
The Northeast Regional Competition
of the

2004-2005 ACM International Collegiate Programming Contest
sponsored by IBM

Eastern Preliminary: Western New England College, Springfield, MA
October 30, 2004

Problem #1: A Magic Square

For centuries, mathematicians have been fascinated with the Magic
number squares. A Magic square is an N × N array of numbers
consisting of the positive integers from 1 to N2 arranged such
that each integer is used exactly once, and the sum of the numbers
in each horizontal, vertical and corner-to-corner line is the
same. You will be given the size of the array (N) and an N × N
array of integers. One cell in each row will be marked as a ‘0’.
 You must determine, if possible, whether or not the ‘0’ values
can be replaced by positive integers so that the array is a Magic
square.

The input data begins with a line containing an integer N
representing the number of rows in a square (1 < N <= 6). The
next N lines represent the array of values, N integers per row.

If a solution is found, output the square array (N numbers per
line). If no solution is found, output “no solution”.

Sample Input: Sample Input:

5 4
24 8 17 0 15 8 13 0 2
0 5 14 23 7 0 3 11 7
13 22 0 20 4 5 0 14 6
10 0 3 12 21 10 12 1 0
2 11 25 9 0

Sample Output: Sample Output:

24 8 17 1 15 no solution
16 5 14 23 7
13 22 6 20 4
10 19 3 12 21
2 11 25 9 18

The Northeast Regional Competition
of the

2004-2005 ACM International Collegiate Programming Contest
sponsored by IBM

Eastern Preliminary: Western New England College, Springfield, MA
October 30, 2004

Problem #2: Closest Visible Players

You are writing an AI for a 2 dimensional game. There are several
players that move around a map trying to zap each other with
lasers. The map is filled with walls that players may hide
behind. Players cannot see through or zap through walls. Finally,
lasers are more lethal the closer a player is to another player
when zapping.

Your goal is to write an algorithm to find the most threatening
players on a map with respect to a given player. The closest
player is the most dangerous. However, players behind walls are
not dangerous, since they cannot zap you. In short, you must find
the closest visible players to your player in the game. Note:
players do not obscure other players.

You will be given a list of each player’s position and each
wall’s endpoints as Cartesian coordinates. The x-y components of
these coordinates will be non-negative integers. Walls are line
segments defined by their endpoints. Players are not allowed to
occupy the same space as other players or walls. A player may
come arbitrarily close to a wall so long as they never share the
same coordinate. Walls may intersect other walls, forming ‘x’
like structures.

The first line of input contains the total number of players.
Following this line, the players’ positions are given, one per
line. The first position listed is your player’s position. A
player’s position is a Cartesian coordinate formatted

x y

where x and y are non-negative integers and are separated by a
space.

After all the players’ positions have been given, the next line
of input will contain the total number of walls. Following this
line, a specification for each wall will be given, one
specification per line. A wall’s specification is composed of two
endpoints formatted

x1 y1 x2 y2

where x1, y1, x2, and y2 are non-negative integers separated by
spaces. x1 and y1 are the coordinate components for the first
endpoint. x2 and y2 are the coordinate components for the second
endpoint.

Output the distance to and the coordinates of each visible
player. Output each player’s information (distance and
coordinates) pair on a separate line. Output the players in order
from nearest to farthest, with the nearest reported first. When
comparing and reporting distances, round to 2 decimal places. If
two players are equally close after rounding, report first the
one with the smallest x-coordinate. If these too are equal, then
report first the one with the smallest y-coordinate. If no
pponents are visible, report, “No opponents found.” o

Samples

Input Output Picture (Smiley face is your player)
5
4 3
0 3
4 1
2 4
5 4
1
5 2 2 2

1.41 2 4
1.41 5 4
2.24 5 5
4.00 0 3

(5,
5)

(2,
4)

(5,
4)

(5,
2)

(2,
2)

(0,
3)

(4,
3)

(4,
1)

Input Output Picture (Smiley face is your player)
3
4 3
0 0
4 1
1
2 2 5 2

No opponents found.

(5,
2)

(2,
2)

(0,
0)

(4,
3)

(4,
1)

The Northeast Regional Competition
of the

2004-2005 ACM International Collegiate Programming Contest
sponsored by IBM

Eastern Preliminary: Western New England College, Springfield, MA
October 30, 2004

Problem #3: Word Puzzle

You are to write a program that processes a special type of
expression tree for which each leaf node is an uppercase letter
and each non-leaf node is either an operator '+' or an operator
'*' and it must have a non-empty left subtree and a non-empty
right subtree. Here is an example

*

+ +

 E*

DC

A B

In such an expression tree, a '*' operator represents a
concatenation, and a '+' operator represents an alternation – take
either the string represented by the left subtree or the string
represented by the right subtree. Your program should produce all
strings represented by the expression tree and display the total
number of such strings. For the example above, a correct output
would be

 ACD
 BCD
 AE
 BE

 4 strings

The order that you display these strings is not important.

The first line of input data contains an integer n representing
the number of nodes in the tree. You may assume that 1 ≤ n ≤ 40.
Each of the next n line represents one node with the following
information:

 the node number (between 1 and n)

 the data in the node ('+', '*' or an uppercase letter)

 the node number of the left child if one exists

 the node number of the right child if one exists

There is a single space between two pieces of data. Note that
nodes may appear in any order in the input.

Sample Input

 9
 7 C
 6 B
 1 + 3 4
 8 * 9 1
 5 D
 2 A
 3 * 7 5
 9 + 2 6
 4 E

Sample Output

 ACD
 BCD
 AE
 BE

 4 strings

The Northeast Regional Competition
of the

2004-2005 ACM International Collegiate Programming Contest
sponsored by IBM

Eastern Preliminary: Western New England College, Springfield, MA
October 30, 2004

Problem #4: The Drunken Yankees Fans

A group of New York Yankees fans, heartbroken after their team
lost to the Red Sox, walk out of a bar and each begins wandering
the streets of Manhattan. Each fan walks one block at a time in
the directions north, south, east, or west (N, S, E, W). Your
job is to determine whether or not each fan, at the end of
his/her wanderings, ends up at the same bar he/she left.

The first line of the input will be a positive integer n
representing the number of fans. Each of the n lines that
follows contains the directions that each fan walked. The
directions will be given as a string of characters (N, S, E, or
W), separated by spaces. The maximum length of each line is 50
characters. Note that a fan may walk north and then turn around
and walk south along the same street. Also, you may assume that
there are no obstacles that would prevent the fan from walking in
the indicated direction.

If the fan ends up at the same place, output the word “same”.
Otherwise, output “not same”, followed by the ending position
relative to the starting position. Output the number of blocks
away in an east/west direction, followed by the number of blocks
away in a north/south direction. For example, if the fan ended
up 4 blocks east and 2 blocks south of the beginning
position, output “not same 4E 2S”. If the fan is 0 blocks
away in one of the directions, suppress output for that
direction.

Sample Input:
3
E S E N N W N W S W S S E N
S W N S W S E S
N E S S E N

Sample Output:
same
not same 1W 3S
not same 2E

The Northeast Regional Competition
of the

2004-2005 ACM International Collegiate Programming Contest
sponsored by IBM

Eastern Preliminary: Western New England College, Springfield, MA
October 30, 2004

Problem #5: Road Rally

Write a program to help a road rally team plot the fastest route
from one intersection to another in a city. The city is composed
of intersections and roads that connect them. Each road connects
exactly two different intersections; and for each pair of
intersections, no more than one road connects the pair. An
intersection may have any number of roads connected to it.
Traffic may enter and exit an intersection from any road
connected to it. Each road requires a certain amount of time to
drive from one end to the other.

Traffic through an intersection is controlled by a traffic light.
When an intersection’s light is green for a road, traffic from
that road, and that road only, may enter the intersection and
turn onto any other road connected to the intersection. For a
given intersection, its light is green for exactly one road at a
time. So, traffic from exactly one road will be allowed to enter
an intersection. To be fair, a light turns green for each road
connected to the light’s intersection in a round-robin rotation.
Also, a light remains green equally long for each road at an
intersection. The rotation and the duration of green lights for
each traffic light will be given at the start of the rally, and
will not change during the rally.

Our road rally will take place in the future, when cars will be
able to start, stop, and reach cruising velocity instantaneously.
If a car arrives at an intersection on a particular road at the
same time the intersection’s light turns green for that road, the
car may immediately enter the intersection. Alternatively, if a
car arrives at an intersection on a particular road at the same
time the intersection’s light turns red for that road, the car
cannot enter the intersection, and will stop immediately and
await the green.

Our car will start at one intersection, and will end in another.
Since it begins in an intersection, it may immediately turn onto
any road connected to that intersection. However, the car must
enter the final intersection on a green. The coordinators of the
road rally always ensure that there is a route between the
starting and ending intersection.

The first line of input will contain the number of roads, N. The
next N lines will contain a description for each road. Each road
is described by a name and the time it takes to drive the road,
separated by a space. Names will be no greater than 20 characters
long, and will contain only alphabetic characters. Times will be

given as integers between 0 and 100 inclusively.

The next line of input contains the number of intersections, M.
The next M lines contain a description for each intersection. The
first intersection is the starting intersection. The last is the
ending intersection. An intersection’s description consists of an
amount of time that its light remains green for each road, and a
list of roads connected to that intersection. The time and road
names are separated by a space. The time the light remains green
is an integer between 1 and 100 inclusively. The list of roads
specifies the rotation of that intersection’s light from left to
right. Consider the following intersection description:

3 A B C

The light at this intersection would stay green for 3 units of
time for each road starting with A. Its rotation is then: A, B,
C, A, etc.

Output the names of the roads on the fastest route in order from
start to finish, and report the total time it will take. If there
are multiple routes that are equally as fast, report the route
that comes first alphabetically. For instance, if the following
routes are equally fast

apples papayas 3
apples pairs 3

report “apples pairs 3” since it comes first in alphabetic order.

Sample input:

5
Vernon 2
Fairfax 3
Chester 2
White 8
Panama 2
4
1 Vernon Fairfax
1 White Chester Vernon
5 Chester Panama Fairfax
4 White Panama

Sample output:

Vernon Chester Panama 6

The Northeast Regional Competition
of the

2004-2005 ACM International Collegiate Programming Contest
sponsored by IBM

Eastern Preliminary: Western New England College, Springfield, MA
October 30, 2004

Problem #6: Change the World

The Universal Change Machine Company has designed a vending
machine that can be used in any country with any set of coin
denominations. The vending machines have been programmed to give
change under the principle “give highest coin”. That is, when
giving a certain amount of change, the vending machine dispenses
as many coins of the largest denomination as possible, followed by
the next highest denomination and so on. Note: Each coin set
contains a coin of denomination 1 so that it is possible to
dispense any change amount.

The problem is that customers from certain countries have been
complaining that they have an excess number of coins jingling in
their pockets and that the machine could in fact dispense a
smaller number of coins.

For example, in Chordland, the set of coin denominations are 1,
4, and 5. The vending machine would give change for 12 cents by
dispensing the following 4 coins: 5, 5, 1, 1. However, the
same change can be given using only 3 coins: 4, 4, 4.

You would like to determine whether or not, for a given set of
coin denominations, the vending machine will dispense the minimum
number of coins using its current “give highest coin” principle.
The largest change amount to be dispensed is 1000, thus it is
sufficient to check all change amounts from 1 to 1000.

The input will contain data for a number of different coin sets,
one coin set per line. Each line will contain the number of coin
denominations, followed by a space, then the coin denominations in
descending order, separated by single spaces. A line containing a
single 0 signals the end of input and should not be processed.

For each coin set, test all change amounts from 1 to 1000. If
the vending machine always gives the minimum number of coins
possible, output the word “okay”. Otherwise, output “not okay”,
followed by the first value for which the machine does not
dispense the minimum number of coins.

Sample Input: Sample Output:

4 25 10 5 1 okay
3 10 6 1 not okay 12
4 4 3 2 1 okay
0

The Northeast Regional Competition
of the

2004-2005 ACM International Collegiate Programming Contest
sponsored by IBM

Eastern Preliminary: Western New England College, Springfield, MA
October 30, 2004

Problem #7: The Hull Area

Given a set of n points in the Cartesian plane, the convex hull
is the set of vertices for the smallest convex polygon containing
those points. For example, a set of points is shown on the left
and the corresponding convex hull is shown by the open circles in
the figure on the right. Notice that, in the figure, the point
labeled P is collinear with two vertices of the convex hull, but
is not part of the convex hull itself since it is not a vertex of
the polygon.

P

You must determine the set of vertices that determine the convex
hull, as well as the area of the convex hull. In order to
calculate the area of the convex hull, you may want to consider
triangulating the polygon, calculating the area of each triangle
and then finding the sum of the areas of the triangles.

You may use Heron’s formula to determine the area of any triangle
as a function of the lengths of its sides a, b, and c.

()()()(
4

a b c a b c a b c a b c
area

+ + − + + − + + −
=

)

(Note: In general, Heron’s formula can sometimes produce round-
off error. However, the input data provided will not cause
unnecessary round-off error using Heron’s formula.)

The input data begins with a line containing an integer N ≥ 3
representing the number of points in the plane. The next N
lines represent the points in the plane. Each line will contain
2 integers representing the x- and y-coordinates, respectively,
separated by a space.

Your program must output the set of vertices for the convex hull
in counterclockwise order. The point at which you start does not
matter. Output one vertex per line, formatted as x y (where x
represents the x-coordinate and y represents the y-coordinate).
Then calculate and output the area of the convex hull, rounded
to 2 decimal places.

Sample Input:

8
0 3
-5 6
-10 0
1 5
8 0
0 -4
3 -1
2 6

Sample Output:

0 -4
8 0
2 6
-5 6
-10 0
111.00

	Problem #2: Closest Visible Players

