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Turing Re ducibility?

Intuitively, to say that something is computable
means that there is an algorithm for computing
it. Computability theory makes this concept pre-
cise. So, in particular, we are enabled to define
with full rigor what it means to say that a function
defined on the natural numbers and with natural
number values is computable. Likewise a set of
natural numbers is computable if its characteristic
function (defined to be 1 for members and O for
non-members) is computable. Having such defini-
tions makesit possible to prove that certain objects
are not computable. A fundamental result is that
there is a computable function whose range (the
set of all values that it assumes) is not computable.
Sets that are the range of a computable function
are called recursively enumerable. (The empty set
is also considered to be recursively enumerable.)
The fact that there is a recursively enumerable
set that is not computable is a special case of a
more general result that will be explained later in
this article. It is the use of this fact that has made it
possible to prove that anumber of important math-
ematical problems are unsolvable, that algorithms
that mathematicians had been seeking simply do
not exist. Among these problems are Hilbert’s 10th
Problem (to decide whether a given Diophantine
equation has solutions), the word problem for
groups (to decide whether a given product of gen-
erators and their inverses is the identity element
of a group defined by a finite set of equations
between such products), and the homeomorphy
problem (to decide whether the topological spaces
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defined by a given pair of simplicial complexes are
homeomorphic).

The concept of Turing reducibility has to do with
the question: can one non-computable set be more
non-computable than another? In a rather inciden-
tal aside to the main topic of Alan Turing’s doctoral
dissertation (the subject of Soloman Feferman'’s ar-
ticle in this issue of the Notices), he introduced the
idea of a computation with respect to an oracle. An
oracle for a particular set of natural numbers may
be visualized as a “black box” that will correctly an-
swer questions about whether specific numbers be-
long to that set. We can then imagine an oracle algo-
rithmwhose operations canbeinterrupted to query
such an oracle with its further progress dependent
on the reply obtained. Then for sets A, B of natu-
ral numbers, A is said to be Turing reducible to B
if there is an oracle algorithm for testing member-
ship in A having full recourse to an oracle for B.
The notation used is: A <, B. Of course, if B is it-
self acomputable set, then nothing new happens;in
suchacase A <; Bjustmeans that A is computable.
But if B is non-computable, then interesting things
happen.

As the notation suggests, Turing reducibility is a
partial order. If sets A, B are each Turing reducible
to the other, they are said to be Turing equivalent,
written A =; B. And if A is Turing reducible to B
but not conversely we write A <; B. By consider-
ing all oracle algorithms having access to an ora-
cle for a particular set A, one can construct a new
set A’ that contains all the information concerning
membership in any set Turing reducible to A. (The
construction is analogous to that of a “universal”
Turing machine.) The operation’ is called the jump
because it can easily be proved (by using a Cantor-
style diagonal argument) that A <, A’. Setting A =
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@, the set @’ provides an example of a recursive-
ly enumerable set that is not computable. Iterating
the jump operation, one obtains the sequence of
more and more unsolvable problems, &', &”,....

The relation of Turing equivalence is, naturally,
an equivalence relation, and the equivalence class-
es are called Turing degrees. One speaks of the de-
gree of a set of natural numbers to mean the equiv-
alence class towhichitbelongs. The degrees inherit
the partial order, and the jump operationis adegree
invariant. All of the computable sets form a single
degree written 0 which is at the bottom of the par-
tial order. That is, 0 < a for every Turing degree a.
Also, a < a’. Are there degrees between a and a’?
Kleene and Post were able to show that the order-
ing of degreesis complicated and messy. For exam-
ple, for any degree a, they showed how to obtain
degrees b,c such thata<b <a’, a<c<a’,butb
and c are incomparable: neither is less than the oth-
er. They also found densely ordered degrees; that
is, they showed that for a given degree a, an infinite
linearly ordered set W of degrees between a and a’
canbe found such thatifb,c € W, thereis adegree
de Whetweenbandc.

The degree of every recursively enumerable
set is < 0'. There is a sense in which the typical
mathematical problems that have been proved to
be unsolvable are of degree 0. For example, if we
enumerate all polynomial Diophantine equations
with integer coefficients in some standard way, the
degree of the set of natural numbers n such that
the nth equation has a solution in natural numbers
is exactly 0'. So we can say that Hilbert’s tenth
problem is not only unsolvable but has exactly
the degree of unsolvability 0'. A degree is called
recursively enumerable if it contains a recursively
enumerable set. 0 and 0’ are both recursively enu-
merable degrees with 0 < 0’.In a classic paper Post
raised the question of the existence of other recur-
sively enumerable degrees, and this became known
as Post’s Problem. It required a new combinatorial
technique, known as the priority method, to settle
the question. The idea was to list a countable infin-
ity of requirements that the desired objects would
need to satisfy, and to mediate among conflicting
requirements in a manner that would result in all
of them being ultimately satisfied. By using this
technique, it was shown that not only are there
recursively enumerable degrees strictly between
0 and 0’, but indeed that pairs of such degrees
can be found that are mutually incomparable. The
use and refinement of the priority method has
made it possible to prove a number of striking
facts about the recursively enumerable degrees.
For example, the Sacks Density Theorem states
that for given recursively enumerable degrees
a < b, there is a recursively enumerable degree c
suchthata < ¢ < b.
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