1) We are told that the threshold energy for lithium is 4.65×10^{-19} J. We are also told that the wavelength of light used is 283 nm ($= 283 \times 10^{-9}$ m), so we can get the energy of the light, and from that, the excess energy beyond the work function ($= \text{threshold energy}$), which is kinetic energy.

\[
E = \frac{hc}{\lambda} = \frac{\left(6.6261 \times 10^{-34} \text{ J} \cdot \text{s}\right) \left(2.9979 \times 10^8 \text{ m/s}\right)}{283 \times 10^{-9} \text{ m}} = 7.02 \times 10^{-19} \text{ J},
\]

which represents $E_k + E_p$, so $E_k = 2.37 \times 10^{-19} \text{ J} = \frac{1}{2}mv^2$. This leads to $v = \sqrt{\frac{2E_k}{m_e}} = \sqrt{\frac{4.74 \times 10^{-19} \text{ J}}{9.1094 \times 10^{-31} \text{ kg}}} = 7.21 \times 10^5 \text{ m/s}$.

2) (a real give-away) If $n=8$, then l, which can vary from 0 to (n-1), has values of 0,1,2,3,4,5,6,7 which would correspond to sub-shells of: one 8s, three 8p, five 8d, seven 8f, nine 8g, eleven 8h, thirteen 8i, and fifteen 8j. (Note that not all of these need to be occupied, and in fact, as we will see, many of them will not be, at least not in the foreseeable future!)

3) We are told that the energy required to dissociate an F$_2$ molecule is 155 kJ/mol, which is equivalent to 155000 J/N$_{av} = 2.575 \times 10^{-19} \text{ J/molecule}$. Using: $E = \frac{hc}{\lambda}$, which equation, upon rearrangement, yields $\lambda = \frac{hc}{E}$. Substituting and solving yields: $\lambda = \frac{\left(6.6262 \times 10^{-34} \text{ J} \cdot \text{s}\right) \left(2.9979 \times 10^8 \text{ m/s}\right)}{2.575 \times 10^{-19} \text{ J}} = 7.715 \times 10^{-7} \text{ m} = 771.5 \text{ nm}$.

4) We have a wavelength, λ, of 2.80×10^{-6} m. A photon of this light would have energy of: $E = \frac{\left(6.6261 \times 10^{-34} \text{ J} \cdot \text{s}\right) \left(2.9979 \times 10^8 \text{ m/s}\right)}{2.80 \times 10^{-6} \text{ m}} = 7.094 \times 10^{-20} \text{ J}$.

We also know that the temperature of the water increases from 20.0°C to 37.0°C, or 17.0 °C. Using $q = C_p(\text{mass})(\Delta T)$, we get: $q = (1000 \text{ g})(4.184 \text{ J/g} \cdot ^\circ \text{C})(17.0^\circ \text{C}) = 71128 \text{ J}$.
If each photon has energy 7.094×10^{-20} J, and we need 71128 J to do our heating, we need:

$$\frac{71128 \text{ J}}{7.094 \times 10^{-20} \text{ J/ photon}} = 1.003 \times 10^{24} \text{ photons.}$$

(This is about 1.67 moles of photons!)

5) If the emission was of yellow light, it seems fairly reasonable to assume that absorption of yellow light would also cause the excitation to the n=5 state. Yes, it is true that blue light would be of higher energy than the yellow light and could also cause an excitation; however, it would probably not be to the n=5 state. What is clear, though, is that red light, being of lesser energy than the yellow light, could not do the desired transition.