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apsTrRACT. A simple “mechanical” procedure is described for checking equality of regular
expressions. The procedure, based on the work of A. Salomaa, uses derivatives of regular ex-
pressions and transition graphs.

Given a regular expression R, a corresponding transition graph is constructed. It is used to
generate a finite set of left-linear equations which characterize R. Two regular events R and
8 are equal if and only if each constant term in the set of left-linear equations formed for the

ST

The procedure does not involve any computations with or transformations of regular expres-
sions and is especially appropriate for the use of a computer.

1. Let R denote a regular expression over the alphabet Z = {0, 1} (a two-letter
alphabet is taken fossimplicity), and let z bea word in =¥, R, will denote the deriv-
ative of R with respect to z, i.e., the set of wordsw € =* such that zw € R. For
instance, for the empty word A one has R, = R. The basic properties of deriva-
tives of regular expressions are derived in [2], where it is also proved that every R
has only a finite number of unequal derivatives.

Let
R=R® R?® ... R™ (1R)
be a set of derivatives of R such that every derivative of R is equal to at least one
element in this set and assume that for every R® (i =1,2, ---, m) one can single
out RY? and R*? such that
Ré\i) — R(ii) and Rii) — R(ki). (2R)

Then it is possible to construct the system of left-linear equations
RY = ORs” + 1R:" + ¥ = ORY? + 1R*? 4+ 4 (i =1,2,.--,m), (3R)

where v = A if A € R(i), and v = ¢ (the empty set) otherwise. The system
(3R) has a unique solution (up to equality of regular expressions) [2, 6].

2. Let S be another regular expression, and assume that the set

S = S(D, S(?)’ .. ,S(") (1S)
has the same properties as (1R); i.e., there can be found equalities (28) similar to
* On leave from Technion, Israel Institute of Technology, Haifa, Israel.

* In this paper two regular expressions, B and §, are said to be equal (notation: R = §) if and
only if the regular events described by these expressions are equal.
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(2R). Using them, one can construct a system
S = 0857 + 1877 0 = 08V 4 18%7 4 5t
(=12 ,n &= Aorg)

pon

gimilar to (3R).
Using (3R) and (38), one can build the following “compound system” for |2 .
S, ('This construction appears essentially in (6].) Starting with the pair (the “colu

vector') (§>’ le., (g/\), one writes
A

R\ (RN _ . [R RN\ | [+
(s‘”) - (8> =0 (S) i (s“) + (a)

Using (3R) and (38) or, if these systems are not explicitly written, using (2R) :
(28), one replaces in the right-hand side of this equation the derivatives of R -
of S by equal derivatives from (1R} and (18), respectively.

i)

For each pair ( q(‘“")> obtained in the right-hand side of the equation, one adds
K

R(i) R(i) €3] (?)
(S('i')) = 0 (Sg'i’)) + 1 (SEI-’)) + (’;(i’)) >

“and the pairs of derivatives in its right-hand side are replaced once more by
ments from (1R) and (18), using (2R} and (28). The procedure is continued u
there are no new pairs. It follows from the existence of (IR) and (18) that,
pumber % of distinct pairs will satisfy « < mn. By enumerating the pairs, one
tains the compound system

R(u)) _ (R(am) (Rcm)) (’ch)

(S{a) 0 Sap +1 Stap + S/’

where o = 1, 2, s, 1 ﬁ o < U, - 1 < oy < u, R(]) = R/\; S(n =
and v and 8 are A of ¢. If vy = 8oy Tor every a, one has in (4) two ident
systems of equations for the Ry and S ; henee, By = S (@ = 1,2, -+ |
particularly & = Eq = S = S.

Conversely, if B = S, then in the compound system (4), obtained by (3R)
{38) in the above way, one has necessarily v = 8(a . (This is explicitly show
[6] with “right derivatives” instead of the “left’ ones used here.)

Thus, the equality B = 8 of two regular expressions can be established by sh
ing that in the compound system (4) for R and 8, vy = 8ia for all @. This car
done by ecomputing derivatives of B and S. Unfortunately, the derivation is ol
quite cumbersome and involves also the comparison of the results in order to fix
finite set containing all unequal derivatives, Therefore, it seems to be of interes
find a simple “mechanieal” procedure for construction of (4). 8uch a procecdm
described below.

3. Given a regular expression £, there exist straightforward algorithms for ¢

structing a {ransition graph (called algo a transition system in [3]) representing
For example, let & = [10 4 (0 + 11)0*1]*,1. Consider the transition grapl

in Figure 1. The vertices (in the present casc vertex 1 only) denoted by -—

cquation
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called inafral, while those denoted by + (vertex §) are called final. This transition
graph represents the given R, because overy path starting ab an initial vertex and
ending at o final one corresponds to a word in B, and, conversely, to every word in
R there corresponds such a path in G, For example, the path 1-4-3-3-1-2-1--5
deseribes the word 1101101 € R.

4, The same transition graph @ can be used also to deseribe derivatives of R, To
this end, denote by A, the set of all vertices in ¢ which can be reached from the
initial vertices following a path corresponding to the word 2 € 2% Tt follows
immediately from the definition of the derivative that R, consists of all words and
only of these words, which corrcapond to paths leading from the vertices in 4, to
the final vertices in &. In short, R, is represented by the same {ransition graph, but
with A, as initial vertices.

In the above example, R, is described by the same G with initial vertices A,
= {2, 4, &}. The final vertex 5 remains unehanged. Notice that A € Ry, because
the vertex 3 is initial and final for K, .

3. Thus, to every derivative R, of I2 there can be put in correspondence a sot A,
of vertices of (7. The original initial vertices form the A, . The correspondence be-
tween the subsets of the set of vertices of (f und the unequal derivatives of R is noy
one-to-one. Ta every derivative there corresponds at least one such subset, but there
are subsets 1o which no derivative corresponds, and there can be also distinet subsets
describing equal derivatives (see the examples below).

Fvery regular expression can be represented by a finite transition graph, and, thus
the mentioned result from [2], that every R has only a finite number of unequal
derivatives, follows directly.

6. A system of equations (3) can be derived using the subsets A, Ao, Ay, Ao, << -
only, without actual computation of the derivatives. Indeed, cousider Table I,
which corresponds to ¢, in Figure 1.

The entrics in the first column (“inputs”) are words © € % ordered by length
and for the same length by the numerieal magnitude. In the second column (*ver-
tices of G°') the corresponding subsets of vertices 4. are marked. Thus, 4 . = [11,
Ag = (3}, Ay = {2, 4,5}, Aw = {3}, and so on, as can be read divectly from
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Figure 1. In the third column {“equal to’*), O appears in the row of 00, becauvs
Ag = Ao (le., Hoo = KBo). Aw = A, implies A in the row of 01, ete, A row (anc
the corresponding derivative) with an entry in the column “equal to”” will be callec
a termanol. Here all derivatives of “seeond order” are terminal; i.e., they are equal t
derivatives of smaller orders and, clearly, so will be all “higher” derivatives. Thus
the table need not be prolonged. As a rule, if the row of z is terminal, one does no
enter in the table more inputs beginning with x.

Tn the last column (“includes A”?) a *‘yes” appears, if and only if the correspond
ing A, includes a final vertex {these vertices are labeled with a +).

For any 2 which is not terminal, the rows 20 and z1 are added to the table. Th
process is stopped when there are no new nonterminal words. (There is only a finit
number of subsets in a finite set!) ,

The obtained table can be used to write the system (3R) for B, because the set g
the nonterminal derivatives fulfills clearly the properties of (1R). One has

R =Ry = 0Ry + 1R
Ry = ORy + 1Ry = O0R + L& (b
RBy= 0y + 1By + A = 0B + 1B + AL

Notice that /A appears in the equations for the derivatives with a “yes” in the las
column of the table.
%.  The above technique is now used to check an equality B = 8.
Example 1. An equality from [5]:
R = [10 4 (0 + 11)0"1]"1
= (10)*1 + (10)*(11 + 0)[0 + 1(10)*(11l + 0)]*1(10)"1 = 8.
R was discussed above, Now the same procedure will be applied to S.

A transition graph H for S is given in Figure 2.
The system of equations (38) is here (see Table 11):

S = GS(] ‘I_ IS]_
So = 08+ 18u = 08 + 180
S =080+ 181+ A =084+18 + A (6

Su = 08u0 + 18m = 08 + 1.8m
Son = 08eu0 + 18 + A = 08n + 18 + A.

TABLE 1
Inpuis 1 ;’m“;s of f s+ Egual lo [”Cff\‘d”
A vV
0 A
1 V AVARRY) yes
0o V 0
01 v AN
10 \Y AN
11 vV 0
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Fig. 2

TABLE I1

Inputs Vertices of Il Equal to lncl/(ules

A \Y

0 -V
1 VvV Vv V yes
00 V

01 \% \
10 \%

1 \%

010 \%
011 vV VvV vV Vv yes
0110 \Y% \V] 01
0111 V 0

(=

OO>

The compound system can be written using (5) and (6), or directly from the
tables, which actually give the equalities (2R) and (28). One obtains:

R/\ R1
<SA> (S) 1 (S)
Re\ _
<‘SO) - O( > +1 <So1>
B\ _ A
(5)=0(%) =1 (5)+(})
BN
(Sm> - 0( ) 1 (S)
£)-0(2)+ ()2
(son) = O(so) +1ls) TN
There are no new pairs, and for all appearing pairs v = 6 ; hence B = S,
Notice that it follows that So; = 8 (because Ra = R), but this fact was not clear

from the table for S. This is an example of two equal derivatives with distinct sub-
sets A,
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8. Procedure for Checking an Equaldty B = 8.

I. Construet transition graphs for £ and 8.

IT. Construet the corresponding tables,

III. Write the set of the distinct pairs, which will appear in the eompound syster
(use the columns “equal to” of the tables).

IV, B = Sif and only if both elements m each poir simultaneously do or do ne
include A. (Use the eolumns “includes A” for checking this property,)

9. FEzxample 2.

R = [(1"0)*01*]* = A - 000 + 1) 4 (0 + D000 + 1) =

This equality and the transition graph for B appear in [4]. For R, see Figure 3 an
Table III.

Notice that in the case when there are arrows with A in the transition grap
¢ £ Azimplies that every vertex which can be reached from 7 by a chain of A arrov
is also an element of A, . In the last case, for example, A, includes additional to
also 2and 3, and 4 € A,=1,2,3€ 4,.

For 8, see Figure 4 and Table IV. There will appear the following pairs (or
omite R and S):

Tirst, ( ) it implies ( ) and ( )
The pair ( ) implies ( ) and ( ) .
The pair ( ) implies ( ) and )

The two added pairs (0 an ( ) do not imply new ones; i.e., the set of 4

(A)(6)- () () G

0
0

pairs G) , Gg) do not include A, the checks IV are fulfilled and consequent!
B =8

appearing pairs is

As both elements in the pairs (ﬁ) , ( ) , (0?) include /A and bothelemenisin b

TABLE II1
Taputs E'_ 2 3 4 Equal to I ml;:de-y
A VooV ¥es
0 VvV vV Y ves
1 A%
00 vV VvV vV VY 0 yes
01 VoV VY 0 ves
10 vV Vv
1t AV 1
100 VoV VoV 0 yes
101 AV 1

Journal of the Assaciation for Computing Machinery, Vol. 14, No. 2, April 1967



Checkang Mauolity of Regular Fypressions 361

Fro. 4

TABLE IV
Inputs -li- L ﬁ Bysed to ‘ lucf;fdcs
A\ V VvV VYV } yes
0 VvV ‘ yes
1 \/ k
L) AVARRVIRRY) 0 ; yos
a1 vV v ( yes
10 VARV
11 \Y4 1 1
010 AVARRV Y 0 : yos
011 Y, v o1 } yes
100 AVARRAVARRY) 0 : yes
101 v/ 1 1

10. The use of the tables in the above procedure can be repluced by the following
relational technicque.

A transilion graph @ can be deseribed by a set of relations over its vertex set in
the obvious way: to every input ¢ € Z and to /\ there corresponds a relation T, ,
such that aT,b if and only if there is in G a c-arrow from the vertex @ to the vertex b.

Denote by T the transitive elosure of T'a and by T, the union 7'4 U1, where [
iz the identity relation. Then for any @ = 0wy + -+ o3 & =% one has

A, = (Af\}(q*ﬂ;*ff\TM;ff\ e ’!uijfi/“u}‘

{The operation in the brackets is the usual composition of relations, and (AT =
{6 da € A, aTh}.}
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For example, for & in Figure 3,

o [2 3 . (34 {124

10"’<4 )1 Il_(g 4)7 T/\.‘"(Z 3 1)7
124144 (123 9
2 1 3 2 3)’ AT\ 2 03 :

An = {1; 2, 3} (A/\ = {1} '/\);
A = (AA)(TI ?/\ T T/\) = |2, 3}-

(8]

| o]

7
7,

I

w2

This computational approach is especially appropriate for the use of a computer.
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