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RSA
1. Publicly described in 1977 by Ron Rivest, Adi Shamir, and 

Leonhard Alderman of MIT 
2. Letters RSA are the initials of their surnames
3. An algorithm used for encryption
4. Based on two mathematical problems and the assumption that no 

efficient algorithm exists for solving them
5. First is the problem of factoring large numbers
6. Second called the RSA problem, defined as: the task of taking eth 

roots modulo a composite n: recovering a value m such that c=me 

mod n, where (e, n) is an RSA public key and c is an RSA 
ciphertext (the encoded version of a method)



Purpose of Cryptanalytic Hardware

 The purpose of the following devices is to perform integer 
factorization for very large numbers. There exist many methods to 
factor integers, however it is difficult for these to be feasible – 
having a reasonable cost, and fast enough speed – to be able to 
factor such large composite integers (for instance, 1024 bit 
composites) as are generally used by RSA.  There is work done 
on software, and on hardware to work on an effective method to 
compute factorization; this presentation will focus on the hardware 
component.



The Number Field Sieve
• The Number Field Sieve (NFS), also called the general number field sieve, is the most efficient 

algorithm known for factoring large integers.
• The principle of the number field sieve (both special and general) can be understood as an 

extension of the simpler rational sieve. When using the rational sieve to factor a large number n, it 
is necessary to search for smooth numbers (i.e. numbers with small prime factors) of order n 
(given an integer a and a positive integer n with gcd(a,n) = 1, the multiplicative order of a modulo 
n is the smallest positive integer k with ak ≡ 1 (modulo n); the rarity of these causes the rational 
sieve to be impractical. The general number field sieve, on the other hand, only requires a search 
for smooth numbers of order n1/d, where d is some integer greater than one. Since larger numbers 
are far less likely to be smooth than smaller numbers, this is the key to the efficiency of the 
number field sieve. But in order to achieve this speed-up, the number field sieve has to perform 
computations and factorizations in number fields. This results in many rather complicated aspects 
of the algorithm, as compared to the simpler rational sieve. 

• This method is used by cryptanalytic devices, which usually break it up into two parts, the sieve 
part (which will be the part discussed), and the linear algebra part.



Historical Devices
• Employing mechanical devices for the sieving task was apparently first proposed by 

Frederick William Lawrence in 1896. 
• Machine á Congruences, built by Eugène Olivier Carissan in 1919 as an 

improvement upon his brother's earlier design, is the first known sieving machine that 
operated successfully. It consists of 14 concentric brass rings, and employs electrical 
switches to identify events corresponding to (likely) squares in the Fermat method. It 
presently resides at the Conservatoire Nationale des Arts Métiers, Paris.

• Lehmer's mechanical sieves (mentioned in detail later) in the 1920's and 1930's, D. 
N. Lehmer and D. H. Lehmer built several mechanical sieving devices, employing 
various approaches: bicycle chains (1926, replica at the Computer History Museum), 
gears and photoelectric detectors (1932, presently at the Computer History Museum) 
and movie films (1936). In the 1970's, D. H. Lehmer also built electronic sieving 
devices using delay lines and shift registers (1970's). 

• Extended Precision Operand Computer, AKA "Georgia Cracker“, is a 128-bit, highly 
parallel special-purpose computer for factoring using the Continued Fraction method, 
built by Jeffrey Smith and Samuel Wagstaff in 1982-3.

• Bomba (mentioned in detail later), electro-mechanical computers for breaking the 
German cipher Enigma. Built by Polish General Staff's Cipher Bureau in 1938 and 
successfully broke encryptions employing the basic variant of Enigma. 

• Heath Robinson and Colossus Electro-mechanical computers for breaking the 
German cipher Lorenz. Built by the British Government Codes & Ciphers School at 
Bletchley Park (via the British Post Office's research center) circa 1943. Overall 10 
such machines were built and operated with great success. Rebuilt from 1994 by 
Tony Sale and the Colossus Team. 

•  



D. N. Lehmer and D. H. Lehmer’s 
Mechanical Sieves

• The name of Lehmer is famous in the mathematical sieve process because 
two different Lehmers were involved. D. N. Lehmer was the father and D. H. 
Lehmer was the son. 

• The original "bicycle chain" sieve was made in in 1926. The geared sieve 
dates from 1932. It is made up of gears of different sizes representing 
numbers in exactly the same way that the bicycle chains or strips of movie 
film were of different length. Holes in each gear represented various 
remainders when these numbers were divided by others and they could be 
plugged up with toothpicks to only leave a certain set of these numbers 
open. A bright light on one side of the machine would shine on the gears 
and, if the holes lined up, then it would reach the other side and trip a flip-
flop (an electronic circuit which has two stable states and thereby is capable 
of serving as one bit of memory)  attached to the photocell – perhaps the 
first time that an electronic flip-flop was used in a computing device (they 
had been used earlier in counters for cosmic rays and this is what gave 
Lehmer the idea). The output of the flip-flop was amplified and would be 
used to stop the motor spinning the wheels – thus allowing you to see the 
solution to the problem 



Lehmer’s Bicycle Chain Sieve



Bomba
• The Bomba, or Bomba kryptologiczna (Polish for "Bomb" or "Cryptologic bomb") was a 

special-purpose machine designed about October 1938 by Polish Cipher Bureau cryptologist 
Marian Rejewski to break German Enigma machine ciphers. 

• The German Enigma used a combination key to control the operation of the machine: rotor order, 
which rotors to install, which ring setting for each rotor, which initial setting for each rotor, and the 
settings of the stecker plugboard. The rotor settings were trigrams (for example, "NJR") to indicate 
the way the operator was to set the machine. German Enigma operators were issued lists of 
these keys, one key for each day. For added security, however, each individual message was 
encrypted using an additional key modification. The operator randomly selected a trigram rotor 
setting for each message (for example, "PDN"). This message key would be typed twice 
("PDNPDN") and encrypted, using the daily key (all the rest of those settings). At this point each 
operator would reset his machine to the message key, which would then be used for the rest of 
the message. Because the configuration of the Enigma's rotor set changed with each depression 
of a key, the repetition would not be obvious in the ciphertext since the same plaintext letters 
would encrypt to different ciphertext letters.

•  This procedure, which seemed secure to the Germans, was nonetheless a cryptographic error. 
Using the knowledge that the first three letters of a message were the same as the second three, 
Polish mathematician Marian Rejewski was able to determine the internal wirings of the Enigma 
machine and thus to reconstruct the logical structure of the device. 



Bomba
Cryptologic bomb. Diagram from
 Marian Rejewski's papers.

1: Rotors (for clarity, only one 3-rotor
 set is shown).

2: Electric motor.

3: Switches. 



Modern (Dates around 1999-2005)
 Cryptanalytic Devices

• These have never been built, though some of 
them are said to be feasible

• All use Number Field Sieve algorithm
• Devices to perform the sieving part of NFS are 

TWINKLE, TWIRL, and SHARK 
• Devices to perform the linear algebra part of 

NFS are mesh-based, and pipelined (these will 
not be discussed)



TWINKLE
TWINKLE ("The Weizmann Institute Key Locating Engine") First modern sieving device. Never built. Uses non

conventional electro-optical components.

The TWINKLE device is an optoelectronic device which is housed in an opaque blackened cylinder whose

diameter is about 6 inches and whose height is about 10 inches. The bottom of the cylinder consists of a large

collection of LEDs (light emitting diodes) which twinkle at various frequencies, and the top of the cylinder contains a

photodetector which measures the total amount of light emitted at any given moment by all the LEDs. The

photodetector alerts a connected PC whenever this total exceeds a certain threshold. Such events are related to the

detection of possibly smooth numbers, and their precise timing is the only output of the TWINKLE device. Since these

events are extremely rare, the PC can leisurely translate the timing of each reported event to a candidate modular

square, verify its smoothness via trial division, and use it in a conventional implementation of the QS (Quadratic Sieve,

used for same purpose as NFS) or NFS algorithms in order to factor the input n.



TWINKLE Sieving Technique
The standard PC implementation of the sieving technique assigns modu-

lar squares to array elements (using space) and loops over the primes (using
time). The TWINKLE device assigns primes to LEDs (using space) and

loops over the modular squares (using time), which reverses their roles.
This is schematically described in Fig. 1.



TWINKLE Cell Design
        Cell Design

          The LED array is implemented on a single wafer of GaAs 
(Galium (III) arsenide, semiconductor). Each cell on this wafer 
contains one LED plus some circuitry which makes it flash for 
exactly one clock cycle every exactly pj clock cycles with an 
initial delay of exactly dj clock cycles. The high clock rate and 
extremely accurate timing requirements rule out analog 
control methods, and the unavoidable existence of bad cells in 
the wafer rules out a prewired assignment of primes to cells. 
Instead, we use identical cells throughout the wafer, and 
include in each cell two registers, A and B, which are loaded 
before the beginning of the sieving process with values 
corresponding to pj and dj , respectively. For a typical sieving 
run over m = 100; 000; 000 values, we need only log2(m) _ 27 
bits in each one of these registers. The structure of each cell 
(described in Fig. 2) is very simple. Instead of using counters 
(with their more complicated designs and additional carry-
induced delays), we use register B as a maximal length shift 
register based on a single XOR of two of its bits. It is driven by 
the clock, and runs until it enters the special state in which all 
its bits are "1". When this is recognized by the AND of all the 
bits of register B, the LED flashes, and register B is reloaded 
with the contents of register A (which remains unchanged 
throughout the computation). The initial values loaded into 
registers A and B are not the binary representations of pj and 
dj , but the easily computed states of the shift register which 
are that many steps before the special state of all "1". That's 
the whole cell design!



TWIRL
A new device that combines idea that that since it is inefficient to have unused memory cells sitting around, &

merely storing the input is expensive, we should utilize it efficiently by appropriate parallelization,  with the

TWINKLE like approach of exchanging time and space. Whereas TWINKLE tests sieve location one by one

serially, the new device handles thousands of sieve locations in parallel at every clock cycle. In addition, it is

smaller and easier to construct: for 512-bit composites we can fit 79 independent sieving devices on a 30cm

single silicon wafer, whereas each TWINKLE device requires a full GaAs (Galium (III) arsenide,

semiconductor) wafer. 

Consider first a device that handles one sieve location per clock cycle, like TWINKLE, but

does so using a pipelined chain of electronic adders.  Such a device would consist

of a long unidirectional bus, that connects millions of conditional adders in series. Each conditional adder is

in charge of one progression Pi; when activated by an associated timer, it adds the value to the bus.

At time t, the z-th adder handles sieve location t − z. The first value to appear at the end of the pipeline is g(0),

followed by g(1), . . . ,g(R), one per clock cycle. 

Two main difficulties arise: the hardware has to work s times harder since time is compressed by a factor of s,

and the additions corresponding to the same given progression Pi can occur at different lines of a

thick pipeline. Our goal is to achieve this parallelism without simply duplicating all the counters and adders s

times. We thus replace the simple TWINKLE-like cells by other units which we call stations. We partition



TWIRL Structure for a Largish Station

Progressions whose pi values are much larger than s emit values very seldom. For these largish primes it is beneficial to use
expensive logic circuitry that handles many progressions but allows very compact storage of each progression. The resultant

architecture is shown in Fig. 2. Each progression is represented as a progression triplet that is stored in a memory bank, using 
compact DRAM storage. The progression triplets are periodically inspected and updated by special-purpose processors, which 

identify emissions that should occur in the “near future” and create corresponding emission triplets. The emission triplets are 
passed into buffers that merge the outputs of several processors, perform fine-tuning of the timing and create delivery pairs. 

The delivery pairs are passed to pipelined delivery lines, consisting of a chain of delivery cells which carry the delivery pairs to
the appropriate bus line and add their contribution.



TWIRL Structure for a Smallish Station

Smallish Primes : for progressions with smaller pi values, each processor can handle very few 
progressions .Thus, the amortized cost of the processor, memory control circuitry and buffers is very 
high. Moreover, such progression cause emissions so often that communicating their emissions to 
distant bus lines (which is necessary if the state of each progression is maintained at some single 
physical location) would involve enormous communication bandwidth. We thus introduce another station 
design, which differs in several ways from the largish stations (see Fig 3).



TWIRL Structure for Tiny Primes

For very small primes, the amortized cost of the duplicated emitters, and in 
particular the related funnels, becomes too high. On the other hand, such 

progressions cause several emissions at every clock cycle, so it is less important 
to amortize the cost of delivery lines over several progressions. This leads to a 

third station design for the tiny primes.



SHARK
• The architecture consists of 2300 identical isolated machines sieving in parallel. 

• It uses lattice sieving. The actual sieving is done in very fast accessible memory cache. If this memory would be 
extremely cheap, we could construct a machine that sieves in some extremely large memory chip. Since this kind 
of memory is expensive we only use 32 MB of sieving cache memory.

• The sieving area is split into many small parts such that each part fits in the sieving cache.

• After the sieving of one small part is completed, the machine moves on to the next part until the whole sieving 
area has been scanned.

• The tricky part is to sort the sieving contributions such that all sieving contributions for a certain part are loaded 
into the sieving cache just before the sieving of that part starts.

• To achieve this, the data produced by the lattices corresponding to the larger primes of the factor base are sent 
through a specialized transport system with butterfly topology.

• The output of the sieve consists of potential sieving reports that still need to be checked for smoothness. This is 
done (after a quick compositeness test) by special hardware devices using the Elliptic Curve Method (ECM). 

• The main difference to other proposed architectures is (in contrast to a giant monolithic ASIC (application-specific 
integrated circuit) its modular design composed of small ASICs connected by conventional data busses. The 
modularity is achieved by dividing the factor base into several parts and sorting the sieving data with a buttery 
transport system.



SHARK

The SHARK machine consists of parts I, II, III and a transport system (see Figure 1). 



Comparison
• TWINKLE: first (1999), based on electro-optics, 

mesh circuits (based on two-dimensional systolic 
arrays) would be capable of factoring 512-bit 
integers. 

• TWIRL: successor to TWINKLE, based on 
parallel processing pipelines, would be able to 
factor 1024-bit composites in one year .

• SHARK: 2005, butterfly routing network, 
standard-sized chips, would be able to factor 
1024-bit integer composites in one year, but 
would cost more than TWIRL.



Conclusion

• RSA coding assumes no efficient way to 
factor large integers.

• The Number Field Sieve considered to be 
the most effective method of factoring 
large integers.

• Computer software and hardware attempt 
large integer factorization.

• TWINKLE, TWIRL, SHARK theoretical 
devices for the Sieve.
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