile"; # Delete temporary directories of $prog and profile only
&backuppkg($progVer) if ($package);
warn "Debug: Leaving installpkg.\n" if ($debug);

}

sub removepkg {
my $prog = shift;
my @found = &findInstalledProg($prog);
if (!$found[0]) {

print "No installed versions of $prog were found.\n";
&continuePrompt;

} else {
for my $progVer (@found) {

my $prog = &getProgName($progVer);
my $let = &getFirstLet($prog);
open INSTALLLOG, "$logDir/$let/$prog/$progVer/inst.log"

135

or warn "When removing $progVer, could not open inst.log: $!";
open DUPELOG, "$logDir/$let/$prog/$progVer/dupe.log"

if (-e "$logDir/$let/$prog/$progVer/dupe.log");
my @dupes = <DUPELOG>;
close DUPELOG;
system "rm $backupDir/$let/$prog/$progVer/dupes -Rf"; #Remove the dupes
for (reverse <INSTALLLOG>) {

chomp;
my $baseName = &getBasename($_);
if (! -e "$backupDir/$prog/$progVer/dupes/$baseName") { #Uninstall every file with the exception

#of those found in backupDir.
if (-d $_) {

print "Removing dir $_\n";
system "rmdir $_"; #removes dir if and only if empty.
next;

}
print "Removing $_\n";
system "rm $_ -f"; #Lets hope that the logs don’t have a single "/"!

}
}
for my $file (reverse @dupes) {

chomp $file;
#First figure out if the file has owners
print "Debug: About to find owner of $file\n";
my @temp = &findDupeOwner($file);
my @owners;
for my $t (@temp) { # We must remove the current owner from the list.

print "Debug: $t owns $file\n" if ($debug);
push @owners, $t if (! ($t eq $progVer));

}
for my $ownerProgVer (@owners) {

print "Debug: About to ressurect $file of $ownerProgVer\n" if ($debug);
my $ownerProg = &getProgName($ownerProgVer);
my $ownerLet = &getFirstLet($ownerProg);
my $dupeInBackup = &getBasename($file);
if (! -e "$backupDir/$ownerLet/$ownerProg/$ownerProgVer/dupes/$dupeInBackup") {

Backup dir for the other prog does not exist, we must
check the other ones.
next;

} else {
system "rm $file -Rf";
Move the dupe out of backup and back onto file system because file
that forced it into backup is now uninstalled
system "mv $backupDir/$ownerLet/$ownerProg/$ownerProgVer/dupes/$dupeInBackup $file -f";
last; #Job is done, we can return the heck out of here.

}
We are still here. This is not good and requires an investigation,

however, let us not cease the removal process.
warn "Nothing found in backups to replace the removed dupes

in the system. This may be because all packages with the dupes where removed already or something
fishy is going on. If any of your programs do not work after this, please file a bug.";

}
system "rm $file" if (! @owners); # We should remove the file anyway because it does not belong to anyone.

}
print "Debug: To be deleted = $logDir/$let/$prog/$progVer\n";
system "rm $logDir/$let/$prog/$progVer -Rf";
system "rm $backupDir/$let/$prog/$progVer -Rf" if ($backup);
system "rmdir $logDir/$let/$prog"; #removes dir if and only if empty.
system "rmdir $logDir/$let";
system "rmdir $backupDir/$let/$prog";
system "rmdir $backupDir/$let";

}
}

}

sub extract {
warn "Debug: Entering extract\n" if ($debug);
my $progVer = shift;
my $prog = &getProgName($progVer);
my $let = &getFirstLet($prog);
open INFO, "$portDir/$let/$prog/$progVer/INFO" or die "Could not open package info: $!";
my @info;
for (<INFO>) {

chomp;
push @info, $_;

}
my $info = join "", @info;
$info =˜ m/files = \"(.*)\"d/;
my $download = $1;
#die "INFO: $info\n$1";
my @download = split /\s/, $download;
mkdir "$tmpDir/$prog";
my @patchLocs;
for (@download) {

my $extract = &getBasename($_);
$extract = "$downloadDir/$extract";
&download($download) if (! -e $extract);
print "Debug: Extract = $extract\n" if ($debug);
if (-e $extract) {

$extract =˜ /\.tar.*$/ && do { system "tar -xf $extract -C $tmpDir/$prog" };
$extract =˜ /\.rar$/ && do { system "rar e $extract $tmpDir/$prog" };
$extract =˜ /\.patch$/ && do { push @patchLocs, $extract };

136

}
}
my @loc = glob "$tmpDir/$prog/*";
print "Folder extracted: @loc\n";
$workDir = shift @loc; #first location for now.
chdir "$workDir";
for (@patchLocs) {

&applyPatch($_);
}
warn "Debug: Leaving extract.\n" if ($debug);

}

sub download {
warn "Debug: Entering download\n" if ($debug);
my $download = shift;
print "About to download $1\n" if ($debug);
my $fileName = &getBasename($1);
chdir "$downloadDir";
system "wget $1";
or die "Failed to download $fileName from $1: $!";
if ($downloadOnly) {

#Check md5sums
exit 0;

} else {
return 1;

}
warn "Debug: Leaving download.\n" if ($debug);

}

sub sync {
warn "Debug: Entering sync" if ($debug);
print "Debug: Mirrors availible: @mirrors" if ($debug);
for my $mirror (@mirrors) {

chdir "$downloadDir";
system "wget $mirror/ports/ports.tar.gz";
next if (! -e "ports.tar.gz");
last;

}
if (! -e "ports.tar.gz") {

warn "Could not download the latest ports";
&continuePrompt;

}
system "tar -xf ports.tar.gz -C $portDir";
system "rm -rf ports.tar.gz";
warn "Debug: Exiting sync" if ($debug);

}

sub removeDupes {
warn "Debug: Entering removeDupes" if ($debug);
my $progVer = shift;
my $prog = &getProgName($progVer);
my $let = &getFirstLet($prog);
system "rm -rf $backupDir/$let/$prog/$progVer/dupes/*";
warn "Debug: Entering removeDupes" if ($debug);

}

sub resetPATH {
warn "Debug: Entering resetPath\n" if ($debug);
$ENV{’PATH’} = "$originalPATH";
warn "Debug: Leaving resetPath\n" if ($debug);

}

sub resetFlags {
#We saved these earlier.
$ENV{’CFLAGS’} = "$cflags";
$ENV{’CXXFLAGS’} = "$cxxflags";
$ENV{’CHOST’} = "$chost";
$ENV{’LDFLAGS’} = "$ldflags";

}

sub applyPatch {
warn "Debug: Entering resetPath\n" if ($debug);
my $patchName = shift; # Full path is here.
my $count = 0;
while ($count < 5) {

my $output = ‘patch --verbose -p$count < $patchName‘;
print "Debug: $output\n";
if ($output =˜ /succeeded/) {

print "Applied $patchName\n";
last;

}
$count++;

}
if ($count >= 5) {

&error("Patch failed after $count attempts.\n");
}
warn "Debug: Leaving resetPath\n" if ($debug);

}

sub configureProg {
warn "Debug: Entering configureProg\n" if ($debug);

137

my $prog = shift;
warn "Debug: Leaving configureProg\n" if ($debug);

}

exec "rm -rf $tmpDir/*"; # Clean up

138

C.1.2 cont.lib
sub printHelp {

print "First understand that Vestigium is currently alpha software and all acceptable options are not availible.\n";
print "\nInstalling, reinstalling or updating a program is simple. Just do: \n";
print "vestigium <package name(s)>\n";
print "No special options are needed. The program has to exist in the ports directory for it be processed.\n";
print "Removing an already installed package can be done with: \n";
print "vestigium --remove <package name(s)> or vestigium -r <package name(s)\n";
print "You can use vestigium to search for packages and thier status (installed or not). Do this by: \n";
print "vestigium --search <package name(s) or vestigium -s <package name(s)\n";
print "You might want to control whether Vestigium downloads a new copy of ports or not. You would do this by \n";
print " appending the --sync option. Vestigium will download a new copy of ports if auto-syncing is not enabled in \n";
print " /etc/vestigium.conf. Vice versa will occur if auto-syncing is disabled.\n";
print "--prompt : use this option to tell Vestigium to ask before doing something like installing or removing packages.\n";
print "--help : print out this help output.\n";
print "--download (-d) : download the files needed for the installation of a package.\n";
print "--debug : enable debugging output.\n";
print "--listfiles (-l) : list all files belonging to the package (in installation logs and backup directory).\n";
print "--backup : backup the files that a package owns.\n";
print "There are many more options availible, but are not yet implemented.\n";
exit 0;

}

sub error { #Our subroutine for kicking the drunks out of the bar.
$_ = shift;
die $_;

}

sub continuePrompt {
print "Would you like to continue (N/y)? ";
if (<STDIN> =˜ /y/) {

return;
} else {

exit 0;
}

}

1

139

C.1.3 names.lib
sub getProgName { #Extract the program name from progname-34, i.e. return progname

my $progVer = shift;
$progVer =˜ /(.+)-\d/;
return $1;

}

sub getFirstLet {
my $prog = shift;
$prog =˜ /(.)/;
return $1;

}

sub getBasename {
warn "Debug: Entering getBasename.\n" if ($debug);
my $path = shift;
my @path = split /\//, $path;
warn "Debug: Leaving getBasename.\n" if ($debug);
return pop @path;

}

1

140

C.1.4 search.lib
use lib "/usr/lib/vestigium";
require "names.lib";
require "cont.lib";

sub searchBackupsForFile { #Returns the location of the file if found
warn "Debug: Entering searchBackupsForFile" if ($debug);
$file = shift;
if ($file =˜ /\//) {

$file = &getBasename($file);
}
my @lets = glob "$backupDir/*";
for my $let (@lets) {

my @progs = glob "$let/*";
for my $prog (@progs) {

my @progVers = glob "$prog/*";
for my $progVer (@progVers) {

my @dupes = glob "$progVer/dupes/*";
for (@dupes) {

$_ = &getBasename($_);
warn "Debug: $_ eq? $file";
if ($_ eq $file) {

warn "Debug: $file found in backups in $progVer" if ($debug);
return "$progVer/$file";

}
}

}
}

}
return undef; # File not yet backed up.

}

sub findOwner { #Given a file, finds the owner
warn "Debug: Entering findOwner" if ($debug);
my $file = shift;
warn "Debug: Looking for $file" if ($debug);
my @lets = glob "$logDir/*";
for my $let (@lets) {

my @progs = glob "$let/*";
for my $prog (@progs) {

my @progVers = glob "$prog/*";
for my $progVer (@progVers) {

warn "Debug: progVer = $progVer" if ($debug);
next if (! -e "$progVer/inst.log");
open INSTLOG, "$progVer/inst.log" or die "Could not open inst.log in $progVer: $!";
open DUPELOG, "$progVer/dupe.log";
my $backup = undef;
for (<INSTLOG>) {

chomp;
warn "Debug: $_ eq? $file";
if ($_ eq $file) {

#We have to check of the file is already backed up.
If it is, then we must continue the search.
$backup = &searchBackupsForFile($file);
my $tmp = &getBasename($progVer);
if ($backup =˜ /$tmp/) {

warn "$backup exists, stopping search of the $progVer/inst.log" if ($debug);
last;

}
#Looks like we found the owner of the file.
warn "The owner of the file is = &getBasename($progVer)" if ($debug);
return &getBasename($progVer);

}
}
We should also check the dupelog
if (! $backup) { #Why waste cputime if we already found that the backup exists.

for (<DUPELOG>) {
chomp;
warn "Debug: $_ eq? $file";
if ($_ eq $file) {

#We have to check of the file is already backed up. If it is,
#then we must continue the search.
my $tmp = &getBasename($progVer);
$backup = &searchBackupsForFile($file);
if ($backup =˜ /$tmp/) {

warn "$backup exists, stopping search of the $progVer/dupe.log" if ($debug);
last;

}
warn "The owner of the file is = &getBasename($progVer)" if ($debug);
return &getBasename($progVer);

}
}

}
}

}
}

}

sub findDupeOwner { #Given a file, finds the owner
warn "Debug: Entering findOwner\n" if ($debug);
my $file = shift;

141

my @owners;
warn "Debug: Looking for $file\n" if ($debug);
my @lets = glob "$logDir/*";
for my $let (@lets) {

my @progs = glob "$let/*";
for my $prog (@progs) {

my @progVers = glob "$prog/*";
for my $progVer (@progVers) {

warn "Debug: progVer = $progVer" if ($debug);
next if (! -e "$progVer/dupe.log");
open DUPELOG, "$progVer/dupe.log" or die "Could not open dupe.log in $progVer: $!";
#next if (! <DUPELOG>);
for (<DUPELOG>) {

chomp;
#chomp $file; # This is a tough bug to debug!
warn "Debug: $_ eq? $file\"" if ($debug);
if ("$_" eq "$file") {

#Looks like we found the owner of the dupe.
warn "Debug: Going to return &getBasename($progVer)" if ($debug);
push @owners, &getBasename($progVer);

}
}

}
}

}
return @owners;

}

sub findProg { #Search for program. Returns list of all availible versions.
warn "Debug: Entering findProg.\n" if ($debug);
my $prog = shift;
if ($prog =˜ /\-\d/) {

$prog = getProgName($prog);
}
for my $let (glob "$portDir/*") {

$let = &getBasename($let);
for (glob "$portDir/$let/*") {

if (/\/$prog$/) {
print "Debug: $prog found.\n";
my @version = glob "$portDir/$let/$prog/*";
my @ret = map { &getBasename($_) } @version;
return @ret;

} elsif (/$prog/ && $search) {
my @matching = glob "$portDir/*/*$prog*";
print "@matching\n";
my @return = map { &getBasename($_) } @matching;
@matching = undef;
my @found;
print "Did not find $prog, but it looks like we have some that look simular: @return\n" if ($debug);
for my $found (@return) {

@matching = &findProg($found); #for my $found (@return); #Some recursion :).
for my $match (@matching) {

push @found, $match;
}

}
return @found;

} else {
#$let = shift @letters; #Search deeper
#next if (! $let); #Search deeper
#¬Found($prog);

}
}

}
warn "Debug: Leaving findProg.\n" if ($debug);
¬Found($prog);

}

sub findInstalledProgVer { #Simular to findProg, but searches log dir
warn "Debug: Entering findInstalledProg.\n" if ($debug);
my $progVer = shift;
if (! $progVer =˜ /\-\d/) {

return findInstalledProg($progVer);
}
my $prog = getProgName($progVer);
my $let = &getFirstLet($prog);
return undef if (! (-e "$logDir/$let") || ! (-e "$logDir/$let/$prog"));
for (glob "$logDir/$let/$prog/*") {

if (/\/$progVer$/) {
my @version = glob "$logDir/$let/$prog/*";
my @return = map { &getBasename($_) } @version;
return @return;

}
}
#Nothing found
warn "Debug: Leaving findInstalledProg.\n" if ($debug);
return undef;

}

sub findInstalledProg { #Simular to findInstalledProgVer, but returns all installed versions
warn "Debug: Entering findInstalledProg.\n" if ($debug);
my $prog = shift;
if ($prog =˜ /\-\d/) {

142

return findInstalledProgVer($prog);
}
my $let = &getFirstLet($prog);
return undef if (! (-e "$logDir/$let") || ! (-e "$logDir/$let/$prog"));
my @version = glob "$logDir/$let/$prog/*";
my @return = map { &getBasename($_) } @version;
warn "Debug: Leaving findInstalledProg.\n" if ($debug);
return @return;

}

sub listFiles {
warn "Debug: Entering listFiles.\n" if ($debug);
my $prog = shift;
print "Debug: Prog = $prog\n" if ($debug);
if (! ($prog =˜ /\-\d/)) { #If prog is not have a version attached.

my @progVers = &findInstalledProg($prog);
print "Debug: \@progVer = @progVers\n" if ($debug);
if (! $progVers[0]) {

warn "$prog not found or not installed.\n";
&continuePrompt;

} else {
@progVers = sort @progVers;
my $progVer = pop @progVers;
my $let = &getFirstLet($prog);
print "Debug: Opening $logDir/$let/$prog/$progVer/inst.log\n" if($debug);
open INSTLOG, "$logDir/$let/$prog/$progVer/inst.log"

or do { print "$prog not found or installed\n"; &continuePrompt };
my @files;
while (<INSTLOG>) {

if ($listfiles) {
print $_;

} else {
chomp;
push @files, $_;

}
}
for (glob "$backupDir/$let/$prog/$progVer/dupes/*") {

if ($listfiles) {
print $_;

} else {
chomp;
push @files, $_;

}
}
warn "Debug: Leaving listFiles" if ($debug);
if ($listfiles) {

exit 0;
} else {

return @files;
}

}
} else {

$progVer = $prog;
$prog = &getProgName($progVer);
$let = &getFirstLet($prog);
print "Debug: Opening $logDir/$let/$prog/$progVer/inst.log\n" if($debug);
open INSTLOG, "$logDir/$let/$prog/$progVer/inst.log";
my @files;
while (<INSTLOG>) {

if ($listfiles) {
print $_;

} else {
chomp;
push @files, $_;

}
}
warn "Debug: Leaving listFiles" if ($debug);
if ($listfiles) {

exit 0;
} else {

return @files;
}

}
}

sub notFound {
warn "Debug: Entering notFound.\n" if ($debug);
my $thing = shift;
warn "$thing not found. ";
&continuePrompt;
warn "Debug: Leaving notFound.\n" if ($debug);

}

sub checkIfDuplicate { # Recives a value to be found in list reference. Returns 1 if found, 0 if not.
my $value = shift;
my $listref = shift;
for (@$listref) {

return 1 if ($_ eq $value);
}
return 0; # Not found

}

143

1

144

C.1.5 cp
#!/usr/bin/perl -w
Copyright 2006 Andrey Falko
cp for Vestigium, version (1.0.0)

use strict;
use vars qw { $debug $progVer $logDir $libDir $backupDir $workDir $force

@args @dupes @inst };

open PROFILE, "/tmp/vestigium/profile";
while (<PROFILE>) {

chomp;
/ˆprogname\s(.+)/ && do { $progVer = $1; next };
/ˆlibdir\s(.+)/ && do { $libDir = $1; next };
/ˆlogdir\s(.+)/ && do { $logDir = $1; next };
/ˆbackupdir\s(.+)/ && do { $backupDir = $1; next };
/ˆdebug\s(.+)/ && do { $debug = $1; next };
/ˆforce\s(.+)/ && do { $force = $1; next };
/ˆworkDir\s(.*)/ && do { $workDir = $1; next };

}
close PROFILE;

use lib "/usr/lib/vestigium";

require "search.lib";
require "names.lib";

my $prog = &getProgName($progVer);
my $let = &getFirstLet($prog);

$ENV{VERSION_CONTROL} = "simple";
$ENV{SIMPLE_BACKUP_SUFFIX} = ".dupe";

for (@ARGV) {
/ˆ-([A-Za-z]*)b([A-Za-z]*)|--backup/

&& do { push @args, "\-$1$2" if ($1 || $2); next }; # Just in case some
bum descides to
abuse the command line.

/ˆ-S|--suffix/ && do { next }; # Just in case some bum descides to abuse the command line.
/ˆ-([A-Za-z]*)v([A-Za-z]*)|--version/

&& do { push @args, "\-$1$2" if ($1 || $2); next }; # Just in case some
bum descides to
abuse the command line.

/ˆ-V|--version-control/
&& do { next }; # Just in case some bum
descides to abuse the
command line. The beauty
of copy and paste (Except
when there are tpyos).

do { push @args, $_; next };
}

chdir "$workDir" or warn "No dir to chdir to: $!";

my $args = join " ", @args;
print "CP: $args\n" if ($debug);
my @result;
if ($force) {

@result = ‘/bin/cp $args -rfv 2>&1‘;
} else {

@result = ‘/bin/cp $args -bv 2>&1‘; # We need the error output...just in case.
}

for (@result) {
warn "CP result = $_" if ($debug);
if (/\(backup: \‘(.+)\’\)$/) {

push @dupes, $1;
next;

} elsif (/ \‘(.+)\’$/) {
push @inst, $1;
next;

} elsif (/cannot overwrite directory \‘(.+)\’/) {
print "Entering special directory overwrite handling.\n";
This is a very special case and requires delicate handling and commentary:
The reason being that the -b options does not play nice here.
First, we will have to move the directory out to the backup dir. and record the dupe.
my $owningProgVer = &findOwner($1);
if (! $owningProgVer) {

If the owner is not found, then this might be a vital directory or a user created
directory. All we can do is tell the user to move the directory out manually.
die "There was a problem: the cp command attempted to overwrite $1, which

is a directory. The owner of this directory was not found, and it was therefore not backed up.
Obviously, we did not record this in the logs or attempt to force (even if you used the --force
option with vestigium. If the program that you are installing, updating or rebuild needs this
command to go through, please manually move $1 out of the way, and run the installation command again.";

}
my $owningProg = &getProgName($owningProgVer);
my $ownLet = &getFirstLet($owningProg);
system "/bin/mkdir -p $backupDir/$ownLet/$owningProg/$owningProgVer/dupes";
system "/bin/mv $1 $backupDir/$ownLet/$owningProg/$owningProgVer/dupes/ -f";

145

open OWNERDUPE, ">>$logDir/$ownLet/$owningProg/$owningProgVer/dupe.log";
select OWNERDUPE;
print "$1\n";
select STDOUT;
close OWNERDUPE;
open DUPE, ">>$logDir/$let/$prog/$progVer/dupe.log";
select DUPE;
print "$1\n";
close DUPE;
open INSTALL, "$logDir/$let/$prog/$progVer/inst.log"; #The following should fix bug #9
my @dupeDirContents;
close INSTALL;
while (<INSTALL>) {

unless (/ˆ$1/) { # We want to keep anything that does not begin with the dir we are moving out.
push @dupeDirContents, $_;

}
}
system "rm $logDir/$let/$prog/$progVer/inst.log"; # Clear the log.
open INSTALL, ">>$logDir/$let/$prog/$progVer/inst.log" or die "Could not open inst.log for write: $!";
select INSTALL;
for (@dupeDirContents) { # Now we rebuild the inst.log.

print "$_\n";
}
select STDOUT;
close INSTALL;

Now, we have to re-run the command that failed command. We do not have any worries
because everything that went through ok, went through ok. We can run cp without
the backup option and with force. We also do not have to worry about the files that will
fail in the same way as they did here (They won’t mess up our work ;)).
system "/bin/cp $args -rf";

} else {
warn "Bug: cp did not do its job with $_";

}
}

open INST, ">>$logDir/$let/$prog/$progVer/inst.log"; #Logdirs have allegedly been created
select INST;
for (@inst) {

warn "Logging $_ to $logDir/$let/$prog/$progVer/inst.log" if ($debug);
print "$_\n";

}

open DUPE, ">>$logDir/$let/$prog/$progVer/dupe.log";
select DUPE;
for my $dupe (@dupes) {

$dupe =˜ s/\.dupe$//; #Strip the extention
my $owningProgVer = &findOwner($dupe);
if (! $owningProgVer) {

warn "There was a problem with backing up a file on the filesystem. I have moved it from $dupe to $dupe.dupe";
select INST;
warn "Logging $dupe to $logDir/$let/$prog/$progVer/inst.log" if ($debug);
print "$dupe\n";
next;

} else {
my $owningProg = &getProgName($owningProgVer);
my $ownLet = &getFirstLet($owningProg);
my $file = &getBasename($_);
open OWNERDUPE, ">>$logDir/$ownLet/$owningProg/$owningProgVer/dupe.log";
select OWNERDUPE;
system "/bin/mkdir -p $backupDir/$ownLet/$owningProg/$owningProgVer/dupes";
system "/bin/mv $dupe.dupe $backupDir/$ownLet/$owningProg/$owningProgVer/dupes/$file";
warn "Logging $dupe to $logDir/$ownLet/$owningProg/$owningProgVer/dupe.log" if ($debug);
print "$dupe\n";
select DUPE;
warn "Logging $dupe to $logDir/$let/$prog/$progVer/dupe.log" if ($debug);
print "$dupe\n";

}
}
close OWNERDUPE;
close DUPE;
close INST;

146

C.1.6 install
#!/usr/bin/perl
Copyright 2006 Andrey Falko
install for Vestigium, version (1.1.0)

open PROFILE, "/tmp/vestigium/profile";
while (<PROFILE>) {

chomp;
/ˆprogname\s(.+)/ && do { $progVer = $1; next };
/ˆlibdir\s(.+)/ && do { $libDir = $1; next };
/ˆlogdir\s(.+)/ && do { $logDir = $1; next };
/ˆbackupdir\s(.+)/ && do { $backupDir = $1; next };
/ˆdebug\s(.+)/ && do { $debug = $1; next };
/ˆforce\s(.+)/ && do { $force = $1; next };
/ˆworkDir\s(.*)/ && do { $workDir = $1; next };

}
close PROFILE;

use lib "/usr/lib/vestigium";

require "search.lib";
require "names.lib";

my $prog = &getProgName($progVer);
my $let = &getFirstLet($prog);

$ENV{VERSION_CONTROL} = "simple";
$ENV{SIMPLE_BACKUP_SUFFIX} = ".dupe";

for (@ARGV) {
/ˆ-([A-Za-z]*)b([A-Za-z]*)|--backup/

&& do { push @args, "\-$1$2" if ($1 || $2); next }; # Just in case some
bum descides to
abuse the command line.

/ˆ-S|--suffix/ && do { next }; # Just in case some bum
descides to abuse the command line.

/ˆ-([A-Za-z]*)v([A-Za-z]*)|--version/
&& do { push @args, "\-$1$2" if ($1 || $2); next }; # Just in case some

bum descides to
abuse the command line.

/ˆ-V|--version-control/
&& do { next }; # Just in case some bum
descides to abuse the
command line. The beauty
of copy and paste (Except
when there are tpyos).

do { push @args, $_; next };
}

chdir "$workDir" or warn "No dir to chdir to: $!";

my $args = join " ", @args;
print "INSTALL: $args\n" if ($debug);
my @result;
if ($force) {

@result = ‘/usr/bin/install $args -v 2>&1‘;
} else {

@result = ‘/usr/bin/install $args -bv 2>&1‘; # We need the error output...just in case.
}

for (@result) {
warn "INSTALL result = $_" if ($debug);
if (/\(backup: \‘(.+)\’\)$/) {

push @dupes, $1;
next;

} elsif (/ \‘(.+)\’$/) {
warn "Debug: \$1 is $1" if ($debug);
push @inst, $1;
next;

} elsif (/\‘(.+)\’ exists but is not a directory/) {
print "Entering special directory overwrite handling.\n";
This is a very special case and requires delicate handling and commentary:
The reason being that the -b options does not play nice here.
First, we will have to move the directory out to the backup dir. and record the dupe.
my $owningProgVer = &findOwner($1);
if (! $owningProgVer) {

If the owner is not found, then this might be a vital directory or a user created
directory. All we can do is tell the user to move the directory out manually.
die "There was a problem: the install command attempted to overwrite $1,

which is a directory. The owner of this directory was not found, and it was therefore not backed
up. Obviously, we did not record this in the logs or attempt to force (even if you used the
--force option with vestigium. If the program that you are installing, updating or rebuild needs
this command to go through, please manually move $1 out of the way, and run the installation command again.";

}
my $owningProg = &getProgName($owningProgVer);
my $ownLet = &getFirstLet($owningProg);
system "/bin/mkdir -p $backupDir/$ownLet/$owningProg/$owningProgVer/dupes";
system "/bin/mv $1 $backupDir/$ownLet/$owningProg/$owningProgVer/dupes/ -f";
open OWNERDUPE, ">>$logDir/$ownLet/$owningProg/$owningProgVer/dupe.log";
select OWNERDUPE;
print "$1\n";

147

select STDOUT;
close OWNERDUPE;
open DUPE, ">>$logDir/$let/$prog/$progVer/dupe.log";
select DUPE;
print "$1\n";
close DUPE;

open INSTALL, "$logDir/$let/$prog/$progVer/inst.log"; #The following should fix bug #9
my @dupeDirContents;
close INSTALL;
while (<INSTALL>) {

unless (/ˆ$1/) { # We want to keep anything that does not begin with the dir we are moving out.
push @dupeDirContents, $_;

}
}
system "rm $logDir/$let/$prog/$progVer/inst.log"; # Clear the log.
open INSTALL, ">>$logDir/$let/$prog/$progVer/inst.log" or die "Could not open inst.log for write: $!";
select INSTALL;
for (@dupeDirContents) { # Now we rebuild the inst.log.

print "$_\n";
}
select STDOUT;
close INSTALL;

Now, we have to re-run the command that failed command. We do not have any worries
because everything that went through ok, went through ok. We can run mv without
the backup option and with force. We also do not have to worry about the files that will
fail in the same way as they did here (They won’t mess up our work ;)).
system "/usr/bin/install $args";

} else {
warn "Bug: install did not do its job with $_";

}
}

open INST, ">>$logDir/$let/$prog/$progVer/inst.log"; #Logdirs have allegedly been created
select INST;
for (@inst) {

warn "Logging $_ to $logDir/$let/$prog/$progVer/inst.log" if ($debug);
print "$_\n";

}

open DUPE, ">>$logDir/$let/$prog/$progVer/dupe.log";
select DUPE;
for my $dupe (@dupes) {

$dupe =˜ s/\.dupe$//; #Strip the extention
my $owningProgVer = &findOwner($dupe);
if (! $owningProgVer) {

warn "There was a problem with backing up a file on the filesystem.
I have moved it from $dupe to $dupe.dupe.";

select INST;
warn "Logging $dupe to $logDir/$let/$prog/$progVer/inst.log" if ($debug);
print "$dupe\n";
next;

} else {
my $owningProg = &getProgName($owningProgVer);
my $ownLet = &getFirstLet($owningProg);
my $file = &getBasename($dupe);
open OWNERDUPE, ">>$logDir/$ownLet/$owningProg/$owningProgVer/dupe.log";
select OWNERDUPE;
system "/bin/mkdir -p $backupDir/$ownLet/$owningProg/$owningProgVer/dupes";
system "/bin/mv $dupe.dupe $backupDir/$ownLet/$owningProg/$owningProgVer/dupes/$file";
warn "Logging $dupe to $logDir/$ownLet/$owningProg/$owningProgVer/dupe.log" if ($debug);
print "$dupe\n";
select DUPE;
warn "Logging $dupe to $logDir/$let/$prog/$progVer/dupe.log" if ($debug);
print "$dupe\n";

}
}
close OWNERDUPE;
close DUPE;
close INST;

148

C.1.7 ln
#!/usr/bin/perl -w
Copyright 2006 Andrey Falko
ln for Vestigium, version (1.0.0)

use strict;
use vars qw { $debug $progVer $logDir $libDir $backupDir $workDir $force

@args @dupes @inst };

open PROFILE, "/tmp/vestigium/profile";
while (<PROFILE>) {

chomp;
/ˆprogname\s(.+)/ && do { $progVer = $1; next };
/ˆlibdir\s(.+)/ && do { $libDir = $1; next };
/ˆlogdir\s(.+)/ && do { $logDir = $1; next };
/ˆbackupdir\s(.+)/ && do { $backupDir = $1; next };
/ˆdebug\s(.+)/ && do { $debug = $1; next };
/ˆforce\s(.+)/ && do { $force = $1; next };
/ˆworkDir\s(.*)/ && do { $workDir = $1; next };

}
close PROFILE;

use lib "/usr/lib/vestigium";

require "search.lib";
require "names.lib";

my $prog = &getProgName($progVer);
my $let = &getFirstLet($prog);

$ENV{VERSION_CONTROL} = "simple";
$ENV{SIMPLE_BACKUP_SUFFIX} = ".dupe";

for (@ARGV) {
/ˆ-([A-Za-z]*)b([A-Za-z]*)|--backup/

&& do { push @args, "\-$1$2" if ($1 || $2); next }; # Just in case some
bum descides to
abuse the command line.

/ˆ-S|--suffix/
&& do { next }; # Just in case some bum descides to abuse the command line.

/ˆ-([A-Za-z]*)v([A-Za-z]*)|--version/
&& do { push @args, "\-$1$2" if ($1 || $2); next }; # Just in case some

bum descides to
abuse the command line.

/ˆ-V|--version-control/
&& do { next }; # Just in case some bum descides to

abuse the command line. The beauty
of copy and paste (Except when there
are tpyos).

do { push @args, $_; next };
}

chdir "$workDir" or warn "No dir to chdir to: $!";

my $args = join " ", @args;
print "LN: $args\n" if ($debug);
my @result;
if ($force) {

@result = ‘/bin/ln $args -v 2>&1‘;
} else {

@result = ‘/bin/ln $args -bv 2>&1‘; # We need the error output...just in case.
}

for (@result) {
warn "LN result = $_" if ($debug);
if (/\(backup: \‘(.+)\’\)$/) {

my $loc = $1;
$loc = "$ENV{PWD}/$loc" if (! /ˆ\//); # If not begining /, then we must add the current location. (Bug #20)
push @dupes, $loc;
next;

} elsif (/ \‘(.+)\’ to/) {
my $loc = $1;
$loc = "$ENV{PWD}/$loc" if (! /ˆ\//); # See comment above.
push @inst, $loc;
next;

} else {
warn "Bug: ln did not do its job with $_";

}
}

open INST, ">>$logDir/$let/$prog/$progVer/inst.log"; #Logdirs have allegedly been created
select INST;
for (@inst) {

warn "Logging $_ to $logDir/$let/$prog/$progVer/inst.log" if ($debug);
print "$_\n";

}

open DUPE, ">>$logDir/$let/$prog/$progVer/dupe.log";
select DUPE;
for my $dupe (@dupes) {

149

$dupe =˜ s/\.dupe$//; #Strip the extention
my $owningProgVer = &findOwner($dupe);
if (! $owningProgVer) {

warn "There was a problem with backing up a file on the filesystem. I have moved it from $dupe to $dupe.dupe.";
select INST;
warn "Logging $dupe to $logDir/$let/$prog/$progVer/inst.log" if ($debug);
print "$dupe\n";
next;

} else {
my $owningProg = &getProgName($owningProgVer);
my $ownLet = &getFirstLet($owningProg);
my $file = &getBasename($dupe);
open OWNERDUPE, ">>$logDir/$ownLet/$owningProg/$owningProgVer/dupe.log";
select OWNERDUPE;
system "/bin/mkdir -p $backupDir/$ownLet/$owningProg/$owningProgVer/dupes";
system "/bin/mv $dupe.dupe $backupDir/$ownLet/$owningProg/$owningProgVer/dupes/$file -f";
warn "Logging $dupe to $logDir/$ownLet/$owningProg/$owningProgVer/dupe.log" if ($debug);
print "$dupe\n";
select DUPE;
warn "Logging $dupe to $logDir/$let/$prog/$progVer/dupe.log" if ($debug);
print "$dupe\n";

}
}
close OWNERDUPE;
close DUPE;
close INST;

150

C.1.8 mkdir
#!/usr/bin/perl -w
Copyright 2006 Andrey Falko
mkdir for Vestigium, version (1.0.0)

use strict;
use vars qw { $debug $progVer $logDir $libDir $backupDir $workDir $force

@args @dupes @inst };

open PROFILE, "/tmp/vestigium/profile";
while (<PROFILE>) {

chomp;
/ˆprogname\s(.+)/ && do { $progVer = $1; next };
/ˆlibdir\s(.+)/ && do { $libDir = $1; next };
/ˆlogdir\s(.+)/ && do { $logDir = $1; next };
/ˆbackupdir\s(.+)/ && do { $backupDir = $1; next };
/ˆdebug\s(.+)/ && do { $debug = $1; next };
/ˆforce\s(.+)/ && do { $force = $1; next };
/ˆworkDir\s(.*)/ && do { $workDir = $1; next };

}
close PROFILE;

use lib "/usr/lib/vestigium";

require "search.lib";
require "names.lib";

my $prog = &getProgName($progVer);
my $let = &getFirstLet($prog);

for (@ARGV) {
/ˆ-([A-Za-z]*)v([A-Za-z]*)|--version/

&& do { push @args, "\-$1$2" if ($1 || $2); next }; # Just in case some
bum descides to abuse
the command line.

do { push @args, $_; next };
}

chdir "$workDir" or warn "No dir to chdir to: $!";

my $args = join " ", @args;
print "MKDIR: $args\n" if ($debug);
my @result = ‘/bin/mkdir $args -v 2>&1‘; # mkdir developers make verbose output go to STDERR. Weird huh?

for (@result) {
print "Debug: MKDIR, result = $_\n" if ($debug);
if (/\‘(.+)\’: File exists$/) {

push @dupes, $1;
next;

} elsif (/ \‘(.+)\’$/) {
push @inst, $1;
next;

} else {
warn "mkdir appears to have not done anything. This is normal in most circumstances." if ($debug);
push @dupes, $1;
next;

}
}

open INST, ">>$logDir/$let/$prog/$progVer/inst.log"; #Logdirs have allegedly been created
select INST;
for (@inst) {

print "$_\n";
}

If a dir already exists, then we add it to the inst.log.
When a package is removed, we only remove the dir if it
empty.
for (@dupes) {

my $dupe = $_;
print "$_\n";

}

close INST;

151

C.1.9 mv
#!/usr/bin/perl -w
Copyright 2006 Andrey Falko
mv for Vestigium, version (1.1.0)

use strict;
use vars qw { $debug $progVer $logDir $libDir $backupDir $workDir

@args @dupes @inst };

open PROFILE, "/tmp/vestigium/profile";
while (<PROFILE>) {

chomp;
/ˆprogname\s(.+)/ && do { $progVer = $1; next };
/ˆlibdir\s(.+)/ && do { $libDir = $1; next };
/ˆlogdir\s(.+)/ && do { $logDir = $1; next };
/ˆbackupdir\s(.+)/ && do { $backupDir = $1; next };
/ˆdebug\s(.+)/ && do { $debug = $1; next };
/ˆworkDir\s(.*)/ && do { $workDir = $1; next };

}
close PROFILE;

use lib "/usr/lib/vestigium";

require "search.lib";
require "names.lib";

my $prog = &getProgName($progVer);
my $let = &getFirstLet($prog);

$ENV{VERSION_CONTROL} = "simple";
$ENV{SIMPLE_BACKUP_SUFFIX} = ".dupe";

for (@ARGV) {
/ˆ-([A-Za-z]*)b([A-Za-z]*)|--backup/

&& do { push @args, "\-$1$2" if ($1 || $2); next }; # Just in case some
bum descides to
abuse the command line.

/ˆ-S|--suffix/ && do { next }; # Just in case some bum
decides to abuse the command line.

/ˆ-([A-Za-z]*)v([A-Za-z]*)|--version/
&& do { push @args, "\-$1$2" if ($1 || $2); next }; # Just in case some

bum descides to
abuse the command line.

/ˆ-V|--version-control/ && do { next }; # Just in case some bum descides to
abuse the command line. The beauty

of copy and paste (Except when there
are tpyos).

do { push @args, $_; next };
}

chdir "$workDir" or warn "No dir to chdir to: $!";

my $args = join " ", @args;
print "MV: $args\n" if ($debug);
my @result = ‘/bin/mv $args -bv‘; # We need the error output...just in case.

for (@result) {
warn "MV result = $_" if ($debug);
if (/\(backup: \‘(.+)\’\)$/) {

push @dupes, $1;
next;

} elsif (/removed/) {
#This is part of the verbose output, but can be ignored.
next;

} elsif (/ \‘(.+)\’$/) {
warn "Debug: \$1 is $1" if ($debug);
push @inst, $1;
next;

} elsif (/cannot overwrite directory \‘(.+)\’/) {
print "Entering special directory overwrite handling.\n";
This is a very special case and requires delicate handling and commentary:
The reason being that the -b options does not play nice here.
First, we will have to move the directory out to the backup dir. and record the dupe.
my $owningProgVer = &findOwner($1);
if (! $owningProgVer) {

If the owner is not found, then this might be a vital directory or a user created
directory. All we can do is tell the user to move the directory out manually.
die "There was a problem: the mv command attempted to overwrite $1,

which is a directory. The owner of this directory was not found, and it was therefore not
backed up. Obviously, we did not record this in the logs or attempt to force (even if you
used the --force option with vestigium. If the program that you are installing, updating or
rebuild needs this command to go through, please manually move $1 out of the way, and run the
installation command again.";

}
my $owningProg = &getProgName($owningProgVer);
my $ownLet = &getFirstLet($owningProg);
system "/bin/mkdir -p $backupDir/$ownLet/$owningProg/$owningProgVer/dupes";
system "/bin/mv $1 $backupDir/$ownLet/$owningProg/$owningProgVer/dupes/ -f";
open OWNERDUPE, ">>$logDir/$ownLet/$owningProg/$owningProgVer/dupe.log";
select OWNERDUPE;

152

print "$1\n";
select STDOUT;
close OWNERDUPE;
open DUPE, ">>$logDir/$let/$prog/$progVer/dupe.log";
select DUPE;
print "$1\n";
close DUPE;

open INSTALL, "$logDir/$let/$prog/$progVer/inst.log"; #The following should fix bug #9
my @dupeDirContents;
close INSTALL;
while (<INSTALL>) {

unless (/ˆ$1/) { # We want to keep anything that does not begin with the dir we are moving out.
push @dupeDirContents, $_;

}
}
system "rm $logDir/$let/$prog/$progVer/inst.log"; # Clear the log.
open INSTALL, ">>$logDir/$let/$prog/$progVer/inst.log" or die "Could not open inst.log for write: $!";
select INSTALL;
for (@dupeDirContents) { # Now we rebuild the inst.log.

print "$_\n";
}
select STDOUT;
close INSTALL;

Now, we have to re-run the command that failed command. We do not have any worries
because everything that went through ok, went through ok. We can run mv without
the backup option and with force. We also do not have to worry about the files that will
fail in the same way as they did here (They won’t mess up our work ;)).
system "/bin/mv $args -rf";

} else {
warn "Bug: mv did not do its job with $_";

}
}

open INST, ">>$logDir/$let/$prog/$progVer/inst.log"; #Logdirs have allegedly been created
select INST;
for (@inst) {

warn "Logging $_ to $logDir/$let/$prog/$progVer/inst.log" if ($debug);
print "$_\n";

}

open DUPE, ">>$logDir/$let/$prog/$progVer/dupe.log";
select DUPE;
for my $dupe (@dupes) {

$dupe =˜ s/\.dupe$//; #Strip the extention
my $owningProgVer = &findOwner($dupe);
if (! $owningProgVer) {

warn "There was a problem with backing up a file on the filesystem. I have moved it from $dupe to $dupe.dupe.";
select INST;
warn "Logging $dupe to $logDir/$let/$prog/$progVer/inst.log" if ($debug);
print "$dupe\n";
next;

} else {
my $owningProg = &getProgName($owningProgVer);
my $ownLet = &getFirstLet($owningProg);
my $file = &getBasename($dupe);
open OWNERDUPE, ">>$logDir/$ownLet/$owningProg/$owningProgVer/dupe.log";
select OWNERDUPE;
system "/bin/mkdir -p $backupDir/$ownLet/$owningProg/$owningProgVer/dupes";
system "/bin/mv $dupe.dupe $backupDir/$ownLet/$owningProg/$owningProgVer/dupes/$file";
warn "Logging $dupe to $logDir/$ownLet/$owningProg/$owningProgVer/dupe.log" if ($debug);
print "$dupe\n";
select DUPE;
warn "Logging $dupe to $logDir/$let/$prog/$progVer/dupe.log" if ($debug);
print "$dupe\n";

}
}
close OWNERDUPE;
close DUPE;
close INST;

153

C.1.10 vestigium.conf
libdir = /usr/lib/vestigium

portdir = /usr/vestigium/ports

#The main directory where logs are stored.
#Do not change this unless you know what
#you doing. If Vestigium is given a directory
#where the logs to no exist, it will assume
#nothing has ever been installed, and will
#not be able to handle the many file
#collisions that will result and it attempts
#to rebuild the system.
logdir = /var/log/vestigium

backupdir = /var/spool/vestigium

tmpdir = /tmp/vestigium

downloaddir = /usr/vestigium/downloads

wrapperpath = /usr/vestigium/wrappers

#The packagetype flag allows you to set what
#type of packages you wish to use. You can use
#your backups (if you created them). You can use
#binary packages, and you can build packages
#from source.
packagetype = source
#pacakgetype = binary
#packagetype = backup

#Set your architechture below. This will be used to
#automatically determine the correct binary packages
#to download and determine which ports to download.
#Currently, the only availible architechture is x86.
arch = x86

#Set your subarchitechture (e.g. Pentium4 or AthlonXP)
#below. This will be used to bring in optimized binaries
#or optimize source during build time. Currently
#availible subarchs are athlon64 and i686.
subarch = athlon64-32

#If you are not happy with the default flags that
#will automatically be set for you with the arch and
#subarch flags, you can write your own flags if you
#know what you are doing. Note however, that you will
#continue to download binary packages according to your
#arch and subarch. Therefore this is practical only for
#source packages. You have encapsulate the following in
#double quotes. The will over-ride what ever is set my
#arch and subarch.
#chost =
#cflags =
#cxxflags =
#ldflags =

#Set "mirror" to the url of the mirror from where
#you wish to download your packages and ports from.
#You set a list of mirrors by separating them with
#spaces. The first one in the list will take
#precedence. All of them have to be on the same
#line.
mirror = http://afalko.homelinux.net/vestigium

#If you wish to prevent Vestigium from fetching
#the latest ports and other such stuff you can
#set nosync to true. Default is false.
nosync = false

#If you wish to be informed of when Vestigium
#enters and exits subroutines, set debug to true.
debug = true

#If prompt is set to true Vestigium will show what
#it plans to do and allow the user to say yes to no.
#Setting prompt to false will prevent Vestrigium
#from doing the above. true is the default.
prompt = false

#When removing a package, it might have dependencies,
#which will not be needed by any other package. Setting
#cleandeps to false will prevent this "cleaning" process
#from occurring. The default is true.
cleandeps = true

#Vestigium has a special file collision handling system.
#By default, when a program is being installed and is
#attempting to write a file that already exists, it
#searchs the for which package the file on the system

154

#belongs. Once if finds that package, it will back the
#file up under that package’s backup directory (by default
#/var/spool/vestigium/<package name>). The incoming file
#will get written once the existing file is backed up.
#The backed up file is called duplicate, or dupe for short.
#We set two things here with dupes:
#
#1) alwaysforce. This prevent the dupes mechanism from
#functioning. When a file collision occurs, existing files
#become overwritten. Default for this is false.
alwaysforce = false

#2) flipdupes. Set this to true prevent the incoming file
#from being written, and instead make it the file that
#Vestigium is going to back up. The default is false.
flipdupes = false

#By default, Vestigium’s --search option will search
#package names only. The following flag changes this behavior
#to also search dependencies whenever --search flag is passed.
#The default is false.
alwayssearchdeps = false

#Createbinaries make Vestigium create binary package upon a
#package’s installation (also installing the package). Default
#is false.
createbinaries = false

#If you wish to create binary packages without installing package,
#set onlycreatebinaries to true. The default is set to false.
onlycreatebinaries = false

155

C.1.11 subarchs
athlon64

chost = "x86_64-pc-linux-gnu"
cflags = "-O3 -march=athlon64 -ftracer -pipe"
cxxflags = "-O3 -march=athlon64 -ftracer -pipe"

end

athlon64-32
chost = "i686-pc-linux-gnu"
cflags = "-O3 -march=athlon64 -ftracer -pipe"
cxxflags = "-O3 -march=athlon64 -ftracer -pipe -fvisibility-inlines-hidden"

end

156

C.1.12 vesport
#!/usr/bin/perl -w

$configFile = "/etc/vestigium.conf";

open CONFIG, $configFile
or die "Unable to open the configuration file: $!";

#First filter out the #Comment lines.
while (<CONFIG>) {

chomp $_;
#print "$_\n" if (! /ˆ#/ && !($_ eq ""));
push @options, $_ if (! /ˆ#/ && !($_ eq ""));

}
close CONFIG;
#Set the varibles.
SWITCH: for (@options) {

#/ˆlibdir\s*=\s*(\S+)/ && do { $libDir = $1; next };
/ˆportdir\s*=\s*(\S+)/ && do { $portDir = $1; next };
#do { warn "Warning: I did not understand $_ in $configFile." };

}

use lib "/usr/lib/vestigium";
require "names.lib";

print "Vesport is a utility that will help you create ports for the Vestigium package manager.
answer the following question and all necessary files will be created for your port.\n";

while (1) {
print "Enter the program name (no version attached): ";
chomp ($prog = <STDIN>);
if ($prog =˜ /\-\d/) {

print "Program names cannot have digits after dashes. Sorry, try again.\n";
next;

} elsif ($prog =˜ /\s/) {
print "I detected white space. This is no good, try again.\n";
next;

} else {
last;

}
}

while (1) {
print "Enter the program version (without a starting dash): ";
chomp (my $ver = <STDIN>);
if ($ver =˜ /ˆ\-/) {

print "Follow instructions. No leading dashes! Try again.\n";
next;

} elsif (! $ver =˜ /ˆ\d/) {
print "I regret to inform you that program versions can only start with digits. Try again.\n";
next;

} else {
$progVer = "$prog-$ver";
last;

}
}

while (1) {
print "Enter a description for the program. Be brief please (pressing enter will end the description): ";
chomp ($desc = <STDIN>);
if (! $desc) {

print "You entered nothing, I am going to ask you to try again.\n";
next;

} else {
last;

}
}

while (1) {
print "Enter the licence under which this program licensed: ";
chomp ($license = <STDIN>);
if (! $license) {

print "You entered nothing, I am going to ask you to try again.\n";
next;

} else {
last;

}
}

while (1) {
print "Enter the homepage of this program: ";
chomp ($homepage = <STDIN>);
if (! $homepage) {

print "You entered nothing, I am going to ask you to try again.\n";
next;

} elsif ($homepage =˜ /none/) {
last;

} elsif (! $homepage =˜ /ˆ(http|ftp)/) {
print "Enter an url starting with either ftp or http.\n";
next;

} else {

157

last;
}

}

while (1) {
print "Please enter where the source code files are to be downloaded from (one per line; type \"done\" when done): ";
while (<STDIN>) {

chomp;
last if (/done/);
if (! /ˆ(http|ftp)/) {

print "Enter an url starting with either ftp or http.\n";
next;

} else {
push @sources, $_;
next;

}
}
last;

}

while (1) {
print "Enter the required dependencies of the program (one per line; type \":q\" when done): ";
while (<STDIN>) {

chomp;
last if (/:q/);
push @deps, $_;
next;

}
last;

}

while (1) {
print "Enter the program’s default CFLAGS (this will over-ride the global CFLAGS;

CXXFLAGS will be set to the same thing; entering this is optional): ";
chomp ($cflags = <STDIN>);
my @flags = split " ", $cflags;
for (@flags) {

if (/-[a-zA-Z0-9]+/) {
last;

} elsif (! $_) {
last;

} else {
print "As far as I know, All CFLAG flags are supposed to start with a single \"-\". Try again.\n";
next;

}
}
last;

}

while (1) {
print "Enter the program’s option flags (one per line; type \":q\" when done): ";
while (<STDIN>) {

chomp;
last if (/:q/);
push @opts, $_;
next;

}

for (@opts) {
print "Enter the dependencies which will be brought in for $_ (one per line; type \":q\" when done): ";
while (<STDIN>) {

last if (/:q/);
push @temp, $_;
next;

}
$opts{$_} = \@temp;
@temp = undef;

print "Enter the configure options for $_ (one per line; type \":q\" when done): ";
while (<STDIN>) {

last if (/:q/);
push @temp, $_;
next;

}
$opts{$_}{$_} = \@temp;
@temp = undef;

}
last;

}

while (1) {
print "Enter the commands to execute from extraction to right before installation (one per line; type \":q\" when done): ";
while (<STDIN>) {

chomp;
last if (/:q/);
push @build, $_;
next;

}
last;

}

while (1) {

158

print "Enter the commands to execute after building, but before post-installation (one per line; type \":q\" when done): ";
while (<STDIN>) {

chomp;
last if (/:q/);
push @install, $_;
next;

}
last;

}

while (1) {
print "Enter the commands to execute after installation (one per line; type \":q\" when done; this is optional): ";
while (<STDIN>) {

chomp;
last if (/:q/);
push @postinst, $_;
next;

}
last;

}

print "It appears as if you gave me enough information.\nHere is what I plan to do: \n";

$let = &getFirstLet($prog);
print "Create port in $portDir/$let/$prog/$progVer\n";

print "Create file \"$portDir/$let/$prog/$progVer/BUILD\" containing the following lines: \n";
for (@build) {

print " $_\n";
}

print "Create file \"$portDir/$let/$prog/$progVer/INSTALL\" containing the following lines: \n";
for (@install) {

print " $_\n";
}

print "Create file \"$portDir/$let/$prog/$progVer/POSTINST\" containing the following lines: \n";
for (@postinst) {

print " $_\n";
}

print "Create file \"$portDir/$let/$prog/$progVer/INFO\" containing the following lines: \n";
print " description = \"$desc\"\n";
print " licence = \"$license\"\n";
print " homepage = \"$homepage\"\n";
$sources = join " \n", @sources;
print " files = \"\n$sources\"\n";
$deps = join " \n", @deps;
print " deps = \"\n$deps\"\n";
print " options = {\n";
for (sort keys %opts) {

my $deps = join " ", @$opts{$_} if (! $opts{$_}{$_});
print " " x 12;
if (! $opts{$_}{$_}) {

print "$_; @$opts{$_}; ";
$conf = join " ", $opts{$_}{$_};
print "$conf\n";

}
}

print "Would you like me to continue with all of this? (N/y): ";
chomp ($answ = <STDIN>);
if ($answ =˜ m/y/i) {

#last;
} else {

exit 0;
}

system "mkdir -p $portDir/$let/$prog/$progVer";
open BUILD, ">>$portDir/$let/$prog/$progVer/BUILD" or die "Could not open file handle: $!";
select BUILD;
for (@build) {

print "$_\n";
}

open INST, ">>$portDir/$let/$prog/$progVer/INSTALL";
select INST;
for (@install) {

print "$_\n";
}

open POSTINST, ">>$portDir/$let/$prog/$progVer/POSTINST";
select POSTINST;
for (@postinst) {

print "$_\n";
}

open INFO, ">>$portDir/$let/$prog/$progVer/INFO";
select INFO;
print "description = \"$desc\"\n";
print "licence = \"$license\"\n";
print "homepage = \"$homepage\"\n";

159

$sources = join "\n", @sources;
print "files = \"$sources\"\n";
$deps = join "\n", @deps;
print "deps = \"$deps\"\n";
#print "opts = \"

160

install:
groupadd vestigium
cp vestigium /usr/bin/vestigium
cp vesport /usr/bin/vesport
chown root:vestigium /usr/bin/vesport
chmod 775 /usr/bin/vesport
chown root:vestigium /usr/bin/vestigium
chmod 775 /usr/bin/vestigium
mkdir -p /usr/lib/vestigium
chown root:vestigium /usr/lib/vestigium
chmod 775 /usr/lib/vestigium
cp *.lib /usr/lib/vestigium/
cp subarchs /usr/lib/vestigium/
mkdir -p /usr/vestigium/wrappers
cp wrappers/* /usr/vestigium/wrappers/ -R
chown root:vestigium /usr/vestigium -R
chmod 775 /usr/vestigium -R
cp vestigium.conf /etc/vestigium.conf
chown root:vestigium /etc/vestigium.conf
chmod 775 /etc/vestigium.conf
install -o root -g vestigium -m 775 -d /tmp/vestigium
install -o root -g vestigium -m 775 -d /var/log/vestigium
install -o root -g vestigium -m 775 -d /var/spool/vestigium
ln -s /usr/bin/vestigium /usr/bin/ves

update:
cp vestigium /usr/bin/vestigium
chown root:vestigium /usr/bin/vestigium
chmod 775 /usr/bin/vestigium
cp vesport /usr/bin/vesport
chown root:vestigium /usr/bin/vesport
chmod 775 /usr/bin/vesport
chown root:vestigium /usr/lib/vestigium
chmod 775 /usr/lib/vestigium
cp *.lib /usr/lib/vestigium/
cp subarchs /usr/lib/vestigium/
cp wrappers/* /usr/vestigium/wrappers/ -R
cp ports/* /usr/vestigium/ports/ -R
chown root:vestigium /usr/vestigium -R
chmod 775 /usr/vestigium -R
cp vestigium.conf /etc/vestigium.conf
chown root:vestigium /etc/vestigium.conf
chmod 775 /etc/vestigium.conf

package:
mkdir temp
cp /usr/bin/vestigium temp/
cp /usr/bin/vesport temp/
cp /usr/vestigium/* temp/ -R
rm -Rf temp/ports
rm -Rf temp/downloads
cp /etc/vestigium.conf temp/
cp /usr/lib/vestigium/* temp/
cp Makefile temp/
tar -cjf vestigium.tar.bz2 temp

unpack:
tar -xf ˜/vestigium.tar.bz2 -C /tmp/
cp /tmp/temp/* ../vestigium/ -R
rm *˜
rm /tmp/temp -R
rm ˜/vestigium.tar.bz2

clean:
rm temp -R
rm vestigium.tar.bz2

remove:
groupdel vestigium
rm /usr/bin/vestigium
rm /usr/bin/vesport
rm -R /usr/vestigium
rm /etc/vestigium.conf
rm -R /tmp/vestgium
rm -R /var/log/vestigium
rm -R /var/spool/vestigium

161

C.2 Sysmark
C.2.1 sysmark
#!/bin/bash
#sysmark - a collection of benchmarking tools for GNU/Linux.
#Copyright (C) 2006 Andrey Falko
#
#This program is free software; you can redistribute it and/or
#modify it under the terms of the GNU General Public License
#as published by the Free Software Foundation; either version 2
#of the License, or (at your option) any later version.
#
#This program is distributed in the hope that it will be useful,
#but WITHOUT ANY WARRANTY; without even the implied warranty of
#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
#GNU General Public License for more details.
#
#You should have received a copy of the GNU General Public License
#along with this program; if not, write to the Free Software
#Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
You may contact me, Andrey Falko, at Ma3oxuct@gmail.com
#

SRCDIR=$PWD #The directory that sysmark is in.
TMPDIR=/usr/tmp
OUTFILE=$SRCDIR/results.txt

if [-a $OUTFILE]
then
echo "You have ran this benchmark before and have results.
Would you like me to overwrite them?"
read in
if ["$in" = ’n’]

then
echo "Exiting."
exit 0

else
rm $OUTFILE

fi
fi

help="The following command line options are availible: \n
--no-scimark \t\t Excludes the Scimark benchmark \n
--no-bashmark \t\t Excludes the Bashmark benchmark \n
--no-lame \t\t Excludes the Lame benchmark \n
--no-pov \t\t Excludes the Pov-Ray benchmark \n
--no-interbench \t Excludes the Interbench benchmark \n
--no-lmbench \t\t Excludes the lmbench benchmark \n
\n
--only-[benchmark name] Includes only [benchmark name] \n
\n
--live (-l) \t\t Provides live output of the benchmarks in progress \n
--full (-f) \t\t Provides output from the benchmarks all together at the end \n
--summary (-s) \t Provides shorthanded output at the end (default)\n
\n
All results are stored in $OUTFILE"

SCIMARK=true
BASHMARK=true
LAME=true
POV=true
INTER=true
LMBENCH=true

LIVE=false
FULL=false
SUMMERIZE=true
while [$1]; do

case $1 in
"-h" | "--help")

echo -e $help
exit 0;;

"--no-scimark")
SCIMARK="false";;

"--no-bashmark")
BASHMARK="false";;

"--no-lame")
LAME="false";;

"--no-pov")
POV="false";;

"--no-interbench")
INTER="false";;

"--no-lmbench")
LMBENCH="false";;

"--only-scimark")
BASHMARK="false"
LAME="false"
POV="false"
INTER="false"

162

LMBENCH="false";;
"--only-bashmark")

SCIMARK="false"
LAME="false"
POV="false"
INTER="false"
LMBENCH="false";;

"--only-lame")
SCIMARK="false"
BASHMARK="false"
POV="false"
INTER="false"
LMBENCH="false";;

"--only-pov")
SCIMARK="false"
BASHMARK="false"
LAME="false"
INTER="false"
LMBENCH="false";;

"--only-interbench")
SCIMARK="false"
BASHMARK="false"
LAME="false"
POV="false"
LMBENCH="false";;

"--only-lmbench")
SCIMARK="false"
BASHMARK="false"
LAME="false"
POV="false"
INTER="false";;

"-l" | "--live")
LIVE="true"
SUMMERIZE="false";;

"-f" | "--full")
FULL="true"
SUMMERIZE="false";;

"-s" | "--summary")
SUMMERIZE="true";;

"");;
*)

echo -e $help
exit 0;;

esac
shift

done

cd $SRCDIR

SYS=‘echo | ./config.guess‘

touch $OUTFILE
echo "Welcome to the sysmark benchmarking suite"

if [-z "${CFLAGS}"] && [-z "${CXXFLAGS}"]
then
echo "You have not yet set your optimization flags. Set them now: "
read flags

if [-z "${flags}"]
then
echo "You entered nothing, assuming -O0."
export CFLAGS="-O0"

else
export CFLAGS=$flags

fi
fi
if [-n "${CFLAGS}"]

then
export CXXFLAGS=$CFLAGS

elif [-n "${CXXFLAGS}"]
then
export CFLAGS=$CXXFLAGS

else
echo "Error: All flags are null. $CFLAGS - $CXXFLAGS"

fi

echo "The CFLAGS are: $CFLAGS"

if [$LAME = "true"]
then
echo "Sysmark will require you to have to 500 megabytes of temporary free space."
echo "Please input your desired temporary directory. Make sure that it has write access (default is $TMPDIR): "
read dir
if [-n "${dir}"]

then
TMPDIR=$dir

fi
fi

if [$SCIMARK = "true"]
then

163

echo "Comiling scimark2..."
cd $SRCDIR/scimark
make scimark2 > /dev/null 2>&1
echo "Finished compiling, running benchmark..."
if [$LIVE = "true"]

then
./scimark2

else
./scimark2 >> $OUTFILE

fi
make clean > /dev/null 2>&1
echo "Scimark finished."

fi

if [$BASHMARK = "true"]
then
echo "Compiling bashmark..."
cd $SRCDIR/bashmark
make bashmark > /dev/null 2>&1
echo "Finished compiling bashmark, running benchmark..."
if [$LIVE = "true"]

then
./bashmark

else
./bashmark >> $OUTFILE

fi
make clean > /dev/null 2>&1
echo "Bashmark finished."

fi

if [$LAME = "true"]
then
echo "Comiling Lame..."
cd $SRCDIR/lame
./configure > /dev/null 2>&1
make > /dev/null 2>&1
echo "Finished compiling Lame, generating 500 megabyte wav file..."
i=1
while [$i -le 205]
do

cp wavfile $TMPDIR/wavfile.$i
i=$((i+1))

done
cat $TMPDIR/wavfile.* > $TMPDIR/bigwav.wav
echo "File generated. Encoding it with Lame..."
cd frontend
if [$LIVE = "true"]

then
./lame -hr $TMPDIR/bigwav.wav /dev/null #-r so that lame does not cheat.

else
./lame -hr $TMPDIR/bigwav.wav /dev/null >> $OUTFILE 2>&1

fi
cd ../
make clean > /dev/null 2>&1
rm $TMPDIR/wavfile.* $TMPDIR/bigwav.wav
echo "Lame finished."

fi

if [$POV == "true"]
then
echo "Compiling Pov-Ray..."
cd $SRCDIR/povray
./configure --prefix=$SRCDIR/povray/inst COMPILED_BY="sysmark" > /dev/null 2>&1
make > /dev/null 2>&1
make install > /dev/null 2>&1
cd inst/share/povray-3.6/scenes/advanced
echo "Finished compiling Pov-Ray, running benchmark..."
if [$LIVE = "true"]

then
$SRCDIR/povray/inst/bin/povray benchmark.ini

else
$SRCDIR/povray/inst/bin/povray benchmark.ini >> $OUTFILE 2>&1

fi
cd $SRCDIR/povray
rm inst/* -R
make clean > /dev/null 2>&1
echo "Pov-Ray finished."

fi

if [$INTER == "true"]
then
cd $SRCDIR/interbench
echo "Comiling interbench..."
make interbench > /dev/null 2>&1
echo "Finished compiling Interbench, running benchmark..."
if [$LIVE = "true"]

then
./interbench

else
./interbench >> $OUTFILE

fi
make clean > /dev/null 2>&1

164

echo "Interbench finished."
fi

if [$LMBENCH == "true"]
then
cd $SRCDIR/lmbench/src
echo "Compiling lmbench..."
#We do not want this benchmark to use any optimization flags...at least for now.
make lmbench > /dev/null 2>&1
echo "lmbench compiled, running benchmark..."
if [-a $SRCDIR/lmbench/CONFIG.localhost]

then
echo "A mandatory configuration file has been located. Would you like to

generate a new one? (Say yes, unless you know what you are doing)."
read in
if [$in = ’n’]

then
cp $SRCDIR/lmbench/CONFIG.localhost $SRCDIR/lmbench/bin/$SYS/CONFIG.$HOSTNAME
make os > /dev/null 2>&1

else
make os > /dev/null 2>&1

fi
else

make os > /dev/null 2>&1
cp $SRCDIR/lmbench/bin/$SYS/CONFIG.$HOSTNAME $SRCDIR/lmbench/CONFIG.localhost

fi
i=-1
for t in $SRCDIR/lmbench/results/$SYS/*
do

i=$((i+1))
done
if [$LIVE = "true"]

then
cat $SRCDIR/lmbench/results/$SYS/$HOSTNAME.$i

else
cat $SRCDIR/lmbench/results/$SYS/$HOSTNAME.$i >> $OUTFILE

fi
make clean > /dev/null 2>&1
echo "lmbench finished."

fi

echo "All benchmarks have finished."

if [$FULL = "true"]
then
export OUTFILE=$OUTFILE
cat $OUTFILE

else
$SRCDIR/parse

fi

165

C.2.2 parse
parse

#!/bin/bash
OUTFILE=$PWD/results.txt
echo "Parsing results..."
if [-a $OUTFILE]

then
cat $OUTFILE

else
echo "Error: File not found. Run sysmark first?"

fi

166

C.2.3 README
This is sysmark, a collection of benchmarking tools for GNU/Linux. It was written by Andrey Falko for his
thesis project in Linux Distributions. The License underwhich this programs is under, is GPL v2.

Installation:
The simplest thing to do is

tar -xjf sysmark-1.0.1.tar.bz2
cd sysmark-1.0.1

Extract the source.
You can also do

make install
This will install the program to /usr/src/sysmark. You will be able to execute the script from anywhere,
but will have to do so only as root (unless you edit the Makefile for your preferences).

Usage:
You should be able to safely execute sysmark with

cd <dir that you extracted it to>
./sysmark

You can do
./sysmark -h or ./sysmark --help to see additional options that you can apply.

Changelog:
May 21, 2006 (Current)

Version 1.0.2
-Added feature to determine the target triplet.
-Added the --only commandline options.
-Fixed bug

May 20, 2006
Version 1.0.1
-Fixed a few bugs and typos

May 19, 2006
Version 1.0.0
-A few bug fixes.
-lmbench is in the suite.
-sysmark is ready for primetime.

May 19, 2006
Version 0.2.0
-Lots of bug fixes and improvments.
-Added help command line option.
-Added an easy way to chose which benchmarks not to run.
-Added output options.

May 18, 2006
Version 0.1.0 of sysmark, the first version.

Current todo list:
Make fancy results parsing.

167

C.2.4 Makefile
SRCDIR=${PWD}

run:
echo "You can just run ./sysmark."
./sysmark

install:
mkdir /usr/src/sysmark
cp * /usr/src/sysmark/ -R
cp sysmark /usr/sbin/sysmark

uninstall:
rm /usr/src/sysmark -R
rm /usr/sbin/sysmark

clean:
#cd ${SRCDIR}/scimark
#make clean
#cd ${SRCDIR}/bashmark
#make clean
#cd ${SRCDIR}/lame
#make clean
#cd ${SRCDIR}/povray
#rm inst/* -R
#make clean
#cd ${SRCDIR}/interbench
#make clean
#cd ${SRCDIR}/lmbench/src
#make clean
rm ${SRCDIR}/results.txt
rm -f ${SRCDIR}/lmbench/CONFIG.localhost
rm -rf ${SRCDIR}/lmbench/results/*

168

C.3 Simulation
C.3.1 main
#!/usr/bin/perl
#
Andrey Falko
Simulation
use strict;
use vars qw [$inf $T $weeks %pkgCompiles %pkgMaintainers];

These are the results that we got from out data:
my $avgVerBump = 3109.32494279176;
my $avgBugRep = 11829.4724547401;
Alpha determines how many recompiles before commit
of a package; for out gamma generator.
my $alpha = 1;
my $beta = 1;

We assume that it take a maintainer 1.5 hours to
prepare a package before proceeding to compile it
my $prep = &genPrepTime;

Set some constants
$inf = 1000000000;
$T = 31536000;
#$T = 200000;

Load data corresponding to packages and thier compile times.
open PKGCOMP, ’pkg-comp-times’;
for (<PKGCOMP>) {

/ˆ(.+): (\d+)/;
$pkgCompiles{$1} = $2;

}
close PKGCOMP;

Load data regarding which packages belong to maintainer.
open PKGMAINT, ’maintainers’ or die "Could not open: $!";
for (<PKGMAINT>) {

/ˆ(.+): (.+)/;
$pkgMaintainers{$1} = $2;

}
close PKGMAINT;

#my $t = 0;
#my @compiles;
#while (1) {
my $vB = &genVersionBump($t);
print "VerBump: $vB\n";
my $bB = &genBugReport($t);
print "BugBump: $bB\n";
my $compiles = 1 + &genNumberOfCompiles;
print "Compiles: $compiles\n";
push @compiles, $compiles;
my $response = &genResponseTime($t);
print "Response Time: $response\n";
$t = &min($vB, $bB);
if ($t > $T) {
last;
}
#}

#my $temp = &sum(\@compiles);

#print " ". $temp/@compiles ."\n";
#exit 0;

open LOG, "> main.log" or die "$!";
select LOG;

Number of Simulation runs
my $runs = 10;

$weeks = ($T / 604800);

Statistical lists
my @meanWWT;
my @meanDH;
my @meanUN;
my @bumps;
my @bugs;

for (1..$runs) {
my $t = 0;
my $n = 0; # Number of packages presently being worked on

Occurrances of respective events
my $tAVer = &genVersionBump($t);
my $tABug = &genBugBump($t);

Packages that we can choose from

169

my @pkgAvail = keys %pkgCompiles;
Packages that we cannot choose from and the time
when they will be added to @pkgAvail
my %releasePkg;
Next time of package release
my $tR = $inf;

Packages’ commital chart
my %commitPkg;
Time when next package will finish service
my $tC = $inf;

Next time of package release
my $tR = $inf;

Statistical counters
my %pkgTotalServiceTime;
my %pkgTimesServed;
my $numberOfBumps;
my $numberOfBugs;
my $totalCommits;
my %pkgWeeklyServiceTime;

while (1) {
print "Time is: $t\n";

Find $tR
for (sort {$a <=> $b } keys %releasePkg) {

$tR = $_;
last;

}

for (sort {$a <=> $b } keys %commitPkg) {
$tC = $_;
last;

}

Case 1: Version Bump occurs
if ($tAVer == &min($tAVer, $tABug, $tC, $tR)) {

$t = $tAVer;
$n = $n + 1;
print "Version Bump starts at time $t";
$tAVer = &genVersionBump($t);
if ($tABug < $tAVer) {

$tABug = &genBugBump($t);
}
my $choice = int(rand() * @pkgAvail);
my $pkg = $pkgAvail[$choice];
print " for $pkg\n";

Remove $pkg from pkgAvail
my @temp;
for (@pkgAvail) {

push @temp, $_ unless ($_ eq $pkg);
}
@pkgAvail = @temp;

my $compiles = &genNumberOfCompiles;
my $prep = &genPrepTime;
my $c = $compiles*($prep + $pkgCompiles{$pkg});
print "$pkg to be committed at $c\n";
my $temp = $c + $t;
$commitPkg{$temp} = $pkg;

my $r = &genReleaseTime($t);
print "$pkg will be released at time $r\n";
$releasePkg{$r} = $pkg;

Collect statistics
$pkgTotalServiceTime{$pkg} = $pkgTotalServiceTime{$pkg} + $c;
$pkgTimesServed{$pkg} = $pkgTimesServed{$pkg} + 1;
$numberOfBumps = $numberOfBumps + 1;

}

Case 2: Bug occurs
if ($tABug == &min($tAVer, $tABug, $tC, $tR)) {

$t = $tABug;
$n = $n + 1;
print "Bug Bump starts at time $t";
$tABug = &genBugBump($t);
if ($tAVer < $tABug) {

$tAVer = &genVersionBump($t);
}
my $choice = int(rand() * @pkgAvail);
my $pkg = $pkgAvail[$choice];
print " for $pkg\n";

Remove $pkg from pkgAvail
my @temp;
for (@pkgAvail) {

push @temp, $_ unless ($_ eq $pkg);
}

170

@pkgAvail = @temp;

my $compiles = &genNumberOfCompiles;
my $prep = &genPrepTime;
my $c = $compiles*($prep + $pkgCompiles{$pkg});
print "$pkg to be committed at $c\n";
my $temp = $c + $t;
$commitPkg{$temp} = $pkg;

my $r = &genReleaseTime($t);
print "$pkg will be released at time $r\n";
$releasePkg{$r} = $pkg;

Collect statistics
$pkgTotalServiceTime{$pkg} = $pkgTotalServiceTime{$pkg} + $c;
$pkgTimesServed{$pkg} = $pkgTimesServed{$pkg} + 1;
$numberOfBugs = $numberOfBugs + 1;

}

Case #3: Package Committed
if ($tC == &min($tAVer, $tABug, $tC, $tR)) {

$t = $tC;
my $pkg = $commitPkg{$t};
$n = $n - 1;
print "$pkg Committed at time: $t\n";
if (! (keys %commitPkg) && $n != 0) {

print ’n should by 0, but it not’."\n";
}
delete $commitPkg{$t};

for (keys %commitPkg) {
print "Debug: $commitPkg{$_}\n" if ($n == 1);

}
$tC = $inf;

$totalCommits = $totalCommits + 1;
}

Case #4: Package gets released
if ($tR == &min($tAVer, $tABug, $tC, $tR) && (keys %releasePkg) > 0) {

$t = $tR;
my $pkg = $releasePkg{$t};
print "Releasing $pkg at time $t\n";
delete $releasePkg{$t};
$tR = $inf;
for (@pkgAvail) {

if ($_ eq $pkg) {
die ’Bug: Package already in @pkgAvail’;

}
}
push @pkgAvail, $pkg;;

}

print "Number of packages in service: $n\n";

if (&min($tAVer, $tABug, $tC) > $T && $n == 0) {
last;

}

}

printf STDOUT "Number of version bumps: $numberOfBumps\n";
printf STDOUT "Number of bug bumps: $numberOfBugs\n";
printf STDOUT "Total number of commits: $totalCommits\n";

push @bumps, $numberOfBumps;
push @bugs, $numberOfBugs;

for (keys %pkgTotalServiceTime) {
#printf STDOUT "Total service time for $_: $pkgTotalServiceTime{$_} in $pkgTimesServed{$_} times served\n";
$pkgWeeklyServiceTime{$_} = $pkgTotalServiceTime{$_} / $weeks;
#printf STDOUT "Weekly service time for $_: $pkgWeeklyServiceTime{$_}\n";

}

Statistical Compuations

my $total = 0;
for my $pkg (keys %pkgWeeklyServiceTime) {

$total = $total + $pkgWeeklyServiceTime{$pkg};
}

my $meanWeeklyWorkTime = $total / $weeks;
printf STDOUT "Mean work done per week: $meanWeeklyWorkTime\n";
push @meanWWT, $meanWeeklyWorkTime;

my $dhTotalWeeklyWorkTime;
my $unTotalWeeklyWorkTime;
my @dhWWT;
my @unWWT;

for my $pkg (keys %pkgMaintainers) {
if ($pkgMaintainers{$pkg} eq ’dragonheart’) {

171

$dhTotalWeeklyWorkTime = $dhTotalWeeklyWorkTime + $pkgWeeklyServiceTime{$pkg};
push @dhWWT, $pkgWeeklyServiceTime{$pkg};
print "Daniel \"Dragonheart\" Black maintains ". @dhWWT ."packages\n"

} elsif ($pkgMaintainers{$pkg} eq ’unknown’) {
$unTotalWeeklyWorkTime = $unTotalWeeklyWorkTime + $pkgWeeklyServiceTime{$pkg};
push @unWWT, $pkgWeeklyServiceTime{$pkg};
print "Everyone else maintains ". @unWWT ."packages\n"

} else {
die "Bug: $pkg not allocated up!";

}
}

my $dragonheartavg = $dhTotalWeeklyWorkTime / $weeks;
printf STDOUT "Daniel \"Dragonheart\" Black works $dragonheartavg seconds per week\n";
push @meanDH, $dragonheartavg;

my $unknownavg = $unTotalWeeklyWorkTime / $weeks;
printf STDOUT "Everyone else works $unknownavg seconds per week\n";
push @meanUN, $unknownavg;

}

select STDOUT;

my $total = 0;
for (@bumps) {

$total = $total + $_;
}

my $avgBumps = $total / @bumps;
print "Average number of version bumps: $avgBumps\n";

$total = 0;
for (@bumps) {

$total = $total + ($_ - $avgBumps)**2;
}

my $varBumps = $total / (@bumps - 1);
print "Variance of version bumps: $varBumps\n";

my $total = 0;
for (@bugs) {

$total = $total + $_;
}

my $avgBugs = $total / @bugs;
print "Average number of version bumps: $avgBugs\n";

$total = 0;
for (@bugs) {

$total = $total + ($_ - $avgBugs)**2;
}

my $varBugs = $total / (@bugs - 1);
print "Variance of version bumps: $varBugs\n";

$total = 0;
for (@meanWWT) {

$total = $total + $_;
}

my $meanWeeklyWorkTime = $total / @meanWWT;
print "Aggregate mean weekly work time: $meanWeeklyWorkTime\n";

$total = 0;
for (@meanWWT) {

$total = $total + ($_ - $meanWeeklyWorkTime)**2;
}

my $varWeeklyWorkTime = $total / (@meanWWT - 1);
print "Variance of aggregate work done per week: $varWeeklyWorkTime\n";

$total = 0;
for (@meanDH) {

$total = $total + $_;
}

my $meanDH = $total / @meanDH;
print "Mean weekly work time per year for Dragonheart: $meanDH\n";

$total = 0;
for (@meanDH) {

$total = $total + ($_ - $meanDH)**2;
}

my $varDH = $total / (@meanDH - 1);
print "Variance: $varDH\n";

$total = 0;
for (@meanUN) {

$total = $total + $_;
}

172

my $meanUN = $total / @meanUN;
print "Mean weekly work time per year for everyone else: $meanUN\n";

my $total = 0;
for (@meanUN) {

$total = $total + ($_ - $meanUN)**2;
}

my $varUN = $total / (@meanUN - 1);
print "Variance: $varUN\n";

sub genVersionBump {
my $t = shift;
while (1) {

my $U = rand;
$t = $ase it occurs more

frequently
my $t = shift;
return &genVersionBump($t);

}

sub genNumberOfCompiles {
This is the gamma distribution with alpha = 1, beta = 1.
After we get the gamma value, we shift it by one.
my $d = $alpha - (1/3);
my $c = 1 / sqrt(9*$d);
while (1) {

my $X = &genStandardNormal;
my $v;
$v = (1 + $c * $X)**-3;
redo if ($v <= 0);

my $U = rand;
if ($U < $beta - .0331*$X**4) {

my $dist = $d * $v;
return $dist;

}
if (log($U) < .5 * $X**2 + $d*(1 - $v + log($v))) {

my $dist = $d * $v;
return $dist + 1;

}
}

}

sub genStandardNormal {
This algorithm is taken from the Perl Cookbook; Chapter 2.
This outputs standard normals with mean 0, standard deviation 1.

my ($u1, $u2); # uniformly distributed random numbers
my $w; # variance, then a weight
my ($g1, $g2); # gaussian-distributed numbers

do {
$u1 = 2 * rand() - 1;
$u2 = 2 * rand() - 1;
$w = $u1*$u1 + $u2*$u2;

} while ($w >= 1);

$w = sqrt((-2 * log($w)) / $w);
$g2 = $u1 * $w;
$g1 = $u2 * $w;
return both if wanted, else just one
return wantarray ? ($g1, $g2) : $g1;

}

sub genPrepTime {
my $time = rand;
my $hours = 5 * rand();
$time = 5*60 + ($time * $hours*60*60);
return $time;

}

sub min {
my @array = sort { $b <=> $a } @_; # Sort the input array numerically, but descending.
return pop @array; # Return the smallest value, which will be on top of the array.

}

sub sum {
my $array = shift;
my $total = 0;
for (@$array) {

$total = $total + $_;
}
return $total;

}

173

C.3.2 maintainers-create
#!/usr/bin/perl

open DRAGONHEART, "dragonheart-pkgs";
for (<DRAGONHEART>) {

chomp;
/\/(.+)/;
$pkgMaint{$1} = "dragonheart";

}

close DRAGONHEART;

open PACKAGES, "pkg-comp-times";
for (<PACKAGES>) {

chomp;
/ˆ(.+)\:/;
$pkgMaint{$1} = "unknown" unless (exists $pkgMaint{$1});

}

close PACKAGES;

open WRITE, ">maintainers";
select WRITE;
for (keys %pkgMaint) {

print "$_: $pkgMaint{$_}\n";
}

174

C.3.3 pkg-comp-times-retrieve
#!/usr/bin/perl -w
#
use strict;
use vars qw [%completedMerges];

open EMERGELOG, "/in/emerge.log";

my @TEMPLOG;
while (<EMERGELOG>) {

push @TEMPLOG, $_;
}

for (reverse @TEMPLOG) {
chomp;
if (/\+/) {

s/\+/’\+’/g;
#$_ = eval $_;

}

if (/ˆ(\d+).*\:\:\: completed emerge.*\/(.*)-\d/) {
$completedMerges{$2} = $1;
next;

}

if (/ˆ(\d+).*\>\>\> emerge .*\/.+/) {
for my $pkg (keys %completedMerges) {

next if ($completedMerges{$pkg} =˜ /\d+ \d+/);
if (/ˆ(\d+).*\>\>\> emerge .*\/$pkg/) {

$completedMerges{$pkg} = "$completedMerges{$pkg} $1";
}

}
}

if ($_ eq "") {
next;

}
}

for (keys %completedMerges) {
$completedMerges{$_} =˜ s/ /\-/;
$completedMerges{$_} = eval $completedMerges{$_};
print "$_: $completedMerges{$_} \n";

}

175

C.3.4 retrieve-pkg-commit-times
#!/usr/bin/perl

use strict;
use HTTP::Date;

use Memoize;
memoize(’sampleMean’);

my @X;
We want to capture the following data: The time of every single version bump and bug report.
my @verBumps;
my @bugBumps;

my $pkgNum = 0;

for my $cat (glob "/in/gentoo-cvs/gentoo-x86/*") {
next if ($cat =˜ /CVS$/);
next if ($cat =˜ /eclass/);
next if ($cat =˜ /licenses/);
next if ($cat =˜ /profiles/);
next if ($cat =˜ /scripts/);
for my $pkg (glob "$cat/*") {

next if ($pkg =˜ /CVS$/);
next if ($pkg =˜ /metadata\.xml/);
open CHANGELOG, "$pkg/ChangeLog" or die "Unable to open $pkg/ChangeLog: $@";
while (<CHANGELOG>) {

chomp;
if (/ˆ*.+-\d.*-r\d+ \((.+)\)$/) {

my $time = str2time($1);
if ($time <= 0 || $time > 1163894653) {

warn "Ugh!: $pkg: $_: $time";
} else {

push @bugBumps, $time;
}

} elsif (/ˆ*.+-\d.* \((.+)\)$/) {
my $time = str2time($1) or next;
if ($time < 943142653 || $time > 1163894653) {

warn "Ugh!: $pkg: $_: $time";
} else {

push @verBumps, $time;
}

} else {
#print "Case not caught at $pkg\n
line $_\n";

}
}
$pkgNum = $pkgNum + 1;

}
}

print "Total number of packages: $pkgNum\n";

@verBumps = sort { $a <=> $b } @verBumps;
@bugBumps = sort { $a <=> $b } @bugBumps;

for (0..@verBumps - 1) {
push @X, $verBumps[$_ + 1] - $verBumps[$_];

}

pop @X;

my $total = 0;
for (@X) {

$total = $total + $_;
}

my $sampMean = $total / @X;

$total = 0;
for (@X) {

$total = $total + ($_ - $sampMean)**2;
}

my $sampVar = $total / (@X - 1);

my $avgVerBumpTimes = ($verBumps[-1] - $verBumps[0]) / (@verBumps - 1);
print "Total version bumps: ". @verBumps ."\n";
print "Average time between a version bump: $avgVerBumpTimes\n";
print "Sample mean for version bumps: $sampMean\n";
print "Sample variance for version bumps: $sampVar\n";

@X = undef;

for (0..@bugBumps - 1) {
push @X, $bugBumps[$_ + 1] - $bugBumps[$_];

}

pop @X;

$total = 0;

176

for (@X) {
$total = $total + $_;

}

$sampMean = $total / @X;

$total = 0;
for (@X) {

$total = $total + ($_ - $sampMean)**2;
}

$sampVar = $total / (@X - 1);

my $avgBugBumpTimes = ($bugBumps[-1] - $bugBumps[0]) / (@bugBumps - 1);
print "Total bug bumps: ". @bugBumps ."\n";
print "Average time between a bug bump: $avgBugBumpTimes\n";
print "Sample mean for bug bumps: $sampMean\n";
print "Sample variance for bug bumps: $sampVar\n";

sub sampleMean {
my $n = shift;
if ($n == 0) {

return 0;
}
return (&sampleMean($n - 1) + (($X[$n] - &sampleMean($n - 1)) / $n));

}

sub sampleVariance {
my $n = shift;
if ($n == 1) {

return 0;
}
return (((1-(1/($n-1))) * &sampleVariance($n - 1)) + ($n * (&sampleMean($n)-&sampleMean($n - 1))**2));

}

177

