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A~STm~CT. A simple "mechanical"  procedure is described for checking equality of regular 
expressions. The procedure, based on the work of A. Salomaa, uses derivatives of regular ex- 
pressions and transition graphs. 

Given a regular expression R, a corresponding transition graph is constructed. It is used to 
generate a finite set of left-linear equations which characterize R. Two regular events R and 
S are equal if and only if each constant term in the set of left-linear equations formed for the 

pair ( ~ ) i s  ( ~ ) o r  ( ~ ) .  

The procedure does not involve any computations with or transformations of regular expres- 
sions and is especially appropriate for the use of a computer. 

1. Let R denote a regular expression over the alphabet Z = {0, 1} (a two-letter 
~dphabet is taken fos simplicity),  and let x be a word in Z*. t ~  will denote the deriv- 
ative of R with respect to x, i.e., the set of words w ~ Z* such tha t  x w  C R .  For 
instance, for the empty  word A one has RA = R. The basic properties of deriva- 
tives of regular expressions are derived in [2], where it is also proved that  every R 
has only a finite number  of unequal derivatives. 

Let 

R = R (1), R(~), ' ' '  , R  (m) (1R) 

be a set of derivatives of R such tha t  every derivative of R is equal to at least one 
clement in this set and assume tha t  for every R (~) (i  = 1, 2, • • - , m) one can single 
out R (j~) and R (~° such that ~ 

R~ i) = R (jO and R~ ° = R ¢ki). (2R) 

Then it is possible to construct the system of left-linear equations 

R (~) = 0R~ ~) + iR~ ~) +~(~) = OR (j~) + iR ¢k° +~(~) (i = 1,2,...,m), (3R) 

where 7¢~) = A if A C R (~), and ,~(i) = ~ (the empty set) otherwise. The system 
(3R) has a unique solution (up to equality of regular expressions) [2, 6]. 

2. Let S be another regular expression, and assume that the set 

S = S ('), S(~), ' ' '  , S (~) (1S) 

has the same properties as (1R) ;  i.e., there can be found equalities (2S) similar to 

• On leave from Technion, Israel Institute of Technology, Haifa, Israel. 
' hi this paper two regular expressions, R and S, are said to be equal (notation: R = S) if and 
only if the regular events described by these expressions are equal. 
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356 ABRAHAM GINZBI  

(2R).  Using them, one can construct a system 

S w) = OS~') + 1SIX') +/t(~') = OS(Ji ') + 1S(~') + ~(i,) 
(i 

(i' = 1 , 2 , . . . , n ,  ~(~') = A o1"4) 

similar to (3R).  
Using (3R) and (3S), one can build the following "compound system" for R 

S. (This construction appears essentially in [6].) Starting with the pair (the "cola 

vector") , i.e., \ S A ] '  one writes 

s (1) ]= SA So + 1  s~ + ~A " 

Using (3R) and (3S) or, if these systems are not explicitly written, using (2R)  : 
(2S), one replaces in the right-hand side of this equation the derivatives of R 
of S by equal derivatives from (1R) and (1S), respectively. 

For each pair ~ S(~,)] obtained in the right-hand side of the equation, one adds  

equation 

S(¢,] = O~,s~i,)] + l ~,si") ) t- ~ 6(i') ] , 

a n d  the pairs of derivatives in its right-hand side are replaced once more b y  
ments from (1R) and (IS),  using (2R) and (2S). The procedure is continued u 
there are no new pairs. I t  follows from the existence of (1R) and (1S) t h a t  
number u of distinct pairs will satisfy u _< ran. By enumerating the pairs, one 
tains the compound system 

S(.) ] \ S(.o) / ,, S(.~) / \ ~(a) / ' 

where a = 1, 2 , . . . ,  u, 1 _< a0 ~ u, 1 ~ a i  ~ U, R(I) = ~A,  S(1) = 
and ~(,) and ~(~) a re /~  of ¢. If ~(,) = ~(,)for every a, one has in (4) two iden~t 
systems of equations for the R(~) and S(,) ; hence, R(,) -- S(,) (a = 1, 2, • • • , 
particularly R = R(~) = S(1) = S. 

Conversely, if R = S, then in the compound system (4), obtained by (3R)  
(3S) in the above way, one has necessarily ~(,) = ~i(,). (This  is explicitly show1 
[6] with "right derivatives" instead of the "left" ones used here.) 

Thus, the equality R = S of two regular expressions can be established by  sh 
ing that  in the compound system (4) for R and S, ,y(~) = ~(,) for all a. This car 
done by computing derivatives of R and S. Unfortunately, the derivation is ol 
quite cumbersome and involves also the comparison of the results in order to fir 
finite set containing all unequal derivatives, Therefore~ it seems to be of interes 
find a simple "mechanical" procedure for construction of (4). Such a procedm 
described below. 

3. Given a regular expression R; there exist straightforward algorithms for ( 
structing a transition graph (called also a transition system in [3]) representin~ 

For example, let R [10 --b (0 + 11)0"1]'1. Consider the transition grap] 
in Figure 1. The vertices (in the present case vertex 1 only) denoted by -- 
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Checking Equality of Regular Expressions 357 

called initial, while those denoted by -"k (vertex 5) are called final. This transition 
graph represents the given R, because every patti starting at. an initial vertex and 
ending at a final one corresponds to a word in R, and, conversely, to every word in 
R there corresponds such a path in G. For example, the path 1-4-3-3-1-2~1-5 
describes the word 1101101 C R. 

4. The same transition graph G chn be used also to describe derivatives of R. To 
this end, denote by A~ the set of all vertices in G which can be reached from the 
initial vertices following a path corresponding to the word x ~ ~2". I t  follows 
immediately from the definition of the derivative that R~: consists of all words and 
only of these words, which correspond to paths leading from the vertices in A~ to 
the final vertices in G. In short, R, is represented by the same transition graph, but 
with A, as initial vertices. 

In the above example, R~ is described by the same G with initial vertices A~ 
= {2, 4, 5}. The final vertex 5 remains unchanged. Notice that /~ C R~, because 
the vertex 5 is initial and final for R~. 

5. Thus, to every derivative R~ of R there can be put in correspondence a get. A:~ 
of vertices of G. The original initial vertices form the A A • The correspondence be- 
tween the subsets of the set of vertices of G and the unequal derivatives of R is not 
one-to-one. To every derivative there co~responds at least one such subset, but there 
are subsets to which no derivative corresponds, and there can be also distinct subsets 
describing equal derivatives (see the examples below). 

Every regular expression can be represented by a finite transition graph, and, thus 
the mentioned result from [2], that every R has only a finite number of unequal 
derivatives, follows directly. 

6. A system of equations (3) can be derived using the subsets An,  A0, A~, A00, . • • 
only, without actual computation of the derivatives. Indeed, consider Table I, 
which corresponds to G, in Figure 1. 

The entries in the first, column ("inputs") are words x ~ 2" ordered by lengttl 
and for the same length by the numerical magnitude. In the second colunm ("ver- 
tices of G") the corresponding subsets of vertices A~ are marked. Thus, A A = {1}, 
A0 = {3}, A1 = {2, 4, 5}, A0o = 13}, and so on, as can be read directly front 

I 0 

i 5 
_ + 

I 

0 I 

FiG, I 
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Figure 1. In  the third column ("equal  to" ) ,  0 appears in the row of 00, becaus~ 
Aoo = Ao (i.e., R0o = Ro). A01 = AA impl ies /~  in the row of 01, etc. A row (an( 
the corresponding derivative) with an entry in the column "equal to"  will be calle( 
a terminal. Here all derivatives of "second order" are terminal;  i.e., they are equal tl 
derivatives of smaller orders and, dearly,  so will be all "higher" derivatives. Thus 
the table need not be prolonged. As a rule, if the row of x is terminal, one does no 
enter in the table more inputs beginning with x. 

In  the last column ( " inc ludes /~" )  a "yes" appears, if and only if the correspond 
ing A~ includes a final vertex (these vertices are labeled with a -t- ). 

For any x which is not terminal, the rows x0 and xl  are added to the table. Th, 
process is stopped when there are no new nonterminal words. (There is only a finit 
number  of subsets in a finite set!) 

The obtained table can be used to write the system (3R)  for R, because the set c 
the nonterminal derivatives fulfills dear ly  the properties of (1R).  One has 

R = RA = 0Ro + 1R1 

Ro = 0Roo + 1Rol = 0Ro + 1R (5 

R1 = 0 R ~ o +  1Rn + A = OR + 1 R o W  A .  

Notice tha t  A appears in the equations for the derivatives with a "yes"  in the lag 
column of the table. 

7. The above technique is now used to check an equality R = S. 
Example 1. An equality from [5]: 

R ~- [10 + (0 + 11)0"1]'1 

= (10)*1  -t- ( 10 )* (11  -t- 0)[0 + 1(10)*(11 -I- 0)1"1(10)*1 =-- S. 

R was discussed above. Now the same procedure will be applied to S. 
A transition graph H for S is given in Figure 2. 
The system of equations (3S) is here (see Table I I )  : 

S = 0So + 1S1 

So = 0Soo -t- 1Sol = 0So + 1Sol 

$1 = 0S~o+ 1 S n +  A = 0 S +  1 S o +  A (6 

Sol = 0So10 + 1Soll = 0So + 1S0n 

Soll = 0Sono + 1Sore + A = 0Sol + 1So + A .  

TABLE I 

Vertices of G Includes 
Inputs 1 2 3 4 A 

V A 
o 
1 
oo 
Ol 
lO 
11 

V 
V 

V 
V V 

V 

V 

Equal to 
5+ 

V 
o 
A 
A 
o 

yes 
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0 

0 I I I I 0 

I 

I + 

1 

F r o .  2 

T A B L E  I I  

D@uts 

A 
0 

1 

oo 
Ol 
lO 
11 
010 

0 l l  

0110 

0111 

Vertices of H 
1 2 3 4 5 6 7 8 9 10+ 

V 

V 

V 
V V V 

V 

V 
V 

V 

V V 

V V V V 
V V 

Equal to i 

i . . . .  

o 

o 
o 

Ol 
o 

Includes 
A 

y e s  

y e s  

Tile compound system can be written using (5) and (6), or directly from the 
tables, which actually give the equalities (2R) and (2S). One obtains: 

S^ So + 1 Sl 

So So + 1 Sol 

Sol So + 1 Soil 

There are no new pairs, and for all appearing pairs 7(,) = ~(,) ; hence R = S. 
Notice that  it follows tha t  S o l =  S (because Rol = R),  but this fact was not clear 
from the table for S. This is an example of two equal derivatives with distinct sub- 
sets A. 
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8. Procedure for Checking an Equality R = S. 
I. Construct transition graphs for R and S. 
II. Construct the corresponding tables. 
III. Write the set of the distinct pairs, which will appear in the compound systc~ 

(use the columns "equal to" of the tables). 
IV. R = S if and only if both elements in each pair simultaneously do or do n( 

include A. (Use the columns "includes A"  for checking this property.) 
9. Example 2. 

R =-- [(1"0)*01"]* = A + 0(0 + 1)* + (0 + 1)*00(0 + 1)* =- S 

This equality and the transition graph for R appear in [4]. For R, see Figure 3 an 
Table III. 

Notice that in the ease when there are arrows with A in the transition grap] 
i C A~ implies that every vertex which can be reached from i by a chain of A arrov 
is also an element of A~. In the last case, for example, AA includes additional to 
a l so2and3 ,  a n d 4 6 A ~ l ,  2 , 3 C A ~ .  

For S, see Figure 4 and Table IV. There will appear the following pairs (or 
omits R and S) : 

First ( ~ ) ;  it implies (00) and ( ~ )  • 

The pair (00) implies (~ )  and (0~) • 

The pair (11) implies ( ~ )  and (~ )  • 

( ~ )  " " - _(10) do not imply new ones; i'e" The two added pairs 0 and 10 the s e t  o f  a 

appearing pairs is 

(AA) ' ( ~ ) '  (11)' (010) , (11~) • 

As both elements in the pairs (AA), ( ~ ) ,  (010) include A and both elements in tt 

( I )  (10)  d°n° t inc lude  A, the cheeks IV are fulfilled and consequent] pairs ' 10 

R = S ,  

TABLE llI 

Inputs +1 2 3 4 Equal lo IncludesA 

A 
o 
1 
O0 
01 
10 
11 
100 
101 

V V V 
V V V V 

V 
V V V V 
V V V V 

V V 
V 

V V V V 
V 

yes 
yes 

yes  
yes  

yes  
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Fio. 3 

I 

Fro. 4 

0 

I 

InpuSs 

A 
0 
1 
00 
01 
10 
11 
01o 
011 
10o 
101 

TABLE IV 

I 2 3 4 
+ + 

Equal to Includes 
A 

y e s  
y e s  

0 yes 
yes 

1 
0 
Ol 
0 
1 

V V 
V V V 
V 
V V V 
V V 
V V 
V 
V V V 
V V 
V V V 
V 

V 

yes 
yes 
yes 

10. The use of the tables in the above procedure can be replaced by the following 
relational technique. 

A transition graph G can be described by a set of relations over its vertex set in 
the obvious way: to every input cr C ~ and t o / \  there corresponds a relation 7~, 
such that aT~b if and only if there is in G a z-arrow from the vertex a to the vertex b. 

Denote by T'A the transitive closure of TA and by ~/~ the union q~'A U I, where I 
is the identity relation. Then for any x = z~z2 . .. c,k -~ I~* one has 

A~ = ( A A ) ( 7 ~ T A T ~ T ^ " .  7 ~ A ) .  

(The operation in the brackets is the usual composition of relations, an([ (A)T  = 

{b ] 3a E A, aTb}.) 
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For example, for G in Figure 3, 

3 1. 3 2 ' 2 3 4 2 3 1 3 2  " 

AA = {1, 2, 3} (AA = {1}TA), 

A10 = (AA)(~/~ TA To ~A) = {2, 3I. 

This computational approach is especially appropriate for the use of a computer. 
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